
A Linear Programming Duality Approach to Analyzing Strictly
Nonblocking d-ary Multilog Networks under General Crosstalk

Constraints

Hung Q. Ngo, Anh Le, and Yang Wang
Computer Science and Engineering,

201 Bell Hall,
State University of New York at Buffalo,

Amherst, NY 14260, USA.
{hungngo,yw43,anhle}@cse.buffalo.edu

Abstract

When a switching network topology is used for constructing optical cross-connects, as in the
circuit switching case, no two routes are allowed to share a link. However, if two routes share
too many switching elements, then crosstalk introduced at those switching elements degrades signal
quality. Vaez and Lea [21] introduced a parameter c which is the maximum number of distinct
switching elements a route can share with other routes in the network. This is called the general
crosstalk constraint. This paper presents a new method of analyzing strictly nonblocking multi-log
networks under this general crosstalk constraint using linear programming duality.

We improve known results on several fronts: (a) our sufficient conditions are better than known
sufficient conditions for logd(N, 0, m) to be strictly nonblocking under general crosstalk constraints,
(b) our results are on d-ary multi-log networks while known results are on binary networks, and (c)
for several ranges of the parameter c, we give the first known necessary conditions for this problem
which also match our sufficient conditions from the LP-duality approach.

One important advantage of the LP-duality approach is the ease and brevity of sufficiency proofs.
All one has to do is to verify that a solution is indeed dual-feasible and the dual-objective value
automatically gives us a sufficient condition. Earlier works on this problem relied on combinatorial
arguments which are quite intricate and somewhat error-prone.

Keywords: strictly nonblocking, optical switches, d-ary multi-log switching networks, general crosstalk
constraint, crosstalk-free, linear programming duality.

1 Introduction

We study the general d-ary multi-log switch architecture with multiple vertically stacked inverse Banyan
planes BY−1(n), as illustrated in Figure 1. The d-ary multi-log switches have been attractive for both
electronic and photonic domains, because they have small depth (log N), self-routing capability, absolute
signal loss uniformity, and good fault tolerance [3, 8, 10, 11, 13, 18, 21]. Hereafter, we use logd(N, 0, m)
to denote a d-ary multi-log switch with m vertically stacked inverse Banyan planes.

There are three levels of nonblockingness typically studied in the switching network literature: re-
arrangeably nonblocking (RNB), wide-sense nonblocking (WSNB), and strictly nonblocking (SNB).
The reader is referred to [4, 15] for their precise definitions. This paper focuses on analyzing the SNB
logd(N, 0, m) network.

When the multi-log architecture is used to design a photonic switch, each switching element (SE)
needs to be replaced by a functionally equivalent optical component. For instance, when d = 2 we

1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
1
0
0
1

1
0
1
0
1

(a) The inverse Banyan network BY−1(5) (b) The log3(27, 0, 2) network

Figure 1: Illustration of the Multi-log Network

can use directional couplers as SEs [14, 19, 23]. However, directional couplers and many other optical
switching elements suffer from optical crosstalk between interfering channels, which is one of the major
obstacles in designing cost-effective switches [2, 12, 20]. To cope with crosstalk, the general crosstalk
constraint was introduced by Vaez and Lea [21], which forces each new route to share at most c SEs with
other active routes in the switch, where c is a parameter of the design. When c = 0, no two routes are
allowed to share a common SE, and we have a crosstalk-free switch [2,8,10,12,13,21,22]. On the other
hand, when c = n = logd N a route can share any number of SEs with other routes (but no shared link),
because each route in a logd(N, 0, m) network contains exactly n SEs. In this case only link-blocking
takes effect, and it is commonly referred to as the link-blocking case, which is relevant to electronic
switches [1,3–7,9,11,17,18]. We shall refer to a switching network which is strictly nonblocking (SNB)
under this general crosstalk constraint a c-SNB network.

Prior to this paper, the only known results are sufficient conditions for the binary log2(N, 0, m)
network to be c-SNB [21]. Specifically, let N = 2n Vaez and Lea showed that, when n = 2k + 1

m ≥

2k+1 +
⌊

2k+1

c+2

⌋
− 1 0 < c ≤ k

2k+1 +
⌊

2k

c+2

⌋
k < c ≤ 2k

(1)

is sufficient for log2(N, 0, m) to be c-SNB. When, n = 2k the sufficient condition is

m ≥

{
2k + 2k−1 +

⌊
2k

c+1

⌋
− 1 0 < c ≤ k

2k + 2k−1 − 1 k < c ≤ 2k − 1
(2)

Our main contributions are as follows. We present a new method of analyzing strictly nonblocking
multi-log networks under general crosstalk constraint using linear programming duality. Our approach
improves previous results from several fronts: (a) our sufficient conditions are better than known suffi-
cient conditions (1) and (2) for logd(N, 0, m) to be c-SNB, (b) our results are on d-ary multi-log net-
works while known results are on binary networks, (c) for several ranges of the parameter c, we give the
first known necessary conditions for this problem which also match our sufficient conditions from the
LP-duality approach.

2

One important advantage of the LP-duality approach is the ease and brevity of sufficiency proofs. All
we have to do is to check that a solution is indeed dual-feasible and the dual-objective value automatically
gives us a sufficient condition. Earlier works on this problem relied on combinatorial arguments which
are quite intricate and somewhat error-prone. Several months after this paper was submitted to this
journal, we have used this LP-duality approach to address a multicast problem [16], providing more
evidence supporting the strength of this approach.

The rest of the paper is organized as follows. Section 2 establishes basic notations and presents a sim-
ple algebraic view of logd(N, 0, m) networks, which are used throughout the paper. Section 3 presents
the LP-duality approach and sufficient conditions for the logd(N, 0, m) network to be c-SNB. Section 4
presents the necessary conditions for several ranges of c which match the sufficiency conditions.

2 Preliminaries

We first establish notations which will be used throughout the paper. For any positive integers l, d, let [l]
denote the set {1, . . . , l}, Zd denote the set {0, . . . , d− 1} which can be thought of as d-ary “symbols,”
Zl

d denote the set of all d-ary strings of length l, bl denote the string with symbol b ∈ Zd repeated l times
(e.g., 34 = 3333), |s| denote the length of any d-ary string s (e.g., |31| = 2), si..j denote the substring
si · · · sj of a string s = s1 . . . sl ∈ Zl

d. If i > j then si..j is the empty string.
Let N = dn. We consider the logd(N, 0, m) network, which denotes the stacking of m copies of the

d-ary inverse Banyan network BY−1(n) with N inputs and N outputs. Each of these copies is called
a BY−1(n)-plane (Figure 1b illustrates a multi-log network with two planes). We label the inputs and
outputs of a BY−1(n)-plane with d-ary strings of length n. Specifically, each input x ∈ Zn

d and output
y ∈ Zn

d have the form x = x1 · · ·xn, y = y1 · · · yn, where xi, yi ∈ Zd, ∀i ∈ [n].
Also, label the d × d SEs in each of the n stages of a BY−1(n)-plane with d-ary strings of length

n− 1. An input x (resp. output y) is connected to the SE labeled x1..n−1 in the first stage (resp. y1..n−1

in the last stage).
For the sake of clarity, let us first consider a small example. Consider the unicast request (x,y) =

(01001, 10101) when d = 2, n = 5. The input x = 01001 is connected to the SE labeled 0100 in the
first stage, which is connected to two SEs labeled 0100 and 1100 in the second stage, and so on. The
unique path from x to y in the BY−1(n)-plane can be explicitly written out (see Figure 1a):

input x 01001
stage-1 SE 0100
stage-2 SE 1100
stage-3 SE 1010
stage-4 SE 1010
stage-5 SE 1010
output y 10101

We can see clearly the pattern: the prefixes of y1..n−1 are “taking over” the prefixes of x1..n−1 on the
path from x to y. In general, the unique path R(x,y) in a BY−1(n)-plane from an arbitrary input x to
an arbitrary output y is exactly the following:

input x x1x2 . . . xn−1xn

stage-1 SE x1x2 . . . xn−1

stage-2 SE y1x2 . . . xn−1

stage-3 SE y1y2 . . . xn−1
...

...
stage-n SE y1y2 . . . yn−1

output y y1y2 . . . yn−1yn

3

Now, consider two unicast requests (a,b) and (x,y). From the observation above, on the same
BY−1(n)-plane the two routes R(a,b) and R(x,y) share a SE (also called a node) if and only if there
is some j ∈ [n] such that b1..j−1 = y1..j−1 and aj..n−1 = xj..n−1. In this case, the two paths intersect at
a stage-j SE. It should be noted that two requests’ paths may intersect at more than one SE.

For any two d-ary strings u,v ∈ Zl
d, let PRE(u,v) denote the longest common prefix, and SUF(u,v)

denote the longest common suffix of u and v, respectively. For example, if u = 0100110 and v =
0101010, then PRE(u,v) = 010 and SUF(u,v) = 10. The following propositions immediately follow.

Proposition 2.1. Let (a,b) and (x,y) be two unicast requests. Then their corresponding routes R(a,b)
and R(x,y) in a BY−1(n)-plane share at least a common SE if and only if

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| ≥ n− 1. (3)

Moreover, the routes R(a,b) and R(x,y) intersect at exactly one SE if and only if

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| = n− 1, (4)

in which case the common SE is an SE at stage |PRE(b1..n−1,y1..n−1)|+ 1 of the BY−1(n)-plane.

Proposition 2.2. Let (a,b) and (x,y) be two unicast requests. Then their corresponding routes R(a,b)
and R(x,y) in a BY−1(n)-plane share at least a common link if and only if

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| ≥ n. (5)

3 Sufficient Conditions

In Section 3.1, we show that the number of planes blocking a new request is the objective value of a
general linear program which is dependent on the parameters of the problem (c, d, n), but independent
from the request under consideration. By weak duality, in order to bound the number of planes blocking
any new request we can just use the objective value of any dual-feasible solution.

In Sections 3.2 and 3.3, we construct families of solutions which are dual-feasible. Then, depending
of the relationships between the problem’s parameters (c, d, n), we choose the best dual-feasible solution
from the constructed families for bounding the number of blocking planes.

As we have mentioned earlier, the strength of our method is in the brevity of the sufficiency proofs.
However, this advanrage has a cost hidden from the readers. Constructing these families of dual-feasible
solutions involves a good amount of experimentation, educated guesses, and Maple/Matlab coding.

3.1 The Linear Programming Duality Approach

Let (a,b) be an arbitrary request. For each i ∈ {0, . . . , n− 1}, let Ai be the set of inputs x other than a,
where x1..n−1 shares a suffix of length exactly i with a1..n−1. Formally, define

Ai := {x ∈ Zn
d − {a} | SUF(x1..n−1,a1..n−1) = i} .

Similarly, for each j ∈ {0, . . . , n− 1}, let Bj be the set of outputs y other than b which share a prefix of
length exactly j with b, namely

Bj := {y ∈ Zn
d − {b} | PRE(y1..n−1,b1..n−1) = j} .

4

Note that |Ai| = |Bi| = dn−i − dn−1−i, for all 0 ≤ i ≤ n − 1. Suppose the network logd(N, 0, m)
already had some routes established. Consider a BY−1(n)-plane which blocks the new request (a,b)
(i.e., (a,b) cannot be routed through the plane). There can only be three cases for which this happens:

Case 1: There is a request (x,y) routed in the plane for which R(x,y) and R(a,b) share a link. By
Proposition 2.2, it must be the case that (x,y) ∈ Ai × Bj for some i + j ≥ n. We will refer to (x,y)
as a link-blocking request with respect to (a,b). We will drop the qualifier “with respect to” when it is
unambiguous from the current context which request is being blocked.

Case 2: There is a request (x,y) whose route R(x,y) already intersects c other routes at c distinct
SEs on the same plane, and adding (a,b) would introduce an additional intersecting SE to the route
R(x,y). We will refer to these c other requests as secondary requests accompanying (x,y), and refer to
(x,y) as a node-blocking request of type 1.

In particular, by Proposition 2.1 we must have (x,y) ∈ Ai × Bj for some i + j = n− 1. Note that
the common SE between R(a,b) and R(x,y) is at stage j + 1. The routes for secondary requests must
thus intersect R(x,y) at stages strictly less than j + 1 or strictly greater than j + 1.

If a secondary request (u,v) has its route intersects R(x,y) at stage s with 1 ≤ s < j + 1, then it
follows that PRE(y,v) = s− 1 < j, and SUF(x,u) = n− 1− (s− 1) = n− s > n− 1− j = i. Hence,
(u,v) ∈ Ai ×Bs−1. We will refer to such (u,v) as a left secondary request.

If a secondary request (u,v) has its route intersects R(x,y) at stage s where j + 1 < s ≤ n, then
it follows that PRE(y,v) = s − 1 > j, and SUF(x,u) = n − 1 − (s − 1) = n − s < n − 1 − j = i.
Hence, (u,v) ∈ An−s ×Bj . We will refer to such (u,v) as a right secondary request.

To summarize, there are two types of secondary requests accompanying (x,y): the left secondary
requests are the requests (u,v) ∈ Ai × Bj′ for some j′ < j, and the right secondary requests are the
requests (u,v) ∈ Ai′ ×Bj for some i′ < i. For each i′ < i there is at most one right secondary request
in Ai′ ×Bj . Similarly, for each j′ < j there is at most one left secondary request in Ai ×Bj′ .

Case 3: There are c+1 requests in the plane each of whose routes intersects (a,b) at exactly one SE.
These will be called node-blocking requests of type 2. If (x,y) is such a request, then (x,y) ∈ Ai ×Bj

for some i + j = n− 1.

Theorem 3.1. The number of blocking planes is the objective value of a feasible solution to the primal
linear program as shown in Figure 2.

Proof. Define the following variables. For each pair i, j such that i + j ≥ n, let xij be the number of
link-blocking requests in Ai × Bj . For each pair i, j such that i + j = n − 1, let yij be the number of
node-blocking requests of type 1, and zij be the number of node-blocking requests of type 2 in Ai×Bj .
For each pair i, j such that i+j < n−1, let lij and rij be the number of left and right secondary requests
in Ai ×Bj . The number of blocking planes is thus expressed in the objective function (6).

We next explain why the variables satisfy all the constraints. Recall that |Ai| = dn−i − dn−1−i, ∀i.
Thus, the number of requests out of Ai is at most dn−i − dn−1−i, justifying constraint (7). Similarly,
bounding the number of requests to Bj explains constraint (8). Constraint (9) expresses the fact that, for
every node-blocking request of type 1 in Ai×Bj (i+j = n−1), there must be c accompanying secondary
requests (left or right). Lastly, for each node-blocking request of type 1 in Ai × Bj (i + j = n − 1)
constraint (10) says that for each j′ < j there is at most one left secondary request in Ai × Bj′ , and
constraint (11) says that for each i′ < i there is at most one right secondary request in Ai′ ×Bj .

Remark 3.2. It should be noted that while the number of blocking planes is the objective value of some
feasible solution to the primal LP, the converse may not hold; namely, a feasible solution to the primal
LP (even if integral) may not give rise to a blocking configuration with the number of blocking planes
equal to the objective value.

5

The Primal LP

Maximize X
i+j≥n

xij +
X

i+j=n−1

yij +
1

c + 1

X
i+j=n−1

zij (6)

Subject to X
j: i+j≥n

xij +
X

j: i+j=n−1

(yij + zij) +
X

j: i+j<n−1

(lij + rij) ≤ dn−i − dn−1−i ∀i (7)

X
i: i+j≥n

xij +
X

i: i+j=n−1

(yij + zij) +
X

i: i+j<n−1

(lij + rij) ≤ dn−j − dn−1−j ∀j (8)

cyij −

0@X
i′<i

ri′j +
X
j′<j

lij′

1A = 0 i + j = n− 1 (9)

lij′ − yij ≤ 0 i + j = n− 1, j′ < j (10)

ri′j − yij ≤ 0 i + j = n− 1, i′ < i (11)

xij , yij , zij , lij , rij ≥ 0 ∀i, j (12)

The Dual LP

Minimize
n−1X
i=0

(dn−i − dn−1−i)ui +

n−1X
j=0

(dn−j − dn−1−j)vj (13)

Subject to

ui + vj ≥ 1, i + j ≥ n (14)

ui + vj + cwij −
X
i′<i

si′j −
X
j′<j

tij′ ≥ 1, i + j = n− 1 (15)

ui + vj ≥ 1
c+1

, i + j = n− 1 (16)

ui + vj − wi,n−1−i + tij ≥ 0, i + j < n− 1 (17)

ui + vj − wn−1−j,j + sij ≥ 0, i + j < n− 1 (18)

ui, vj , sij , tij ≥ 0, ∀i, j (19)

Figure 2: The Primal and the Dual Linear Programs

The dual linear program of the primal LP is also given in Figure 2. The key idea is the following:
due to weak duality every dual-feasible solution induces an objective value which is at least the number
of blocking planes.

As an illustration of the power of our method, let us first reproduce a few known results. The exam-
ples should give the reader the correct insight without delving into too much technicality.

Example 3.3 (c = 0, the node-blocking case). When c = 0, the problem becomes the SNB problem
in the node-blocking sense. It has been shown in [22] (which addressed the node-blocking problem in
f -cast switches) that m ≥ dd(n−1)/2e+ dn−d(n−1)/2e− 1 is necessary and sufficient for logd(N, 0, m) to
be SNB.

Let i0 = n− d(n− 1)/2e and j0 = d(n− 1)/2e. Assign ui = 1 for all i such that i0 ≤ i ≤ n− 1;
and, vj = 1 for all j such that j0 ≤ j ≤ n− 1. All other variables are zeros. It is easy to check that this
is a dual-feasible solution with objective value precisely dd(n−1)/2e + dn−d(n−1)/2e − 2. Thus, at most 1
more BY−1(n) is needed, for a total of dd(n−1)/2e+ dn−d(n−1)/2e− 1 planes in the worst case, matching
the known necessary and sufficient condition.

Example 3.4 (c = n, the link-blocking case). When c = n, the problem becomes the SNB problem in

6

the link-blocking sense. It has been shown in [6, 22] that m ≥ ddn/2e−1 + dbn/2c − 1 is necessary and
sufficient for logd(N, 0, m) to be SNB.

Since there can be no path with n + 1 distinct SEs, the variables yij and zij are all zeros, so are the
lij and rij . The primal LP becomes much simpler:

max
∑

i+j≥n xij

subject to
∑

j: i+j≥n xij ≤ dn−i − dn−1−i ∀i∑
i: i+j≥n xij ≤ dn−j − dn−1−j ∀j

xij ≥ 0 ∀i, j

The dual LP is:

min
∑

i(d
n−i − dn−1−i)ui +

∑
j(d

n−j − dn−1−j)vj

subject to ui + vj ≥ 1 i + j ≥ n

ui, vj ≥ 0 ∀i, j

Let i0 = bn/2c + 1 and j0 = dn/2e. Assign ui = 1 for all i such that i0 ≤ i ≤ n − 1; and, vj = 1 for
all j such that j0 ≤ j ≤ n− 1. All other variables are zeros. This solution is dual-feasible with objective
value ddn/2e−1 +dbn/2c−2. Hence, m ≥ ddn/2e−1 +dbn/2c−1 is sufficient for logd(N, 0, m) to be SNB
in this case. Again, the sufficient condition obtained with our method matches the known necessary and
sufficient condition.

In light of the above examples, we consider 1 ≤ c ≤ n− 1 in the rest of this paper.

3.2 The Case When n is Odd

Lemma 3.5. Suppose n = 2k + 1 and 1 ≤ c ≤ 2k. For any integer p where 0 ≤ p ≤ k, there exists a
feasible solution to the dual LP with objective value

2dk − 2 +
2dk(d− 1)

c + 2
· f(c, d, p),

where

f(c, d, p) =
p∑

i=0

(
d

c + 1

)i

− 1
d

p−1∑
i=0

1
[d(c + 1)]i

=


p + 1− 1−d−2p

d− 1
d

c + 1 = d

1−(d
c+1)

p+1

1− d
c+1

−
1−

“
1

d(c+1)

”p

d− 1
c+1

c + 1 6= d.
(20)

Proof. Consider the following assignment to the dual variables:

ui = vi =


1 k + p + 1 ≤ i ≤ n− 1
1− 1

(c+2)(c+1)i−k−1 k + 1 ≤ i ≤ k + p
1

(c+2)(c+1)k−i k − p ≤ i ≤ k

0 0 ≤ i < k − p

wij = min{ui, uj} ∀i + j = n− 1
sij = tij = 0 ∀i + j < n− 1.

First, we verify that this assignment is indeed a dual-feasible solution. Note that for i ≤ j we have
ui = vi ≤ uj = vj .

7

Consider the dual constraint (14). When i + j ≥ n = 2k + 1, either i ≥ k + 1 or j ≥ k + 1. Due to
symmetry, we only need to consider i ≥ k +1. Note that vj ≥ vn−i because j ≥ n− i. If i ≥ k +1+ p,
then ui ≥ 1 and thus ui + vj ≥ 1. If k + 1 ≤ i ≤ k + p, then k − p ≤ n− i ≤ k. Thus

ui + vj ≥ ui + vn−i =
(

1− 1
(c + 2)(c + 1)i−k−1

)
+

1
(c + 2)(c + 1)k−(n−i)

= 1.

Consider the dual constraint (15). When i + j = n − 1 = 2k, either i ≥ k or j ≥ k. Due to
symmetry we only need to consider i ≥ k. If i ≥ k + p + 1, then j = 2k − i ≤ k − p − 1. Hence,
ui = 1, vj = 0, wij = 0 and thus the constraint is satisfied. When k + 1 ≤ i ≤ k + p, we have
k − p ≤ j ≤ k − 1. Thus,

ui + vj + cwij =
(

1− 1
(c + 2)(c + 1)i−k−1

)
+ (c + 1)

1
(c + 2)(c + 1)k−j

= 1.

When i = j = k, we have ui = vj = wij = 1/(c + 2). The constraint is straightforwardly verified.
Constraint (16) is verified similarly. Constraint (17) follows from the fact that ui ≥ wi,n−1−i (and

all other variables are non-negative). Similarly, constraint (18) follows from the fact that vj ≥ wn−1−j,j .
Second, it is routine to verify that the objective value of the dual-feasible solution above is precisely
2dk − 2 + 2dk(d−1)

c+2 · f(c, d, p).

Lemma 3.6. Suppose n = 2k +1, k ≥ 2, and c = k. There exists a feasible solution to the dual LP with
objective value

2dk − 2 +
2(d− 1)dk−2

c + 2

(
d2 − d +

d3 − 1
c + 2

)

Proof. The following solution is dual-feasible with the desired objective value: ui = vi = 1 for k + 3 ≤
i ≤ n − 1, uk+2 = vk+2 = 1 − 1

(c+2)2
, uk+1 = vk+1 = 1 − 1

(c+2) , uk = vk = 1
(c+2) , uk−1 =

vk−1 = 1
(c+2)2

, ui = vi = 0 for 0 ≤ i ≤ k − 2, wkk = 1
c+2 , wk+1,k−1 = wk−1,k+1 = 2

(c+2)2
,

wk+2,k−2 = wk−2,k+2 = 1
(c+2)2

, wij = 0 for all other i, j, si,k−2 = tk−2,i = 1
(c+2)2

for 0 ≤ i ≤ k − 2,

si,k−1 = tk−1,i = 1
(c+2)2

for 0 ≤ i ≤ k − 2, and sij = tij = 0 for all other i, j.

Lemma 3.7. Suppose n = 2k + 1 and k + 1 ≤ c ≤ 2k. There exists a feasible solution to the dual LP
with objective value

2dk − 2 +
2(d− 1)2dk−1

c + 2
.

Proof. The following solution is dual-feasible with the desired objective value: ui = vi = 1 for k + 2 ≤
i ≤ n − 1, uk+1 = vk+1 = 1 − 1

(c+2) , uk = vk = 1
(c+2) , ui = vi = 0 for 0 ≤ i ≤ k − 1, wkk = 1

c+2 ,
wk+1,k−1 = wk−1,k+1 = 1

(c+2) , wij = 0 for all other i, j, si,k−1 = tk−1,i = 1
(c+2) for 0 ≤ i ≤ k − 1,

and sij = tij = 0 for all other i, j.

We are now ready to prove the sufficiency conditions for the odd-n case.

Theorem 3.8. Consider the case when n = 2k + 1. Recall that f(c, d, p) is defined in (20).

(a) If 1 ≤ c ≤ k − 1, then

m ≥ 2dk − 1 +
⌊

2dk(d− 1)
c + 2

· f(c, d, blogd(c + 1)/2c)
⌋

8

is sufficient for logd(N, 0, m) to be c-SNB. In particular, when c ≤ min{k − 1, d2 − 1}

m ≥ 2dk − 1 +
⌊

2dk(d− 1)
c + 2

⌋
is sufficient.

(b) If c = k, then

m ≥ 2dk − 1 +
⌊

2(d− 1)dk−2

c + 2

(
d2 − d +

d3 − 1
c + 2

)⌋
is sufficient for logd(N, 0, m) to be c-SNB.

(c) If k + 1 ≤ c ≤ 2k, then

m ≥ 2dk − 1 +
⌊

2(d− 1)2dk−1

c + 2

⌋
is sufficient for logd(N, 0, m) to be c-SNB.

Proof. By Theorem 3.1, the objective value of any dual-feasible solution is an upper bound on the num-
ber of BY−1(n)-planes blocking a new request. Hence, one plane more than the objective value is
sufficient for the network to be c-SNB.

To see (a), we apply Lemma 3.5. The best dual-feasible solution is the one whose objective value is
minimized. In this case, f(d − 1, d, p) is minimized at p0 = blogd(c + 1)/2c. (To see this, notice that
f(c, d, p) ≥ f(c, d, p + 1) iff p ≤ 1

2 logd(c + 1) − 1.) Thus, we make use of the dual-feasible solution
in Lemma 3.5 corresponding to p = p0. In particular, when c ≤ d2 − 1 the function’s minimum value is
f(c, d, blogd(c + 1)/2c) = 1.

Similarly, (b) follows from Lemma 3.6, and (c) from Lemma 3.7.

Remark 3.9. Compared to the results of [21] (which was only for the binary network case, i.e. d = 2),
our sufficient conditions are better when 3 ≤ c ≤ k − 1, and are at least as good for other ranges of c.

3.3 The Case When n is Even

Lemma 3.10. Suppose n = 2k and 1 ≤ c ≤ d− 1. There exists a feasible solution to the dual LP with
objective value 2dk − 2.

Proof. The following solution is dual-feasible with the desired objective value: ui = vi = 1 for all
i ≥ k, all other variables are set to 0.

Lemma 3.11. Suppose n = 2k and d ≤ c ≤ n− 1. For any integer p, 1 ≤ p ≤ k, there exists a feasible
solution to the dual LP with objective value

dk + dk−1 − 2 +
(d− 1)dk−1

c + 2
· (d + g(c, d, p)) ,

where

g(c, d, p) =
p∑

i=0

(
d

c + 1

)i

−
p−1∑
i=0

1
[d(c + 1)]i

=


p + 1− 1−d−2p

1−d−2 c + 1 = d

1−(d
c+1)

p+1

1− d
c+1

−
1−

“
1

d(c+1)

”p

1− 1
d(c+1)

c + 1 6= d.
(21)

9

Proof. The following solution is dual-feasible with the desired objective value: ui = 1 for k + 1 ≤ i ≤
n − 1, ui = 1

(c+2)(c+1)k−i for k − p ≤ i ≤ k, ui = 0 for all other i, vj = 1 for k + p ≤ j ≤ n − 1,

vj = 1−un−j = 1−u2k−j for k ≤ j ≤ k+p−1, vk−1 = 1
c+2 , vj = 0 for all other j, wij = min{ui, uj}

when i + j = n− 1, and sij = tij = 0 for all i + j < n− 1.

Remark 3.12. The previous two Lemmas hold for any c between 1 and n− 1, but we stated them in the
range of c where they are meant to be applied.

Lemma 3.13. Suppose n = 2k and k < c. There exists a feasible solution to the dual LP with objective
value dk + dk−1 − 2.

Proof. The following solution is dual-feasible with the desired objective value: ui = vi = 1 for k + 1 ≤
i ≤ n − 1, uk = vk = 1

2 , ui = vi = 0 for 0 ≤ i ≤ k − 1, wk,k−1 = wk−1,k = 1
2 , wij = 0 for all other

i, j, si,k−1 = tk−1,i = 1
2 for 0 ≤ i ≤ k − 1, and sij = tij = 0 for all other i, j.

With the help of Lemmas 3.10, 3.11 and 3.13 the following theorem straightforwardly follows.

Theorem 3.14. Consider the case when n = 2k. Recall that g(c, d, p) is defined in (21).

(a) If 1 ≤ c ≤ d− 1, then m ≥ 2dk − 1 is sufficient for logd(N, 0, m) to be c-SNB.

(b) If d ≤ c ≤ k, then

m ≥ dk + dk−1 − 1 +
⌊

(d− 1)dk−1

c + 2
·
(

d + g

(
c, d,

⌊
logd(c + 1) + 1

2

⌋))⌋
is sufficient for logd(N, 0, m) to be c-SNB. In particular, when d ≤ c ≤ min{k, d3 − 2}

m ≥ dk + dk−1 − 1 +
⌊

(d− 1)dk

c + 1

⌋
is sufficient.

(c) If k < c ≤ 2k, then m ≥ dk + dk−1 − 1 is sufficient for logd(N, 0, m) to be c-SNB.

Remark 3.15. Compared to the results of [21] (which was only for the binary network case, i.e. d = 2),
our sufficient conditions are better when 7 ≤ c ≤ k, and are at least as good for other ranges of c.

4 Necessary Conditions

We have seen in Examples 3.3 and 3.4 that our method gives sufficient conditions which are also neces-
sary when c = 0 (node-blocking case) and c = n (link-blocking case). A natural question is: “how good
are our sufficient conditions in Theorems 3.8 and 3.14 when 1 ≤ c ≤ n − 1?” In this section, we will
show that our sufficient conditions are also necessary for 1 ≤ c ≤ min{k − 1, d2 − 1} when n is odd,
and necessary for 1 ≤ c ≤ min{k − 1, d3 − 2} and when c > n/2 when n is even.. This is the first time
in the literature that any necessary and sufficient conditions are derived for some values of c in the range
1 ≤ c 6= n.

Theorem 4.1. (a) When n = 2k + 1 and 1 ≤ c ≤ min{k − 1, d2 − 1}, the sufficient condition

m ≥ 2dk − 1 +
⌊

2dk(d− 1)
c + 2

⌋
of Theorem 3.8 is also necessary for logd(N, 0, m) to be c-SNB.

10

(b) When n = 2k and 1 ≤ c ≤ d − 1, the sufficient condition m ≥ 2dk − 1 of Theorem 3.8 is also
necessary for logd(N, 0, m) to be c-SNB.

(c) When n = 2k and d ≤ c ≤ min{k − 1, d3 − 2} the sufficient condition

m ≥ dk + dk−1 − 1 +
⌊

(d− 1)dk

c + 1

⌋
of Theorem 3.14 is also necessary for logd(N, 0, m) to be c-SNB.

(d) Moreover, when n = 2k and c ≥ k the sufficient condition

m ≥ dk + dk−1 − 1

of Theorem 3.14 is also necessary for logd(N, 0, m) to be c-SNB.

Proof. For necessity, the main idea is to explicitly construct a network state and a new request for which
the number of blocking planes (plus 1) matches the sufficiency conditions. In this sense, the proofs of all
parts of this theorem are similar, yet tedious. For the sake of clarity and the fact that the proofs are not
very enlightening from a mathematical point of view, we will only provide here a proof of part (a) of this
theorem when d = 2 and c = 2. Hopefully the reader will be able to see the main line of thought. When
d = 2 and c = 2, the sufficient condition becomes m ≥ 2k+1 + 2k−1 − 1. The main idea is to create
a request (a,b) and a network state compatible with this request in which there are 2k+1 + 2k−1 − 2
blocking planes.

Let a = 0n and b = 0n. Recall our convention that 0n means a string of n zeros. The blocking
planes are constructed as follows.

• For each i where k + 2 ≤ i ≤ 2k = n− 1, each string s ∈ Z2k−i−1
2 and each bit b ∈ Z2 create the

following requests

(s10ib , 02k+1−i1s12i−2k−1b)
(12i−2k−1s102k+1−ib , 0i1sb)

and let each of them be routed through a separate BY−1(n) plane. The intuition is that, the first
request is in Ai × Bn−i and the second is in An−i × Bi. Hence, by Proposition 2.2 each of
the above requests link-blocks (a,b), all the above planes are blocking planes. The number of
blocking planes is

2

(
2k∑

i=k+2

22k−i

)
= 2(2k−1 − 1) = 2k − 2.

• Next, we will construct some more blocking planes which route node-blocking requests of type 1.
We certainly cannot use any of the inputs and outputs which have already been used to create the
blocking planes above. For each string s ∈ Zk−2

2 and each symbol b ∈ Z2, route the following
three requests through a separate plane:

(s10k+1b , 0k−11s00b)
(0ks10b , 0k−11s01b)

(0k−1s100b , 0k−11s10b)

It is not difficult to check that each of the above planes are blocking-planes. Basically, the first
request is in Ak−1 × Bk+1 which is meant to be a node-blocking request of type 1, the other two
requests are both right secondary requests.

11

Similarly, for each string s ∈ Zk−2
2 and each symbol b ∈ Z2, route the following three requests

through a separate plane:

(00s10k−1b, , 0k+11sb)
(10s10k−1b , 01s0kb)
(01s10k−1b , 001s0k−1b)

The total number of blocking planes created this way is 2 · 2k−1 = 2k.

• Finally, for each string s ∈ Zk−1
2 , route the following three requests through a separate plane:

(s10k0 , 0k1s0)
(s10k1 , 10k−11s0)

(s10k−110 , 0k1s1)

It is not difficult to check that each of the above planes are blocking-planes. Basically, the first
request is in Ak×Bk which is meant to be a node-blocking request of type 1, the other two requests
are left and right secondary requests. The total number of blocking planes created this way is 2k−1.

We have not used any input nor output twice in creating a total of 2k−2+2k +2k−1 = 2k+1 +2k−1−2
blocking planes. The necessary condition is thus established.

References

[1] CHEN, H.-B., AND HWANG, F. K. On multicast rearrangeable 3-stage clos networks without
first-stage fan-out. SIAM Journal on Discrete Mathematics 20, 2 (2006), 287–290.

[2] CHINNI, V., HUANG, T., WAI, P.-K., MENYUK, C., AND SIMONIS, G. Crosstalk in a lossy
directional coupler switch. J. Lightwave Technol. 13, 7 (1995), 1530–1535.

[3] HWANG, F. K. Choosing the best log2(n, m, p) strictly nonblocking networks. IEEE Transactions
on Communications 46, 12 (Dec 1998), 454–455.

[4] HWANG, F. K. The mathematical theory of nonblocking switching networks. World Scientific
Publishing Co. Inc., River Edge, NJ, 1998.

[5] HWANG, F. K., AND LIN, B.-C. Wide-sense nonblocking multicast log2(n, m, p) networks. IEEE
Transactions on Communications 51, 10 (Oct 2003), 1730–1735.

[6] HWANG, F. K., WANG, Y., AND TAN, J. Strictly nonblocking f-cast logd(n, m, p) networks. IEEE
Transactions on Communications 55, 5 (May 2007), 981–986.

[7] JIANG, X., PATTAVINA, A., AND S.HORIGUCHI. Rearrangeable f -cast multi-log 2n networks.
IEEE Transactions on Communications (2007). to appear.

[8] JIANG, X., SHEN, H., UR RASHID KHANDKER, M. M., AND HORIGUCHI, S. Blocking behav-
iors of crosstalk-free optical banyan networks on vertical stacking. IEEE/ACM Transactions on
Networking 11, 6 (2003), 982–993.

[9] KABACINSKI, W., AND DANILEWICZ, G. Wide-sense and strict-sense nonblocking operation
of multicast multi-log2n switching networks. IEEE Transactions on Communications 50, 6 (Jun
2002), 1025–1036.

12

[10] LEA, C.-T. Muti-log2 n networks and their applications in high speed electronic and photonic
switching systems. IEEE Transactions on Communications 38, 10 (1990), 1740–1749.

[11] LEA, C.-T., AND SHYY, D.-J. Tradeoff of horizontal decomposition versus vertical stacking in
rearrangeable nonblocking networks. IEEE Transactions on Communications 39 (1991), 899–904.

[12] LI, D. Elimination of crosstalk in directional coupler switches. Optical Quantum Electron., 25, 4
(1993), 255–260.

[13] MAIER, G., AND PATTAVINA, A. Design of photonic rearrangeable networks with zero first-order
switching-element-crosstalk. IEEE Trans. Comm. 49, 7 (Jul 2001), 1248–1279.

[14] MUKHERJEE, B. Optical Communication Networks. McGraw-Hill, New York, NY, 1997.

[15] NGO, H. Q., AND DU, D.-Z. Notes on the complexity of switching networks. In Advances in
Switching Networks, D.-Z. Du and H. Q. Ngo, Eds., vol. 5 of Network Theory and Applications.
Kluwer Academic Publishers, 2001, pp. 307–367.

[16] NGUYEN, T.-N., NGO, H. Q., AND WANG, Y. Strictly nonblocking f -cast photonic switching
networks under general crosstalk constraints. In Proceedings of the 2008 IEEE Global Communi-
cations Conference (GLOBECOM) (New Orleans, LA, U.S.A., Dec 2008), IEEE, pp. 01–05.

[17] PATTAVINA, A., AND TESEI, G. Non-blocking conditions of multicast three-stage interconnection
networks. IEEE Transactions on Communications 46, 4 (Dec 2005), 163–170.

[18] SHYY, D.-J., AND LEA, C.-T. log2(n, m, p) strictly nonblocking networks. IEEE Transactions
on Communications 39, 10 (1991), 1502–1510.

[19] STERN, T. E., AND BALA, K. Multiwavelength Optical Networks: A Layered Approach. Prentice
Hall PTR, Upper Saddle River, NJ, 1999.

[20] VAEZ, M., AND LEA, C.-T. Wide-sense nonblocking Banyan-type switching systems based on
directional couplers. IEEE J. Select. Areas Commun. 16, 7 (Sep 1998), 1327–1332.

[21] VAEZ, M. M., AND LEA, C.-T. Strictly nonblocking directional-coupler-based switching networks
under crosstalk constraint. IEEE Trans. Comm. 48, 2 (Feb 2000), 316–323.

[22] WANG, Y., NGO, H. Q., AND JIANG, X. Strictly nonblocking f -cast d-ary multilog networks
under fanout and crosstalk constraints. In Proceedings of the 2008 International Conference on
Communications (ICC) (Bejing, China, 2008), IEEE.

[23] WU, J.-C., AND TSAI, T.-L. Low complexity design of a wavelength-selective switch using raman
amplifiers and directional couplers. In GLOBECOM (2006).

13

