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Abstract—We derive conditions which are both necessary and
sufficient for the d-ary multi-log switching networks to be f-
cast strictly nonblocking under all combinations of fanout and
crosstalk constraints. The fanout constraint tells us which stage(s)
of the networks has fanout capability. The crosstalk constraint
tells us whether or not two connection routes are allowed to
share a link (relevant to electronic switches), or are allowed
to share a switching element (crosstalk-free or not, relevant to
optical switches). Thus, for any given d and f, we completely
characterize the d-ary multi-log network under the f-cast strictly
nonblocking constraint, the link/node-blocking constraints, and
the fanout constraints.

The most novel contribution of this paper is the analytical
technique, which combines an algebraic view of the d-ary multi-
log network with the max-flow min-cut theorem. Our results are
more general than previously known results on several fronts: (a)
d-ary networks are more general than binary networks, (b) f-cast
covers both unicast (f = 1) and broadcast (f = V), (c) both link-
blocking and node-blocking are considered in a unified manner,
and (d) all combinations of fanout constraints are considered.

Keywords: multicast, switches, f-cast, strictly nonblock-
ing, d-ary multi-log switching networks, crosstalk-free, fanout
constraints.

I. INTRODUCTION

Many current and future Internet applications demand mul-
ticast support. To support multicast efficiently, the switching
networks which serve as the switching fabric architectures at
the core of electronic routers, or as the switching topology for
optical cross-connects must be multicast capable.

Current multicast switch designs mostly focus on the broad-
cast case [1]-[3]. Although broadcast switches are certainly
capable of supporting multicast with any fanout requirement,
they are not scalable due to their prohibitively high hard-
ware requirement. Almost all the multicast applications are
restricted to a group of users, where broadcasting is rarely
required. Hence, allocating expensive broadcast capability to
each network switch is cost-inefficient for most practical pur-
poses. Moreover, from the viewpoints of resource fairness and
network security (e.g., limiting virus and worm propagation),
we have other good reasons to impose a restriction on the
maximum fanout of each request.

Consequently, there have been some recent research efforts
on designing and analyzing the so-called f-cast switches, in
which the maximum fanout of each request is upperbounded
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Fig. 1. The inverse Banyan network BY ~1(5)

by the parameter f [4]-[8]. An f-cast switch usually requires
significantly lower hardware cost than its broadcast counter-
part. (This point shall be illustrated in this paper with the
d-ary multi-log architecture.) Furthermore, a good design of
an f-cast switch covers both the unicast design (f = 1) and
the broadcast design (f = V) as special cases. Consequently,
studying general f-cast switches is both mathematically pleas-
ing and practically useful, as the results potentially can offer
network designers more flexibility in selecting architectures
for future multicast-intensive networks.

The design of a scalable and hardware-inexpensive switch
usually employs the multistage architecture. The most pop-
ular multistage architectures are Banyan-type [9] and Clos-
type [10] architectures. This paper focuses on analyzing the
Banyan-type (e.g., see Figure 1). In particular, we study
the general d-ary multi-log switch architecture with multiple
vertically stacked inverse Banyan switches, as illustrated in
Figure 2. The d-ary multi-log switches have been attractive for
both electronic and photonic domains [11]-[17], because they
have small depth (O(log INV)), absolute signal loss uniformity,
and good fault tolerance. Hereafter, we use log,(NV,0,m) to
denote a d-ary multi-log switch with m vertically stacked
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Fig. 2. Illustration of the log3(27,0,2) network

inverse Banyan planes.

To support multicast (or generally f-cast) in a log,(N, 0, m)
switch, a certain degree of fanout capability must be provided
in the switch. Similar to that of the fanout definitions for
Clos network [5], a 1 x m switch or a basic d x d switching
elements (SE) in a log; (N, 0, m) switch is said to have fanout
capability if any one-to-many mapping between its inputs and
outputs can be realized. We will say that the input stage (resp.
the middle Banyan stage) of a log, (NN, 0, m) network has the
fanout capability if each of its 1 x m switches (resp. d X d
SEs) has the fanout function. Thus, the fanout capability of a
log,(N, 0, m) switch can be provided either in its input stage,
or in its central Banyan stage or in both. The additional fanout
requirement of a stage usually makes its implementation more
complex and costly than its unicast counterpart, so the fanout
capability should be carefully allocated for the efficient design
of a multicast-capable switch.

There are three levels of nonblockingness typically studied
in the switching network literature: rearrangeably nonblocking
(RNB), wide-sense nonblocking (WSNB), and strictly non-
blocking (SNB). The reader is referred to [4] for their precise
definitions. This paper focuses on analyzing the SNB f-cast
log, (N, 0, m) network.

This paper will fully investigate how the fanout constraints
on the input stage and middle Banyan stage affect the cost of
an f-cast SNB log,; (N, 0,m) switch. In addition to the fanout
constraint, we also consider both the link-blocking and node-
blocking constraints. Under the link-blocking constraint, only
one request is allowed to use a link at one time, which is
relevant to electronic switches [1]-[8], [13], [14], [16]. The
node-blocking constraint allows only one request to use a
switching element at one time, reducing the crosstalk effect
in all-optical cross-connect designs [11], [12], [15], [17]-[19].

Our main contributions are as follows. We derive condi-
tions which are both necessary and sufficient for the the
log,;(N,0,m) network to be f-cast SNB under all combi-
nations of fanout and crosstalk constraints, where d and f
are any given parameters. The most novel contribution of this
paper is the analytical technique, which combines an algebraic

view of the log,;(NV,0,m) network with the max-flow min-
cut theorem. Our results are more general than previously
known results on several fronts: (a) d-ary networks are more
general than binary networks, (b) f-cast covers both unicast
(f = 1) and broadcast (f = N), (c) both link-blocking and
node-blocking are considered in a unified manner, and (d) all
combinations of fanout constraints are considered.

The rest of the paper is organized as follows. Section II
establishes basic notations and presents a simple algebraic
view of log, (N, 0, m) networks, which are used throughout
the paper. Section III presents the necessary and sufficient con-
ditions for the log,(V, 0, m) network to be f-cast SNB under
link/node-blocking constraints when only the central stage has
fanout capability. Section IV presents the corresponding results
when both stages have fanout capability. Section V presents
the corresponding results when only the first stage has fanout
capability. Section VI concludes the paper with a few remarks.

II. PRELIMINARIES

We first establish notations which will be used throughout
the paper. For any positive integers [, d, let

o [{] denote the set {1,...,1};

o Zgq denote the set {0,...,d — 1} which can be thought

of as d-ary “symbols”;

. ij denote the set of all d-ary strings of length [;

o b' denote the string with symbol b € Z,; repeated [ times

(e.g., 3* = 3333);
o |s| denote the length of any d-ary string s (e.g., |31| = 2);
e s;.; denote the substring s;---s; of a string s =
S1...8 € Zfi, when j > ¢ we agree on the convention
that s; ; is the empty string.

Let N = d". We consider the log; (N, 0, m) network, which
denotes the stacking of m copies of the d-ary inverse Banyan
network BY ~!(n) with NV inputs and N outputs. We label the
inputs and outputs of BY ~!(n) with d-ary strings of length
n. Specifically, each input x € Z] and output y € Z7 have
the form x = x1---xpn, ¥ = Y1 Yn, Where z;,y; € Zg,
Vi € [n].

Also, label the d x d SEs in each of the n stages of BY ~!(n)
with d-ary strings of length n — 1. It is easy to see that an
input x (resp. output y) is connected to the SE labeled x1_,,—1
in the first stage (resp. y1..,—1 in the last stage).

For the sake of clarity, let us first consider a small example.
Consider the unicast request (x,y) = (01001,10101) when
d = 2,n = 5. The input x = 01001 is connected to the SE
labeled 0100 in the first stage, which is connected to two SEs
labeled 0100 and 1100 in the second stage, and so on. The
unique path from x to y in BY ~!(n) can be explicitly written
out (see Figure 1):

input x 01001
stage-1 SE | 0100

stage-2 SE | 1100

stage-3 SE | 1010
stage-4 SE | 1010
stage-5 SE | 1010
output y 10101




We can see clearly the pattern: the prefixes of y;. ,—1 are
“taking over” the prefixes of x; ,_; on the path from x to
y. In general, the unique path from an arbitrary input x to an
arbitrary output y is exactly the following:

input x T1T2 ... Tp—1Tn
stage-1 SE | z122... 251
stage-2 SE | y122... 251
stage-3 SE | y1y2 ... Tp—1
stage-n SE | y1Y2...Yn—1

OUtput Yy Y1Y2 - - - Yn—1Yn

Now, consider two unicast requests (a,b) and (x,y). In
the node-blocking case, these two requests cannot be routed
through the same copy of BY (n) if and only if the two
corresponding paths intersect at some SE in the middle (if they
were to be routed through the same copy). More precisely,
(a,b) and (x,y) are said to node-block each other if and
only if there is some j € [n] such that by ;_1 = y1.j—1 and
Gj.n—1 = Tj.np—1. In this case, the two paths intersect at a
stage-7 SE. It should be noted that two requests’ paths may
intersect at more than one SE. In a log,(N,0,m) network,
two requests which are node-blocking one another have to be
routed through different copies of BY ~*(n).

For any two d-ary strings u,v € Z., let PRE(u, v) denote
the longest common prefix, and SUF(u,v) denote the longest
common suffix of u and v, respectively. For example, if
u = 0100110 and v = 0101010, then PRE(u,v) = 010 and
SUF(u, v) = 10. From the observation made in the previous
paragraph, the following proposition is immediate.

Proposition IL.1. Let (a,b) and (x,y) be two unicast requests
in a log,(N,0,m) network, then the two requests node-block
one another if and only if

[SUF(a1..n—1,%X1..n—1)| + |[PRE(b1.n—1,¥1..n—1)] > n — L.

6]

In the link blocking case, two requests link-block each other
if and only if they share a common link in BY ~!(n) (if they
were to be routed through the same copy). More precisely, two
requests (a,b) and (x,y) are said to link-block each other if
and only if there is some j € [n] such that by ;1 = y1. 1,
Qj.n—1 = Tj.n—1, bL.j = Yi..4, and Gj41.n—1 = Tj+1..n—1-
The four conditions are equivalent to just to conditions b, ; =
y1.; and a;j. n—1 = T, n—1. We easily obtain the link-blocking
analog of Proposition II.1 as follows.

Proposition IL.2. Let (a,b) and (x,y) be two unicast requests
in a log;(N,0,m) network, then the two requests link-block
one another if and only if

|SUF(a1.n—1,X1..n—1)| + [PRE(b1. n—1,¥1.n—1)| > 1. (2)

III. ONLY THE MIDDLE STAGE HAS FANOUT CAPABILITY

The main results of this section are summarized in the
following two theorems.

Theorem IIL1. Let r = |log, f|, and

mu(n, f,d) = f(d T -1+ a ETL @)
Then, the necessary and sufficient condition for log,(N,0,m)
to be f-cast strictly nonblocking in the node-blocking sense
is m > mup(n, f,d) when f < d*~' —d"~2 and m >
Map(n, d*1 —d"=2, d) when f>d" 1 —d" 2 + 1.

Theorem IIL.2. Let r = |log, f]| and

n—r—2

mlb(”a f, d) = f(d[ 2

Then, the necessary and sufficient condition for log,(N,0,m)
to be f-cast strictly nonblocking in the link-blocking sense is
m > my(n, f,d) when f < d"=2 and m > my(n,d" 2, d)
when f > d" 2.

1)y +ar- =71 @

The proofs of Theorems III.1 and II.2 are similar. Due
to space limitation and for the sake of presentation clarity,
we will present here only the proof of Theorem III.1. The
presentation should be sufficient in conveying the main ideas.
There are two conditions to be shown, the sufficiency and
the necessary conditions, which are proved separately in the
following lemmas.

Lemma IIL3 (Sufficiency). Ler » = |log, f|. Then, a
sufficient condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the node-blocking sense is m > muyy(n, f,d)
when f < d"~' —d"2 and m > mpp(n,d" 1 — d"72,d)
when f > d* 1 —d"~2 41, where the function myy is defined
in (3).

Proof: Suppose the network already has established
routes for some set R of requests. Let R = (X,Y) be a
new multicast request compatible with the current network
state, where X is some input and Y is a subset of [ outputs,
I < f. For the network to be strictly nonblocking, we must be
able to find a copy of BY™!(n) to route R. Let b(R) be the
number of requests in R which node-block R (i.e. cannot be
routed through the same copy of BY ~!(n) with R). Then, R
is routable if and only if m > b(R) + 1.

Firstly, consider the case when f < d"~! —d"~2. We will
derive an upper bound B for b(R). The upper bound B will be
independent of R and R. Then, m > B+1 will be a sufficient
condition for log;(NN,0,m) to be strictly nonblocking.

Since the first stage does not have fanout capacity, a request
(x,Y’) node-blocks R if and only if there is some y € Y such
that the unicast request (x,y) node-blocks R. Hence, without
loss of generality, we can assume that R consists entirely of
unicast requests.

To this end, write Y = {?(1), e ,?(l)}. In order for a
request (x,y) to node-block R, (x,y) must node-block the
request (X, y@)) for some 1 < p < [. Thus, let us elaborate
on which (x,y) may node-block (X,7®).



For each i € {0,...,n — 1}, let X; be the set of inputs x
other than X, where x;_,_; shares a suffix of length exactly
1 with X;_,,—1. Formally, define

X; = {X S Z:ib — {i} | SUF(Xlunfl,ilunfl) = Z}

Similarly, for each j € {0,...,n — 1}, let Yj(p) be the set of
outputs other than ) which share a prefix of length exactly
j with ¥, namely

Yj(p) = {y e 2i—{y"} | PRE(Yl..n—lvygz.).)nfl) = j} .

By Proposition IL.1, (x,y) node-blocks (X,¥®) if and
only if (x,y) € X; x ¥;*) for some i,j such that i + j >
n — 1. Consequently, (x,y) node-blocks (X,Y) if and only if
(x,y) € X; x Yj(p) for some i,j € {0,...,n — 1}, and some
1<p<I, for whichi+j>n—1.

Let I = Z} be the set of inputs and O = Z}; be the set of
outputs. Construct a bipartite graph Gr = (I U O, F)) which
is the union of all complete bipartite graphs X; x Yj(p ) for
which i+ j > n — 1. Then, (x,y) node-blocks R if and only
if (x,y) is an edge of Gg. The set of requests in R each
of which node-blocks R must be a matching of G'r, in order
for R to be a valid request set. Consequently, b(R) < v(Gr),
where v(GR) denotes the size of a maximum matching in Gg.
It follows that

v(Gr) +1 )

m > max
R an l-cast request, | < f
is sufficient for the log (N, 0, m) network to be f-cast strictly
nonblocking.

Let 7(GRr) denote the size of a minimum vertex cover in
Gpg, then 7(Gr) = v(Gpg) by the classic Konig-Egevary
theorem. Set j = [2=2=1]. Note that r < n — 2 in this case
and thus 5 > 1. It is not difficult to verify that the following
set is a vertex cover of Gg:

n—1 I n—-1
c=|Ux|ulU U v”
i=j p=li=n—j
Since | X;| = |Y;")| = d"~* — "1~ for all i, we have

IC| < (@ —d" 7 4@t —d) +
L(d =7t + - d = d°)

A" =14 f (& —1)

mup(n, f,d) — 1

Thus, v(GRr) = 7(Gr) < |C] < mpp(n, f,d) — 1. Recall (5)
and the lemma is proved.

Secondly, consider the case when f > dn1 — g2 41,
If | < d* ! — d" 2, then b(R) can only be at most
M (n,2"~1 — 2772 d) — 1 by the previous analysis and the
fact that mup(n, f,d) is a non-decreasing function in f. If
I > d" ! —d" 2 4 1, then the number of free outputs is
at most d"* — 1 < d" — d" ' + d""2 — 1. Thus, b(R) <
d* —d" 1 +d" 2 — 1 = myp(n,d* =t —d"=2,2) — 1 and the
lemma follows. ]

Lemma IIL.4 (Necessity). Let r = |log, f]. Then, a nec-
essary condition for log,;(N,0,m) to be f-cast strictly non-
blocking in the node-blocking sense is m > my,(n, f,d) when
f<dv!—d? and m > mp(n,d*t — d"2,d) when
f>d" ' —d" 2 + 1. The function my, is defined in (3).

Proof: Since a necessary condition for f = d"~! —dn—2
is obviously also a necessary condition for f > d*~! —d"2,
we only need to consider the case when f < d"~! — d" 2,

Suppose to the contrary that m < myp(n, f,d) — 1. Our
strategy is as follows. We will specify an f-cast request R =
(X,Y) and a valid set R of requests compatible with R, where
|R| = mu(n, f,d)—1 and every request in R node-blocks R.
This way, we can set up a network state in which all copies
of BY !(n) are used for routing R. When request R arrives,
we cannot find a copy of BY !(n) to route it, completing
the proof of the necessary condition. Equivalently, using the
language developed in the proof of the previous lemma, we
will construct a request R for which the bipartite graph G
has a matching of size exactly mu(n, f,d) — 1. (Each edge
of the matching corresponds to a request in R.)

Note that " < f < d"*' and 0 < r < n — 2. For every
non-negative integer ¢ < d” — 1, let s; be the unique d-ary
representation of 7 with exactly r symbols in Zg4, i.e. s; € Z,
for all ¢ < d" — 1. Moreover, let u = [(f —d")/(d —1)], then
0<u<d.

The request R = (X,Y) is defined as follows:

e X =0" (a string of n 0s)

e Y ={F,... . D}, where
y®) = $,00"""t for 0 <p<d —1,
and
) = Skpip()”—"‘_1 for d"<p<f-1,
where k, := L%J and i, = (p—d") mod (d — 1) + 1.

(The second part of the ¥(») are defined only when f > d’.)

Define the input sets X; and output sets Yj(p ) as in the
previous lemma. The outputs y@) were specifically designed
so that all the following sets are mutually disjoint, which

the reader can straightforwardly verify: YTfo_)l,...,Yn{ Il),
YO, .. yUih, . YT,(ﬂ)l,...,YT.(_{fl), and the sets Y,

for all p such that u < p < d" — 1.

Let j = [(n —r — 1)/2]. Consider four cases as follows.
Case 1: » < n —5. Then, n — 7 — 2 > r + 1. Recalling the
definition of G, we know that G contains all the following
subgraphs, which are mutually vertex disjoint:

-1
@ Xix (JY&_j for0<i<j-1,
p=0

f-1
® Xx; % Jr?,

1 and

p=0
n—1 f—

1
© U xix v

i=j+1 p=0
Recall also that |X;| = |Yi(p)| = d" " — d" ! for all i
and p. In what follows, we will use extensively the trivial fact



that the complete bipartite graph K, ; has a matching of size
min{a, b}.

For each ¢ with 0 <7 < j — 1 the corresponding subgraph
in (a) has a matching of size

f(di—',-l _ d?) — mln{d’n—z _ dn—l—i7f(di+1 _ d’L)}
The subgraph in (b) has a matching of size
d" — "I = min{d" T — d" I f(@T - @)}

The subgraph in (c) has a matching of size
n—1

d"T =T =min{ Y (d"F—d"T ), f(d? - dT))
i=j+1

In total, Gi has a matching of size

j—1
Zf(diJrl _ di) + (dnfj _ dn*jfl) + (dnfjfl N 1)
=0

= f(&-1)+d" 7 -1
= mw(n, f,d) —1

as desired.

Case 2: 7 =n—4. Thismeans j =2andn—j7—1=r+1.
We know G contains all the following subgraphs, which are
mutually vertex disjoint:

f—1
@ Xix (JYW, . for0<i<l,
p=0
n—1 f—

1
Y7
0

(b) U X; x
1=2 P

Similar to the previous case, it can be seen that G contains
a matching of size

1
Zmin{d"ii _ dnfiflvf(diJrl _ dz)}
=0

+ min {Ti(dnz _ dnfifl)’f(di’» _ dZ)}

1=2
1 . ) n—1 ) ]
— Zf(dz+1 _ dz) + Z(dn—z _ dn—z—l)
=0 =2

= mnb(nvad) -1

Case 3: r=n—3. Thismeans j=1landn—j—1=1r+1
Note that the union Y,,_» = U]{;S YTEZi )2 has exactly f(d?—d)
vertices, and (d>—d)f > d"~'—d" 2. Let Z be any subset of
Y,,_o of size exactly "' —d" 2, and W = Y,,_y — Z. Then,
Gr contains all the following subgraphs, which are mutually
vertex disjoint:

-1
@ Xox |Jv,

p=0

b) X;x 2.

n—1 d"—1
© | Xix (Wu U Y,?’)S).
=2 p=u

This time, G contains a matching of size

min{d" —d" ', f(d— 1)} + (d"* —d"?)
n—1
+ mln{Z(dn—z _ dn—i—l),
=2

(@ =d)f = (" =d" )+ (d" —u)(d® - d*)}
fd=1)+ @ =d"?) + (@ - 1)
= mw(n, f,d) — 1.

Case 4: d" 2 < f < d"! —d"2. Similarly, G contains all

the following subgraphs, which are mutually vertex disjoint:
-1

@ Xox [J v\,

p=0
n—1 f
® | xix (Y— (Jvi” UY)).
p=0

i=2
Thus, G has a matching of size

min{d" — d" !, f(d — 1)} + min{d" " — 1,d" — df}
=fld=1)+d" " =1 =mup(n, f,d) — 1.
|

IV. BOTH THE INPUT AND MIDDLE STAGES HAVE FANOUT
CAPABILITY

The main results of this section are summarized in the
following two theorems.

Theorem IV.1. Let r = |log, f|. Then, the necessary and
sufficient condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the node-blocking sense is m > mpy(n, f,d),
where the function my,(n, f,d) was defined in (3).

Theorem IV.2. Ler r = |log, f|. Then, the necessary and
sufficient condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the link-blocking sense is m > mp(n, f,d),
where the function my(n, f,d) was defined in (4)

The proofs of Theorems IV.1 and IV.2 are similar. We will
present here only a proof of Theorem IV.1. Note that Theorem
IV.2 is already obtained in [8]. However, the technique devel-
oped in this paper yields a fundamentally different proof of
the theorem, further illustrating the strength of our technique.

Similar to the previous section, we will break the proof of
Theorem IV.1 into two parts: the sufficient and the necessary
conditions, which are presented in the following two lemmas.

Lemma IV.3. Letr = |log, f], namely d” < f < d"*1. Then,
a sufficient condition for log,(N,0,m) to be f-cast strictly
nonblocking in the node-blocking case is m > mup(n, f,d).

Proof: Suppose the network already has established
routes for some set R of requests. Let R = (X,Y) be a new f-
cast request compatible with the current network state, where
X is some input and Y = {?(O), .. ,?(l)} is a subset of at most
f outputs. For each i € [I], the part (X,5") can be routed
independent from all other (X,¥Y)), j # 4,5 € [I], because
both stages have fanout capability. Consequently, without loss



of generality we can assume that Y contains only one output
¥, ie. R = (X,y).

Unlike in the proof of Lemma III.3, we cannot assume
that the requests in R are unicast requests, because each
request R in R can be routed through several different copies
of BY !(n). However, we can ignore the branches of R
which do not node-block R. Consequently, for every request
R=(x,{yW,...,y®}) € R we can assume that (x,y(?)
node-blocks R for every i < 1.

Similar to the proof of Lemma III.3, foreach 0 <7 <n—1,
define

Xi = {X S Zs — {i} | SUF(Xl..n—hil..n—l) = Z}
And, foreach 0 < j <n —1, let
Yy :={y€Zj — {7} | PRE(Y1.n—1,F1.n_1) = J}-

Note that the X; are mutually disjoint and the Y; are mutually
disjoint. Moreover, |X;| = |Y;| = d"7¢ — d""17¢ Vi. By
Proposition II.1, for every request R = (x, {y(l)7 .. ,y(l)}) €
R and for every p € [I] it must be the case that (x,y®)) €
X; x Y, for some 7, j such that ¢ +j5 > n — 1.

Let Gr be the bipartite graph which is the union of all
X; xY; with ¢ + 7 > n — 1. Then, every request R € R
corresponds uniquely to a set of at most f edges incident to the
same input vertex. On the output side, no output vertex appears
more than once in R. Let b(R) be the number of edges in Gr
that R correspond to, then m > maxg b(R) + 1 is certainly
sufficient to route R. In the worse case, each branch of each
request in R is routed through a different copy of BY ~1(n).

Now, let v;(Gg) be the maximum size of a subset S of
edges of G satisfying the following conditions: (a) each
input is incident to at most f edges in S, and (b) each
output is incident to at most 1 edge in S. (Note that v1(GR)
is just the matching number v(G).) Then, from the above
analysis it follows that b(R) < v;(Gr). Consequently, m >
maxp v;(Gg) + 1 is a sufficient condition for log, (N, 0,m)
to be strictly non-blocking in the node-blocking sense.

To this end, construct a flow network Dpg as follows. The
network has a source s, a sink ¢, and the set of vertices X UY
where X = (J'") X; and Y = |J/, Y;. There is an edge
from the source s to every vertex x € X with capacity f.
There is an edge (x,y) with capacity 1 from X to Y if and
only if (x,y) € X; x Y} for some i+ j > n — 1. And finally,
there is an edge from each y € Y with capacity 1 to the sink
t. Hence, the “middle part” of the flow network is exactly Gr
with s and ¢ adjoined on the two sides.

For every set S of edges of G satisfying conditions (a)
and (b) above, it is easy to see that there corresponds an
integral flow with value exactly the size of S. Consequently,
|S| is at most the maximum flow value in Dpg, denoted
by MAXFLOW(Dpg), which is equal to the capacity of a
minimum s, ¢-cut in Dpg, denoted by MINCUT(Dg). Thus,
v¢i(Gr) < MINCUT(Dg). In particular v¢(Gr) is at most
the capacity of any s, t-cut in Dpg.

Let j = [(n—r—1)/2] — 1. Consider the following s, t-cut
in Dpg as illustrated in Figure 3:

Fig. 3. The s, t-cut in the proof
n—j—2
{s}u U X; U U Y;, U XUUYU{t}
i=j+1 i=n—j—1

The capacity of this cut is exactly

n—1

Y. fIXil+ Z Vil =

1=n—j7—1 i=7+1

mnbnfa ) 1.

Consequently, m > my(n, f,d) is sufficient. [ ]

Lemma IV.4. Let v = |log, f], namely d” < f < d"*1. Then,
a necessary condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the node-blocking sense is m > muy(n, f,d).

Proof: Following the terminologies of the proof of the
preceding lemma and the line of reasoning in the proof of
Lemma II1.4, it suffices to show that for every request R =
(x,¥), MAXFLOW(DR) = mup(n, f,d) — 1.

Since we have already specified a cut with capacity

mup(n, f,d) — 1, it is sufficient to specify a flow with value
Mmpp(n, f,d) — 1, which will have to be maximum due to weak
duality.

Note that j < n — 1, always. Let us first consider the (more
general) case when j = [(n —r—1)/2] —1 < n -3, ie.
n — j — 3 > 0. Consider the following flow assignment:

e Forevery i =n—j5—1,...,n— 1, and every vertex
x € X, set the flow on edge (s,x) to be f; moreover,
for each such x choose a unique subset Y (x) of exactly
f vertices in Y;,_1_;. This is possible since f|X;| <
|Y,,—1—;| for this range of i. Now, for every y € Y (x),
set the flow value of (x,y) and (y,t) to be 1. So far, the
flow-conservation constraint is satisfied at every vertex
and the total flow value that ¢ receives is exactly

Z f‘X|_Zfdz+l dz

i=n—j—1

f(d((n—r—l)/ﬂ —1)

o Similarly, since f|X, ;o = f(dit? — @ity >
d"i=1 — dn=3=2 = |Y; 11|, we can send flow through



Xn—j—2 and then to Y11 and then to ¢ so that each vertex
in Y; 4, has a flow value of exactly 1 transits through.
o Lastly, because
n—1
f|Xn7j73| - f(dj+3_dj+2) S drit2o] = Z |Y'Z|’
i=j+2
we can similarly send flow through X,,_;_3 and then to
UZ:;H Y; and then o ¢ so that each vertex in UZZ;H Y;
has a flow value of exactly 1 transits through.
Consequently, the total flow value is
n—1
f(d"(n*rfl)/ﬂ _ ]_) + Z |Y;| = mnb(n’f’ d) —1
i=j+1
as desired.
The cases when j = n —2 or j = n — 1 are done similarly.
In fact, these cases only happen for small values of n (< 4),
and are not very enlightening. [ |

V. ONLY THE FIRST STAGE HAS FANOUT CAPABILITY

The proofs of the following theorems are very much similar
to those in the last section, and thus omitted due to space
limitation. Define

mib(n’ 8 d) = fd[nigil

n—

miy(n, f,d) = fdl "5 a1 (7

Ty gnT==s=1 6)

Theorem V.1. Let r = |log, f|. Then, the necessary and
sufficient condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the node-blocking sense is
n d"—d" 141
d when f > A
m > < df +d"t
mrllb (’Il, fa d)
Theorem V.2. Let r = |log, f|. Then, the necessary and
sufficient condition for log,;(N,0,m) to be f-cast strictly
nonblocking in the link-blocking sense is
a1 -1 when f > 7‘1"'7(12_1“
m><¢df +d*"? -1 when w > f>d3
mi,(n, f,d) when "' > f>d",r<n—4

b

n n—1
when % > f>dn3,
when "' > f>d",r <n—4.

VI. DISCUSSIONS

The Konig-Egevary theorem used in the proofs in Section
IIT is just a special case of the max-flow min-cut theorem,
which is used in the proofs in Sections IV and V. This
usage of network flows in analyzing f-cast SNB networks
is the most novel contribution of this paper. We hope that
the technique will be applicable in analyzing other types
of SNB and RNB architectures, including the more general
log(N, p,m) networks which will lead to the d-ary Benes
network and likely the Clos-type networks.

Aside from that point, there are two other major observa-
tions we can make from our results. Firstly, under the same
node- or link-blocking sense, the fanout constraint does not
affect the complexity of SNB f-cast multi-log; N networks

for most values of f, except for very large values of f (> d"~*
or so). This fact can be interpreted as a good news or a bad
news. The good news is the first-stage having fanout capability
is almost always as powerful as the case when all stages have
fanout capability. The bad news is adding fanout capability
to all stages does not help reduce the switch complexity.
Secondly, the node- and link-blocking cases do not differ too
much in terms of asymptotic complexity of the switch. They
are roughly within a factor d of each other, with the link-
blocking case requiring more hardwares. For instance, when
f = N¢ we have both my;, and my, approximately N'T¢/2,
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