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Abstract—Our problem formulation is as follows. Given a beneficial to routing. The suggested approaches to profiling

probabilistic graph G and routing algorithm A, we wish to [27], [35] have however varied, as well as the details of the
determine a delivery subgraphG[A] of G with at most k edges, mobility information required.

such that the probability Conna(G[A]) that there is a path . . -
from source s tg destina)’iion t in2é(':l ggralg)h H chosen randgmly In our previous work [9] we had established a mobility
from the probability space defined by G[A] is maximized. To the profiling framework based on the sociological influences on
best of our knowledge, this problem and its complexity has not wireless users’ movements and presented a technique for
td);?s?rri]bictig(;e\?:fs?oirr: g]“etk"i;e’?gugg rr']“'vs\l%e tr';etrﬁeisdg}ﬁlgf”sejgogdiﬂg processing sporadic mobility trace data more generally found
G[A] is to be constructgd distributively, yieldingya rogutinpg a_mongst re?'_ traces. We validated our soc_lc_)loglcal claims
protocol. via an empirical study of a year long mobility trace data
Our proposed solution to this routing problem is multi-fold: ~ obtained from ETH Zurich campus. In particular, we observed
First, we prove the hardness of our optimization problem of find- that most wireless network terrains (campuses) comprise of
ingdadqeliveryﬂfubﬁragh that rf“aXimizeth th?hdeli\t/)e.rytprobfabilitt.y a list of sociologically significant places (cafeteria, library,
an ISCUSS € nardaness Oof computin € opjective tunction : : « ”
Connz(G[A]) (which is not the hardﬂessgofCoanJ(G[A]) itself); dormitories) that we refer to as "hubs’, and most USers move
Second, we present an algorithm to approximateConna (G[A]) amongst a few selected hubs over an extended period in time
and compare it with an optimal algorithm; Third, we model that we refer to as the user’s sociological “orbit”. We applied
mobility using a Semi-Markov Chain to estimate the pairwise a Mixture of Bernoulli's distribution using the Expectation-
user contact probabilities; and Fourth, we propose an edge- Maximization algorithm to generate “mobility profiles” for

constrained routing protocol (EC-SOLAR-KSP) for intermit- . . . . . . -
tently connected networks based on the insights obtained from individual wireless users involving a probabilistic movement

the first step and the contact probabilities computed in the third @MoNng hubs, and highlighted the usefulness of our mobility
step. We then highlight the protocol’s novelty and effectiveness profiles in performing location predictions with higher accu-
by comparing it with a probabilistic routing protocol, and an epi-  racy. We further demonstrated its use in probabilistic routing
demic routing protocol proposed in literature for intermittently  \within Intermittently Connected Mobile Ad hoc Networks
connected networks. : . : : :
(ICMAN) by proposing and analyzing a suite of Sociological
Orbit aware Location Approximation and Routing (SOLAR)
protocols in [10], [13].
- _ ) ) In this work, we aim to provide in detail a mathematical
The mobility of users forming a mobile wireless networknodel for computing the contact probabilities and subse-
causes changes in the network connectivity and may evgfently the delivery probabilities that were used by our SO-
lead to intermittently connected networks. On one hand, nog&R protocols, based on our mobility profile information and

mobility may increase the overall network capacity [15]. Ofhe hub transitional probabilities. To facilitate our discussion,
the other hand, it may make it challenging to locate usefg shall define a couple of terms:

and route messages within the network. Although, many . .
proactive, reactive, and hybrid approaches have been suggested Contact probability The probability of wo nodes ever
in the literature for various types of mobile wireless networks, ~ ¢OMing within each others radio range (in contact)
mobility of nodes is still considered a big threat to final __ during the entire observed time window. _
protocol performance. 2) de_llvery probability The pr_obe_lblllty_of a source deliv-
While the authors in [36], [39] proposed data infusion tech- erng a pagket to a destination X'a al posﬂab_le pat.hs
niques suitable for intermittent connectivity, another direction of intermediary nodes that come “in F:ontact V,V'th their
of research has been the better understanding of the underlying predecessors and successors in their respective paths.
user mobility itself, that may be leveraged upon in routing The rest of this paper is outlined as follows. We start off
decisions and location predictions. Researchers have analylgdformulating our routing problem in Section Il and then
mobility traces to various ends and have suggested numerdiscuss its complexity in Section Ill. We then present an ap-
practical mobility models. The network knowledge thus gaingatoximation algorithm for computing the delivery probability
has also been instrumental in proposing several probabilisticSection IV and compare its performance with an optimal
routing protocols [19], [26], [30]. At the same time, profilingsolution. In Sections V we present a mathematical model for
wireless users based on their mobility has also been prov@mputing the pairwise us@ontact probability and propose

I. INTRODUCTION



and analyze an edge-constrained routing protocol called E€+the probability that there is a (directed) path frento ¢ in
SOLAR-KSP in Section VI which makes use of such contaetrandom grapti chosen from this space. This probability is
probabilities. In Section VII we discuss other related work anoften denoted by onn2(G[A]) (or Relz(G[A]) for undirected
finally conclude this paper in Section VIII. graphs) in the network reliability literature [7]. The notation
implicitly assumes the source and the destination to be
known in advance. Also in this literatur&[A] is called a
probabilistic graph so isG for that matter.

In many different wireless network scenarios and appli- To this end, we hav€'onn,(G[A]) as the objective function
cations (DTN, MANET, ICMAN, ...) the minimal piece of of our problem. We next define the constraints. As we have
information that a network node can gather locally is thgientioned earlier, the key to the problem is the tradeoff
probability that it can deliver a packet to another node iBetween delivery probability and the data overhead. The
the network. This so-called “contact probability” can also bgaximum number of packets thdtcould produce is precisely
estimated/predicted with a good mobility model, depending @Re number of edges af[A]. Thus, a very natural constraint
the specific application we are working on [27], [35]. Som& our optimization problem is to give a threshdidon the
prior studies have used node contact probabilities to devisgmber of edges of[A].
routing protocols [10], [30]. To summarize, the centralized version of our problem can

In this section, we will rigorously formulate this problem. Ape formulated as follows. We are given a probabilistic graph
good solution to this problem can be used to devise provahty i.e. a graph along with a probability functign: £(G) —
(near) optimal solution to the probabilistic routing problemy_ 1], wherep. represents the probability that a packet can be
Moreover, it can also be used as a benchmark to compaeivered along edge at a random point in time. The problem
probabilistic routing protocols in the literature. is to choose a delivery subgragiiA] of G with at mostk

Define a directed grapti = (V, E) whose vertices repre- edges, such that the probabilitfonn,(G[A]) that there is
sent nodes in the network under consideration. For each paigopath froms to ¢ in a graphH chosen randomly from the
nodesu andv, letp, ., denote the probability of being able probability space defined b§[A] is maximized. To the best of
to deliver a data packet togiven some practical constraint(S)our knowledge, this problem and its complexity has not been
and/or some mobility model for nodes’ movements in thgddressed in the literature. Also, there is the corresponding
network. For simplicity, we assume that all these contagistributed version of the problem where the delivery subgraph
probabilities are independent. If not, the problem becomes t@{)A] is to be constructed distributively, yielding a routing
complex to be useful. This assumption is not too restrictivgrotocol.
as we will demonstrate with our routing protocol in a later |n this paper, we will present a practical solution to this
section. Also note that, in this section we are not yet concernggbblem in the context of ICMAN, involving the following
about the question of how to compute, ,). The problem steps: (a) proving the hardness of our optimization prob-
of computing the contact probabilities is orthogonal to them and the hardness of computing the objective function
routing problem on random graphs that we are formulatingonn,(G[A]) (the hardness of'onny(G[A]) is well-known,

In a later section, we will present a model for estimating thesgit that does not imply the hardness of the optimization prob-
probabilities. lem); (b) giving an algorithm to approximat€onn,(G[A]);

The edges ofG are precisely those pairs = (u,v) for (c) devising a mobility model to estimate the contact prob-
which p. > 0. Consider a source and a destinatiort in  abilities p.; and (d) designing a routing protocol for the
G, and the problem of finding the best way to deliver @roblem based on the contact probabilities computed in step
packet froms to ¢ in the network. The obvious objective is to(c) and insights obtained from step (a), and showing the
maximize the delivery probability of the packet. A broadcagfrotocol’s effectiveness by comparing it with other protocols
(epidemic-like) routing algorithm seems to be best in ternisr probabilistic routing.
of maximizing the delivery probability; however, broadcasting Remark: if we also consider using Erasure Codes [32]
imposes a high cost in terms of data and processing overhe@d.dada transmission, we can add an additional constraint
It is thus natural to formulate a problem investigating thi terms of the code rate, keeping the objective function the
tradeoff between delivery probability and overhead. same. Some previous work on routing in DTN has considered

Consider any routing algorithm/protocdl run by all nodes this dimension [29], [42].
in the network. LetG[A] = (V,E4) denote the subgraph
of G induced byA4, i.e. (u,v) is an edge ofG[4] if there
is a possibility thatu delivers a packet t@ under A. For
instance, ifA is a naive broadcast strategy where each nodeln this section, we will investigate the complexity of the
delivers a packet it receives to all nodes it meets within a tinpgoblem defined in Section Il. The problem is to find a
interval T, then (u,v) is an edge ofG[A] if the probability subgraphG[A] of G so thatRel,(G[A]) is maximized.
that u meetsv within 7' is positive. We will refer toG|[A] Unfortunately, computing the connectedness probability in
as thedelivery subgraphnduced byA. Note thatG[A] along a random graph is very hard (even for graphs with bounded
with the probabilitiep., e € E4 define a probability space of degree like in our case). There is a vast literature on this
random graphs (the Eéd-Renyi modelG(n, {p,.}) [3]). The problem. In the probabilistic sense, for example, Chapter 7
probability thatA successfully delivers a packet fromto ¢ of [3] contains a partial set of references. It is unlikely that

II. A ROUTING PROBLEM ON RANDOM GRAPHS

Ill. COMPLEXITY OF THE ROUTING PROBLEM



this probability is a simple function [25]. In the computational Let A be any algorithm solving our problem. It is easy to

complexity sense, the problem is #P-Hard, as it is precisedge thatA will either return the upper part or the lower part

the well-known reliability problem for two terminals [7]. Aof G. If A does return the lower part, thefionny,(D) >

minor point: whenG is directed, the problem is often referred’/c; otherwise,Conns(D) < ¢'/c + €. But, by the wayc

to as thes,tconnectedness problem denoted Gynn.(G). was chosen(Conny(D) is exactly a multiple ofl/¢; hence,

In the classic paper [40] Valiant was the first to establish that returning the upper part implies th&tonns (D) < ¢/ec.

both Rel2(G) and Conng(G) are #P-complete [21]. ConsequentlyA can be used to decide @onny(D) < ¢'/c,
The optimization problem, however, may not be hard evemplying that our problem is at least as hard@snn, by the

though computing the objective function is hard. This point gnalysis above. [ ]

a little bit subtle. Given an integer, computing the function  Given this negative result, one can envision two general

fla) = 29 takes exponential time; yet, the optimizatiorapproaches:

problem of finding which membed of a setA of integers 1) Find a polynomial-time computable functign G[A])

has the largesf(a) has the same complexity as sorting. which approximates”onn,(G[A]) well. Then, devise
an algorithm A that maximizesp(G[A4]). Note that,
p(G[A]) can also be used to compare the outputs of
different routing algorithms; thus, it is useful in its
own right whether or not we can devise an algorithm
optimizing p(G|[A]).

2) Find a routing strategy (heuristic)/A for which
Conng(G[A]) can be reasonably computed or estimated.

In the following sections, we present our results on both

] ) ) ~__ approaches.
Fig. 1.  Construction ofG” for proving the #P-hardness of maximizing

s,tconnectedness

IV. APPROXIMATION ALGORITHM FOR COMPUTATION OF

. . o .. DELIVERY PROBABILITY
To this end, we consider the optimization problem of finding

a delivery subgraptD = G[A] with at mostk edges which

maximizesConn,(D). We will show that ~_In the light of the discussion in the previous section, we
Theorem 1:The routing problem on random graph is #Ppropose an approximation algorithm for computing the de-
hard. livery probability from sources to destinationd in a network

Proof: We will reduce the2-terminal connectivity prob- that is modeled as mentioned before: a directed gi@ph

lem (Conny) itself to our problem. Consideragenericinstancgg E), where edgee exists between two nodes and v
of Conny where we are given a directed graph= (V, E) with probability p.(u,v) = contact probabilityof « and v,
along with a sources, a destinationt, and all the edge as shown in Figure 2(a). First, we construct another graph
probabilitiesp;;. The problem is to compute the probabilityg, — (V, E}) from the graphG by having each node (starting
Conny(D) that there is a path formto ¢ in a random graph from s onwards) choose at mogt edges to downstream
chosen from the probability space defined By Note that neighbors, and deleting all other edges not chosen, as shown
all p;; are rational numbers represented by a numerator gadrigure 2(b). Second, we modify the weight of each edge in
a denominator which are integers. Lebe the least common ¢, to bew, = —1 * log(p.(u,v)) for all nodesu andv, and
multiple of all the denominators, then the number of bits tgall this new graph a&’,. Third, we construct a shortest path
representc (i.e. log, ¢) is certainly polynomial in the input tree Gsp = (V, Ey,) from Gj as shown in Figure 2(c), and
size. assign a level number to each node in a breadth first manner.

Consequently, if we have a procedure to decide Hourth, we replace the weight of each edgein G, with
Conny(D) < c'/cforany integer’ < c, then we can compute p_(u,v), as in the original grapl@. Finally, we addspecial
Conny (D) by a simple binary search. We will prove that ardges(dotted edges in Figure 2(d)) between any nedand
algorithm solving our optimization problem can be used t@estinationd in graphG,, that were connected by an edge
decide if Conny(D) < ¢'/c. e € E in the original graphG, to get ourdelivery subgraph

Construct a grapli- as shown in figure 1, where the uppeG’ = (V, E’).
part is D itself, and the lower part is a simple path from Let P?(u,v) denote the delivery probability of node to
s to ¢ consisting of exactlyk = |E(D)| edges. The edge nodev. We apply our Algorithm 1 to this graph’ starting
probabilities of the upper part is the same as thos®oThe with any nodeu # d with maximum assigned level number,
edge probabilities of the edges, ..., e; of the lower part to obtain the delivery probability’?(s, d) of the sources to
is chosen so thap, - p, = ¢’/c + €, wheree < 1/c. Our the destinationd. For each chosen node we consider all
optimization problem is to compute a subgrafihof G with  outgoing edges from to nodesu,, vs, ...v, Say, and get a list
|E(H)| < k so thatConny(H) is maximized. of probabilitiespy, pa, ...px, Wherep; = w, (u, v;) * P4(v;, d).

Then, we can compute the delivery probability frento d as

1We thank Prof. Charles Colbourn for fruitful discussions leading to this d 5
proof. P*(u,d) =1-1I7(1 — p;)



(d) G' = (V,E’) where dotted
edges arespecial edges

Fig. 2. Steps in preparing a network graph for the application of Approximation Algorithm 1

This process is repeated with decreasing level numbers Afgorithm 2 : Optimal computation of Delivery Probability
node s is reached, and the required probabili(s,d) is  1: Input — All paths PATH,, PATH,, ... from s to d

computed. 2: m « total number of paths
3 Pi(s,d) «— 0
Algorithm 1 : Approximation of Delivery Probability 4: for n — 1tom do

1: Input — G = (V, E), s,d 5. coefficient— (—1)"~!

2. P4(d,d) 1 6: for start— 1 tom do

3: L — maximum assigned level number 7 All edges are un-marked

4: while L > 1 do 8: for path-index— start to (star-n— 1) modulon do
9 Mark all edges in pattP AT H,th—index

5. for all uw € V,u # d with assigned level number do :

6: 1+ 1 10: end for

7: for all outgoing edge: € E from u do 11: term «— product of all probabilities of marked edges
8: v « head of edge 12: P?(s,d) «+ P9(s,d)+ (coefficient*term)

o p — weight of edgee * P%(v,d) 13: if n=m then

10: Pli] —p 14: break

11: P41 15: end if

12: end for 16: end for

13: pl —1 17: end for

14: for j— 1to (i—1) do 18: print P4(s,d)

15: p2 — 1— P[j]

16: pl «— pl xp2

17: end for further simulated foR0 different pair-wise contact probability
18: Pi(u,d) «—1—pl matrices. Figure 3(b) shows the relative performance of the
19: if u=s then approximation algorithm with respect to the optimal algorithm
20: print P9 (s, d) for each{s,d} pair, averaged over all the runs with different
21: exit contact probability matrices for thds,d} pair. Once again
22: end if we find our approximation algorithm to perform with#&%
23:  end for to 90% of the optimal solution.

2. L—L-1

25: end while

V. A MODEL FORCOMPUTING CONTACT PROBABILITY
The optimal approach for computing the delivery probability |, ihis section, we present a model for computing contact
from a sources to a destination would include the following  ,ropapility of network nodes in the context of intermittently

steps: connected mobile ad hoc networks. The model is based on
1) Calculate all possible paths fromto d experimental data we gathered from real-world user move-

2) Apply Algorithm 2 to compute the delivery probability ments’ traces. Then, in the next section, the effectiveness of
by rules of inclusion and exclusion this model is illustrated by its usage in our routing algorithm.

We simulated using Matlab [18] a small directed graph with Consider a nod& whose set of hubs i§. From our earlier

25 nodes with a given distribution of pair-wise contact probawork in [9] we have verified thafX's staying time at a hub
bilities p.(u,v) to evaluate the performance of our suggestdde S roughly follow a power law distribution with exponent
approximation algorithm in comparison to the optimal algo\;*. After staying ath, X moves to another hub’ € S with
rithm. We chosel2 distinct source-destinatiods,d} pairs hub transitional probability3;¥,, > 0. Obviously,

and only computed the delivery probabiliti€¥ (s, d) through "

the two algorithms, without sending any actual traffic. Fig- Z Biw =1, Vhe€S.

ure 3(a) shows the results of our simulation runs where our h'#h

approximation algorithm is seen to perform with#8% of In the data set we analyzed in [9], we were unable to gather
the optimal algorithm on an average. For edshd} pair, we enough information about the inter-hub transition time. Hence,
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Fig. 4. States of Markov Chain for movements between Hulasid 4/

(a) Absolute performances with fixed contact probability

matrix
5 ' R =8N7T # (. We would like to calculate the probability
N o . that X meetsY at some particular time in the future witht
£ o @ e e sufficiently large (i.e., at equilibrium), and also the probability
S osf that X meetsY at a particular hulh € R at timet.
: Let Iy and Iy be the state spaces of the SMCs capturing
g orp the movements ofX and Y, respectively. In order to track
i the relative positions ofX and Y together, define a SMC
s °°f {Z; | t > 0} which is the Cartesian product of the SMCs
S . Approimton Delvery Optmalpelvery for X andY. For anyz € Ix,y € Iy, the sojourn time
L e of the state(z,y) of Z has the distribution of the random
(b) Relative performance averaged over different contact Va”able which _IS the _mmlmum of the quourn tlmeSa()f.ind
probabilities y. Since the sojourn times atandy are either exponential or

power-law with known parameters, it is easy to compute the
Wistribution of the sojourn time dtr, y). We omit the detailed
formulae, which come from relatively simple exercises.

The corresponding EMC ofZ;) has state spacé =
Ix x Iy. To characterize this process, we need to compute

assumed to be exponentially distributed with paramafge. e Jumping probabilities from a stafe,, #1) to another state
This assumption can be relaxed/changed when there is betferiz), Where eitheri, = i, or iy = i5. (With probability
experimental data on users’ mobility. The model proposed #© the two chains foX' andY” jumps at the same time.)
[23] can be used, for instance. The following analysis c4nOnsider any stat¢i, i’). If the sojourn timeT; at statei of
easily be modify to adopt the new and supposedly more correttiS Smaller than the sojourn timig; at statei” of V', then
distribution of hub transition times. with probabllltypfg tr_le chain moves to sta(g, i), for some
The movement pattern can be modeled with a Semi-Mark '\ﬁIX' Conversely, iff; > T, then the chain moves to state

!/ -/
Chain (SMC) [20] whose embedded Markov chain (EMC) ha& J)» for some;” € I Consequently, we can compute the
state s(pace) [20] ( ) Jumping probabilities of the EMC fofZ;) by conditioning on

the even{T; > T;,} and its complement. Again, we omit the
Ix =SU{(h,}) | h,h € S,h#h}. detail case-by-case formulae.

p . The states of andY can be assumed to be overlapping.
Here, the stategh, /') representX’ being on the move from (If the states are not overlapping, andY will never meet.)

hub h to hub #'. The sojourn times at the “hub states” . ! .
are power-law distributed and the sojourn times at the spf!® EMC of the Cartesian-product SMC as defined above is

transition states”’(h,h’) are exponentially distributed. TheergoOIIC as Ion_g as the EMC fov an_dY are erqu|c (under .
o e . most normal circumstances, otherwise we can disturb the chain
transitional probability:: of the corresponding EMC can then ) - e .
b R by adding a few transitions with infinitesimal probabilities). In
e computed as : : L
this case, we can easily compute the occupancy probabilities
B, i=handj=(hH) at equilibrium of any statq,j) of the product chain by
P =<1 i=(h,h)andj =W solving for the stationary distributions of the EMCs &f
andY. We are interested in only the occupancy probabilities
7XY (h, h) of the stategh, h) whereh € R. This is precisely
wherei, ;7 € Ix andh,h’ € S,h # h'. The states in this SMC the probability thatX meetsY in h at equilibrium. Finally,
when node X moves from hub to hub ' are illustrated in the probability thatX meetsY at equilibrium is the sum of
Figure 4. Ty over allh € R.
Suppose we have all these SMCs modeling the movementSupposeX holds a packet it would like to transmit to a
of nodes within their respective hub lists. Consider two nodéswnstream neighbor towards a destination. It cannot hold the
X andY whose hub sets ar§ and 7 respectively. Define packet forever due to limited buffer size (and possibly delay

Fig. 3. Performance comparison of our approximation algorithm for delive
probability with the optimal solution

in our model the time it takes fokK to move fromh to A’ is

0 otherwise,



requirements). Some routing strategy may requiréo try its

Algorithm 3 : Edge constrained delivery subgraph

best to deliver the packet to (some of) the best neighbor(s): Input «— Complete weighted grap& = (V, E),

within a pre-defined time intervadl’. Consequently, given a
time intervalT and given thatX is in some hulbh € R, we
are also interested in the probability thatwill be in A within

Edge constrainf, sources, destinationd
2: DSG = (V', E’) < initial delivery subgraph
with V/ «— V andE' — NULL

T. Computing this probability is the same as computing thes: while |E| do

densities of the hitting times of the SMC corresponding to4:
Y (probability thatY hits 4 given some initial distribution).

There is no known general formula. Computationally howevers:
there are methods to compute these densities using Laplaee
transforms [16] for larger chains or uniformization [2] for 7:

apply Dijkstra’s Shortest Path algorithm [8]
to find shortest path from to d i.e., SP; 4
if SP; 4 == NULL then
return DSG
end if

smaller chains. 8 if [{e|ee€SPs4, e¢ E'}| <L then

9 L—L — |{e|e€SPsq4, e¢ E'}|
VI. EDGE CONSTRAINED SOLAR HEURISTIC 10: E'—E J{e|ec SP.a, e¢ E'}
In this section, we present a Sociological Orbit awarélf .?n(Lj E—O th

Location Approximation and Routing (SOLAR) heuristic tha112: ! t__ Dsgn

makes use of mobility profile and hub transitional probabilit)}?’: enrde i?m

based computations for contact and delivery probability. . . .

P yp y E — E— the edge inSP; 4 with least weight

16: end while

A. Edge-Constrained SOLAR-KSP 17: return DSG

We chose our Static SOLAR KSP (S-SOLAR-KSP) algo-
rithm proposed in [10] to form the base of this heuristic,
with some additio_nal modifications. In general, in this Versiog  performance Comparison Results
of user-level routing protocol SOLAR-KSP, we assume that
each user knows of every other user's mobility profiles and We compare the performance of EC-SOLAR-KSP with
each user distributively does the following: First, every uséhat of a probabilistic routing (referred to here BRROB-
computes theontact probabilitywith every other user. In this ROUTE) based on [30] and Epidemic Routing (referred to as
work, we compute these probabilities based on the simulateBIDEMIC ) [39]. In PROB-ROUTE, users each go through
mobility traces, as opposed to other various ways suggestbé “initialization” phase whenever they meet another user,
in [17], [22], [28], [36] for example. Second, we represent thethere upon their contact probability is updated. When a pair
contact information between all users as a complete weight@fduser do not meet for long, their corresponding contact
graphG = (V, E), whereV is the set of all the users, add probability is “aged”. Also when a source has a packet to
is the set of weighted edges between every pair of users thand to a destination it may calculate transitional probability
have at least one hub in common. LRtu,v) be the contact through other users. The reader is referred to [30] for the
probability of users, andv. Then the weight of edgeu,v) is detailed description and equations. In our implementation of
given by w(u,v) = log (1/P(u,v)). Now whenever a source PROB-ROUTE we used a value 0f5 for all three parameters
users has a packet to forward to destination uggit applies Pinit, 7, and 3, and allowed each user to forward a copy of
the Algorithm 3 on the weighted graph to find a delivery packet to at most different neighbors with higher delivery
subgraph tel that has at mosk (< | E|) edges. In other words, predictability. We consides variations of EC-SOLAR-KSP as
s iteratively uses Dijsktra’s Shortest Path algorithm [8] to finavell: EC-SOLAR-KSP1 with L = |E|, EC-SOLAR-KSP2
the shortest path fromto d. In a single iteration, if the number with L = 0.8x|E|, andEC-SOLAR-KSP3 with L = 0.6 |E|.
of new edges encountered on the shortest path (that are ndtor simulation, we consider an ICMAN built within a cam-
already in the delivery subgraph formed so far) is less than thas consisting of several buildings (hubs) in accordance with
remaining number of edges allowed under the edge constrathg findings from our study [9] of an year long wireless users’
then those edges are added to the delivery subgraph andrtiobility traces on ETH Zurich campus. In the Probabilistic
edge constraint parameter is adjusted accordingly. Also, @bit model simulated, the users spend most of their time
ensure that a new path is formed in the next iteration, thdthin a number of hubs, and intermittently move between
lowest weighted edge in the shortest path is deleted from thebs. To model realistic speeds of mobile users within such
working graph. This algorithm terminates either if the working network, we consider the work in [24], [43] and fix the
graph is exhausted, or if no more path exists betweandd, Inter-Hub and Intra-Hub time/speed parameters, along with
or if the edge constraint is met. Once this delivery subgraphe other simulation parameters and their default values or
is obtained, the source inserts this additional information intange of values as shown in Table I. In this work, due to
the header of all the packets and waits for all the next hgpace constraints we only present the protocol performances
neighbors on all paths to appear. The intermediary users kegfh a varying humber of users as it is a significant factor in
forwarding in accordance with this delivery subgraph till th&CMAN settings, but we do study other variations as indicated
destination is reached. We shall refer to this edge constrairiedlable | which yield similar results. We chogemetrics to
SOLAR version aE£C-SOLAR-KSP. evaluate the performance of each protoctaita throughput=




TABLE |
SIMULATION PARAMETERS

GENERAL PARAMETERS [

Simulation Duration (each run 3000s Terrain Size 1000m x 1000m
Number of Usersser9 Vary, (Default= 100) Radio Range 125m

Cache Size Vary, (Default= 200 Packets) Cache Timeout Vary, (Default= 400s)
MAC Protocol IEEE 802.11 Mobility Model Probabilistic Orbit
ORBIT PARAMETERS

Total Hubs Vary, (Default= 15) Hub Size 50m x 50m

Hub Stay Time Power Law (k=10°/x%s) Hub List Timeout None

Hub List Size Power Law (k=0.7/2>, 2 to Total Hubs)|| Inter-Hub Transition Time| Exponential (Mean= 40s
Intra-Hub Pause 1s Intra-Hub Speed 1m/s-10m/s
TRAFFIC PARAMETERS

CBR connections 30 (120 packets each) Random Data Payload 1460 bytes per packet

(data packets deliveret{data packets generated); ametwork
byte overhead:= (total bytes transmittedjtotal data packets
delivered);

As seen in Figure 5(a), EC-SOLAR-KSP1 performs the best
closely followed by PROB-ROUTE. Since EC-SOLAR-KSP1
has the additional knowledge of mobility profile based network
connectivity, it is able to compute the delivery probability via
neighbors it has not met yet, unlike PROB-ROUTE where of 7 B ROBROUTE ~ x

Data Throughput (%)

users have to meet at least once to update their initial contact N
probability. EC-SOLAR-KSP2 and EC-SOLAR-KSP3 have P2 50 75 100 125 150

Number of Users

decreasing performances because of their increasing edge

constraints. Epidemic performs the worst in the face of limited (a) Data Throughput (%)

buffer. Also the fact that these results are observed within a " [ rroBRoUTE -
limited time of 3000s takes its toll on EPIDEMIC, which is ESSOLRKSE in T
capable of “eventually” delivering all packets if time is not 2 X o

a constraint. Overall, all protocols do well with increasing
number of users as it helps in finding a larger number
of deliverable paths from source to destination. Figure 5(b)
is not able to show the results for EPIDEMIC which has
alarmingly large overhead. Amongst the rest, PROB-ROUTE
incurs maximum overhead due to its arbitrary forwarding to
neighbors just on the basis of larger delivery predictability. EC- 2 5 7 100 125 150
SOLAR-KSP1 has lower overhead than PROB-ROUTE as it pumerorsers
only forwards within the edge constrained delivery subgraph. (b) Network Byte Overhead
The overhead in EC-SOLAR-KSP2 and EC-SOLAR-KSP3 Fig. 5. Protocol performance with varying number of users
is seen to decrease due to their increasing edge constraints.
Overall, this “edge constraint” parameter gives us a good
handle to a tradeoff between the desired throughput and tietworks, recent work in [19] assumed knowledge oracles and
corresponding overhead. used a link capacity function to find minimum cost paths as
a cascade of time varying links. Their usefulness is however
limited by the practicality of their assumptions.
To gain more insight into the underlying user mobility, many
VII. RELATED WORK researchers tried to model practical mobility in various ways
None of the existing proactive, reactive or hybrid routingp achieve different goals such as reproduce user movement
techniques proposed in literature for mobile ad hoc networks simulations [38], or use the mobility information in per-
were deemed adequate in solving the routing problems witHorming intelligent routing decisions [10]. Preliminary work
intermittently connected wireless networks. To that end, ceya mobility modeling [5] was done mostly with Mobile Ad
tain protocols adopt a “store and forward” kind of philosophygjoc NETworks (MANET) in mind. For example, some [33]
wherein they hold on to data when a link is not availablesed mobility pattern analysis to minimize radio link changes
and transmit again to someone else at a future point wia appropriate selection of next hop within radio range.
time. Authors in [39] proposed routing schemes using thizhile the authors in [37], [41] performed physical location
philosophy. Similar work ( [1], [14]) on data dissemination wagrediction via continuous short-term and short-range tracking
also done for sensor and ad hoc networks. For delay toleraftuser movement, we had leveraged on our assumptions

Network Byte Overhead




on “sociological orbits” to perform efficient routing within out of intermittently connected networks. This paper gives a

MANETSs [11], [12] and ICMANS [10], [13]. model specifically for ICMAN, based on prior SOLAR works.
Literature has also proposed several work on mobility trace
analysis within campus-wide wireless networks. Authors in VIIl. CONCLUSION

[27], [35], base their computational models on empirical

mobility data that are filtered to provide stable mobility data Mobility qf W|rele§s USErs poses as one of the main
. . . challenges in effective routing of packets in any mobile

sets spanning regular intervals of consecutive days. In mos : . .
: o wireless network. The added constraint of intermittent con-
real systems however, we observe lots of irregularity in terms " . . .
; ) nectivity makes it even more difficult to employ traditional

of wireless users’ usage pattern of the network, where a user .. . .
Teactive protocols well suited for general Mobile Ad hoc

may not be present in the network consistently for the em'f\?etworks (MANET). Literature suggests several protocols

period of observation. To that end, our study of wwelesg,ased on the concepts outlined in [36], [39] which aims to

users’ sporadic mobility trace data [9] provided a teChmquﬁfuse information within a network like an epidemic. Others

for profiling users based on their socially influenced moveme t9] [26], [30] studied network characteristics and proposed
within wireless networks, which was shown to be benefici PR ! : : o
robabilistic routing techniques. At the same time, profiling

to applications such as location approximation and rOUtin\%ﬂreless users based on their mobility has also been proven
Compared to the most related (and yet much different) work i y P

[6], our work primarily focussed on the “orbital” parameters eneficial to routing. The suggested approaches to profiling
L ; . [27], [35] have however varied, as well as the details of
in particular on theuser-centric parameters like the user

o . ; o the mobility information required. In our previous work [9]
mobility profiles and its applications, whereas [6] focusse . o .

X we too established a mobility profiling framework based on
more on AP-centric parameters.

e L . _the sociological influences on wireless users’ movements and
In an effort to use the mobility information in routing

decisions within temporally disconnected networks Iiteratufgrther demonstrated its use in probabilistic routing within
P y OS¢ ' Tntermittently Connected Mobile Ad hoc Networks (ICMAN)
suggests study on how mobility (controlled or not) affec

routing protocols and network performance (e.g., netwo 0], [13],

L. . . ] In this work, we aim to analyze our probabilistic routing
capacity) in various types of ad hoc networks including Sensﬁgmework mathematically and provide some insight into
networks with mobile sinks (or base stations), and del

. e computational complexity of both the contact probability
tolerant networks [4], [15], [34], [44]. However, they did notand the delivery probability, that is used by our previously

deal with specific user mobility patterns. In [17], [22], [28], ; :
[36], the main focus was on the so-called “contact probabilit)}rlnr SIZ?izido:‘otﬁténrgoEtricr:toc?l)sbﬁﬂ’a[isgﬁzvzhpéf:e?\}ei r;o:/:rl]éc(;rm
of two users, which is oblivious to the specific locations (or ! ing p . : 9 .
“hubs”) they visit. graph, we aim to find an optimal routing algorithm that will

The concept of Epidemic Routing was extended upon @Zneratg an optimal delivery subgraph SO as to maximize the
) Iy nnectivity between a source and destination pair. We study
the authors in [30], where they proposed a probabilistic

. L fn analyze of the hardness of computing such an optimal
routing scheme whereby each node maintains the so-cal Gverv subaranh aiven a araoh and a routing alaorithm. We
“delivery predictability” to each known destination, and use Y graph g grap 9 alg '

then propose an elegant algorithm to approximate the delivery

this metric to make routing decisions. However, their deliver o . .
. . I . robability of a delivery subgraph and present its performance
predictability may decay with time, unlike our contact proba- . . : . :
oo . . . . . study in comparison with the optimal algorithm. We then
bility information that remains valid for a longer time by virtue

of the hub based mobility profile of nodes extracted frorﬁéﬁeﬂ;{ina tr;:thg;:]vatslcealljszfgg:n;%rt argegﬁ'iﬂge??:?:gﬁ a\,r;(;
the underlying orbital mobility. In [31], the authors propose& puting P b . Y

a context-aware adaptive routing algorithm that takes in%opose an edge-constrained routing algorithm EC-SOLAR-

account the suitability of a node for carrying a message bas,rgaap which makes use of such contact probabilities and

on context information of the node at multiple dimensions.Ighllght its novelty and superiority over other probabilstic

. ; and epidemic routing approaches proposed in literature to
More recently, the authors in [26] suggested an algorithm thaédress the routing problem within intermittently connected

. . . ; a
relies on vehicles to act as mobile routers, which connec
. o Wwireless networks.
disconnected sensor networks to a known destination.
In our work [10], we successfully used our mobility pro-
filing techniques proposed in [9] to propose a suite of So-
ciological Orbit aware Location Approximation and Routing[1] BEAUFOUR, A., LEOPOLD, M., AND BONNET, P. Smart-tag based data
(SOLAR) strategies to deal with intermittently connected dissemination.First ACM International Workshop on Wireless Sensor
Networks and Applications (WSNAO@une 2002).
networks. In that work, although we used well known CONCEPtH] BoicH, G., GREINER, S.,DE MEER, H., AND TRIVEDI, K. S. Queue-
of “contact probability” between pairs of users and “delivery  ing networks and Markov chainsA Wiley-Interscience Publication.
probability” between a source and destination user, the way John W|Iey & Sons Inc., New York, 19_98._M0de||ng and performance
. . evaluation with computer science applications.
we compute these values is different. We base all our compylsy go, opas, B. Random graphssecond ed., vol. 73 aambridge Stud-
tations on the wireless user’s mobility profiles and their “hub”  ies in Advanced Mathematic€ambridge University Press, Cambridge,
transition probabilities in accordance with our sociological 2001 , _
bit f K [111. Thi Kis the fi f I ] BURNS, B., BROCK, O.,AND LEVINE, B. N. Mv routing and capacity
orbit framework [11]. Is current work is the first to formally building in disruption tolerant networks. In Proceedings of IEEE

address the problem of routing in probabilistic graphs formed INFOCOM '05 1 (March 2005), 398-408.
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