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Exciting “Recent” Results on Query Evaluation



A Query Evaluation Problem

I HypergraphH = ([n], E), E ⊆ 2[n]

I Attribute Ai, i ∈ [n], AJ := {Aj | j ∈ J}, J ⊆ [n]

I Relation RF (AF ) for each F ∈ E , RF for short
I e.g. R123 for R123(A1, A2, A3)
I e.g. T25 for T25(A2, A5)

Problem (Boolean Conjunctive Query (BCQ))

Q : S()←
∧
F∈E

RF , // can all RF be satisfied at once?

Question
How do we evaluate Q efficiently?

Conjunctive, count, aggregate queries are fine too.
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What do we mean by “efficiency”?

Database centric complexity framework
I Assumption 1: query size� data size

I Data complexity
I Fixed parameter tractability (e.g. parameter = some

function of query size)

Õ(something) = O (f(|query|) · polylog(|data|) · something)

I Assumption 2: known constraints on input relations
I Cardinalities of materialized relations, or upper bounds

I cardinality constraints (CC)
I Functional dependencies, the more the merrier

I FD constraints (FDC)
I Degree bounds, the more the merrier

I Degree constraints (DC)
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Example

Q : S()← R12 ∧R23 ∧R34 ∧R41

∧A1 +A2 = A3.

H = ([4], {12, 23, 34, 14, 123})

A1 A3

A2

A4

R12 R23

R34R41

A1 A2

2 1
4 1
4 2
5 2

A2 A3

1 c
1 d
2 c

A3 A4

c 3
d 4
d 5
e 6
e 7

A4 A1

3 2
4 4
4 5

I Cardinalities: |R12| = 4, |R23| = 3, . . .

I FD: {A1, A2} → A3, {A3, A2} → A1, . . .

I Degree Bounds: deg34(A4|A3 = x)
def
= |σA3=x(R34)| ≤ 2, ∀x, . . .
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Degree- generalize cardinality- and FD-constraints

DC ⊇ CC ∪ FDC

I Degree Constraints (DC):

degF (AY |AX) ≤ NY |X , X ⊂ Y ⊆ F ∈ E

I Cardinality Constraints (CC):

|RF | ≤ N ⇔ degF (AF |A∅) ≤ NF |∅
def
= N.

I Functional Dependencies (FDC):

AX → AY ⇔ degF (AY |AX) ≤ NY |X
def
= 1.
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Islands of tractability (redrawn from D. Marx’s slides)

Prior results with cardinality constraints

Bounded

Treewidth

Bounded
(generalized)

Hypertree Width

Bounded
fractional

edge cover number

Bounded fractional

hypertree width

Bounded

submodular width

PTIME

FPT

not FPT

We want the same map with degree constraints.
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A Meta Algorithm (i.e. Meta Query Plan)

Database D

Datalog rule

Qi Qi(D)∧
F∈E

RF

Output

Answer

A propositional
formula on

relations Tj , j ∈ J

iTime oTime

Qo

overall time = Õ
(
|input|+ iTime + oTime

)

(a) oTime = |Qi(D)|+ |answer|

I i.e. Qo evaluatable in linear time

(b) iTime = max
D|=DC

|Qi(D)|

I i.e. Qi evaluatable within its worst-case output size

I Design Qi s.t. (a) holds and (b) as small as possible
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Option 1: Full Conjunctive Query

Database D

Full conjunctive query

Qi Qi(D)∧
F∈E

RF

Output

AnswerT[n]
iTime oTime

Qo

I oTime = |Qi(D)|+ |answer| trivially true
I iTime = max

D|=DC
|Qi(D)| worst-case optimal algorithm

I Known if all DC are cardinality constraints
I NPRR [Ngo, Porat, Ré, Rudra PODS’12]
I Leapfrog-Triejoin [Veldhuizen ICDT’14]
I Generic Join [Ngo, Ré, Rudra SIGMOD Records 2013]

I Unknown for general DC until our work
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Detour: Tree Decompositions, Informally

S()← R(a, b, d) ∧ c < d ∧ T (c, b, d) ∧ U(b, e) ∧ V (c, e)

∧ b+ e = f ∧W (b, e, g) ∧ ∧X(i, j, h) ∧ e− b = k.

b, c, e bag

a, b, c, d bag b, e, f, g, h bag

h, i, j bag e, b, k bag

I Every relation is covered by some bag
I Bags conntaining a given variable are connected
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Detour: Tree Decompositions, Formally

I HypergraphH = ([n], E)

I A Tree Decomposition ofH is a pair (T , χ) where
I T = (V (T ), E(T )) is a tree

I χ : V (T )→ 2[n] assigns a bag χ(v) to each tree-node v
I Every hyperedge F ∈ E is covered by some bag (F ⊆ χ(v))
I Bags containing ∀i ∈ [n] forms a subtree

See [Gottlob et al 2016], Gems of PODS.
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Option 2: A Single Tree Decomposition
Fix (T , χ)

Database D

Multiple Conjunctive Rules

Qi Qi(D)∧
F∈E

RF

Output

Answer

∧
v∈V (T )

Tχ(v)
iTime oTime

Qo

I Qi(D) is Olteanu’s factorized database (FDB)
I oTime = |Qi(D)|+ |answer|

I Yannakakis for join, FDB/InsideOut for aggregates

I iTime = max
D|=DC

|Qi(D)| ≤ max
D|=DC

max
v∈V (T )

|Pv(D)|

I Pv : Tχ(v) ←
∧
F∈E

RF v ∈ V (T )

min
(T ,χ)

max
D|=CC

max
v∈V (T )

|Pv(D)| ≤ N fhtw(H) ≤ Nghtw(H) ≤ N tw(H)+1
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Option 3: Multiple Tree Decompositions

Database D

How to evaluate this?

Qi Qi(D)∧
F∈E

RF

Output

Answer

∨
(T ,χ)

∧
v∈V (T )

Tχ(v)
iTime oTime

Qo

I
∨

ranges over non-redundant TDs (T , χ)

I oTime = |Qi(D)|+ |answer|
I Union of Yannakakis on all TDs

I iTime = max
D|=DC

|Qi(D)| ≤ ?
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Example: Q : S()← R12 ∧R23 ∧R34 ∧R41

A1 A3

A2

A4

R12 R23
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Option 3: Multiple Tree Decompositions

Database D

Multiple Disjunctive Datalog Rules!

Qi Qi(D)∧
F∈E

RF

Output

Answer

∧
B

∨
B∈B

TBiTime oTime

Qo

I oTime = |Qi(D)|+ |answer|
I Union of Yannakakis on all TDs

I iTime = max
D|=DC

|Qi(D)| ≤ max
D|=DC

max
B
|PB(D)|

I PB :
∨
B∈B

TB ←
∧
F∈E

RF disjunctive datalog rule

max
D|=CC

max
B
|PB(D)| ≤ N subw(H) ≤ N fhtw(H)

subw = submodular width (Daniel Marx, JACM’2013)
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Roadmap

Given degree constraints DC, and a disjunctive datalog rule

P :
∨
B∈B

TB ←
∧
F∈E

RF

Question (Worst-case Output Size Bound)

Find a good upper-bound for max
D|=DC

|P (D)|

Question (Algorithm)

Design an algorithm evaluating P within the bound.

Question (Gathering fruits)

Plug bound/algorithm into Meta Algorithm, what do we get?
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High-level View of the Bound

Given degree constraints DC, a disjunctive datalog rule

P :
∨
B∈B

TB ←
∧
F∈E

RF

We shall prove bounds of the form

max
D|=DC

log |P (D)| ≤ some function of h

s.t. h is (approximately) entropic

and h satisfies degree constraints



An Idea From Gottlob-Lee-Valiant-Valiant, JACM’12

Q(A1, A2, A3, A4)← R12 ∧R23 ∧R34 ∧R41.
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Hunif(A1A2) ≤ log |R12|, Hunif(A2A3) ≤ log |R23|, Hunif(A3A4) ≤ log |R34|, . . .

Hunif(A2|A1 = ‘a’) ≤ log
∣∣σA1=‘a’R12

∣∣, Hunif(A2|A1 = ‘b’) ≤ log
∣∣σA1=‘b’R12

∣∣, . . .

Hunif(A2|A1) ≤ log max
x

∣∣σA1=xR12

∣∣︸ ︷︷ ︸

degR12
(A2|A1)
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Q(A1, A2, A3, A4)← R12 ∧R23 ∧R34 ∧R41.
A1 A3

A2

A4

R12 R23

R34R41

A1 A2 A3 A4

a 1 d 4 1/4
b 1 c 3 1/4
b 1 d 4 1/4
b 2 c 3 1/4 Hunif(A1A2A3A4) = log |Q|

A1 A2

a 1 1/4
b 1 2/4
b 2 1/4

A2 A3

1 c 1/4
1 d 2/4
2 c 1/4

A3 A4

c 3 2/4
d 4 2/4
d 5 0

A4 A1

3 b 2/4
4 a 1/4
4 b 1/4

Hunif(A1A2) ≤ log |R12|, Hunif(A2A3) ≤ log |R23|, Hunif(A3A4) ≤ log |R34|, . . .

Hunif(A2|A1 = ‘a’) ≤ log
∣∣σA1=‘a’R12

∣∣, Hunif(A2|A1 = ‘b’) ≤ log
∣∣σA1=‘b’R12

∣∣, . . .

Hunif(A2|A1) ≤ log max
x

∣∣σA1=xR12

∣∣︸ ︷︷ ︸
degR12

(A2|A1)



Entropic Bound for Full Conjunctive Queries

I Q : T[n] ←
∧
F∈E

RF , and degree constraints DC

I max
D|=DC

log |Q(D)| ≤ suph([n])

I subject to (whatever Hunif satisfies):

I h is Entropic

I There is some distribution on A[n] such that h(X) is the
marginal entropy on AX , for all X

I h satisfies DC

I h(Y |X)
def
= h(Y )− h(X) ≤ logNY |X , X ⊂ Y ⊆ F ∈ E

I Good Bound, but not computable!
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Hierarchy of Set Functions

h : 2[n] → R+, non-negative, monotone, h(∅) = 0

h(X) ≤ h(Y ) if X ⊆ Y

SAn := {h | h is sub-additive}
h(X ∪ Y ) ≤ h(X) + h(Y )

Γn := {h | h is submodular}
h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y )

Γ
∗
n: topological closure of Γ∗n

Γ∗n = {h : h is entropic}

Mn : Modular

h(X) =
∑
x∈x

h(x)



Bounds for Full Conjunctive Query

I HDC
def
=
{
h | h(Y |X) ≤ logNY |X , ∀(X,Y,NY |X)

}

I Then,

max
D|=DC

log |Q(D)| ≤ max
h∈Γ

∗
n∩HDC

h([n]) entropic bound

≤ max
h∈Γn∩HDC

h([n]) polymatroid bound

≤ max
h∈SAn∩HDC

h([n]) sub-additive bound.



Bounds for Full Conjunctive Query

I HDC
def
=
{
h | h(Y |X) ≤ logNY |X , ∀(X,Y,NY |X)

}
I Then,

max
D|=DC

log |Q(D)| ≤ max
h∈Γ

∗
n∩HDC

h([n]) entropic bound

≤ max
h∈Γn∩HDC

h([n]) polymatroid bound

≤ max
h∈SAn∩HDC

h([n]) sub-additive bound.



Size Bounds for Full Conjunctive Queries

Bound Entropic Bound Polymatroid Bound

Definition log |Q| ≤ max
h∈Γ

∗
n∩HDC

h([n]) log |Q| ≤ max
h∈Γn∩HDC

h([n])

CC only
AGM bound (Tight) AGM bound (Tight)

[Atserias et al. FOCS’08] [Atserias et al. FOCS’08]

CC + FD only
Entropic Bound for FD Polymatroid Bound for FD

[Gottlob et al. JACM’12] [Gottlob et al. JACM’12]

(Tight [Gogacz et al. ICDT’17]) (Not tight [our work] )

DC
Entropic Bound for DC Polymatroid Bound for DC

(Tight [our work] ) (Not tight [our work] )
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Disjunctive Datalog: Size Bounds

P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF ) |P (D)| def
= min

T:T|=P
max
B∈B
|TB|

Theorem ( our work )

max
D|=DC

log |P (D)| ≤ max
h∈Γ

∗
n∩HDC

min
B∈B

h(B)︸ ︷︷ ︸
Entropic bound

Tight

≤ max
h∈Γn∩HDC

min
B∈B

h(B)︸ ︷︷ ︸
Polymatroid bound

Not Tight

Imply all known bounds for (Full) Conjunctive Queries!



Earlier Example

P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF )

|P (D)| def
= min

T:T|=P
max
B∈B
|TB|

A1 A3

A2

A4

R12 R23

R34R41

CC : |R12| ≤ N, |R23| ≤ N, |R34| ≤ N, |R41| ≤ N.

P123,234 : T123 ∨ T234 ← R12 ∧ R23 ∧ R34 ∧ R41.

max
D|=CC

log |P123,234(D)| ≤ max
h∈Γn∩CC

min{h(A1A2A3), h(A2A3A4)}

≤ max
h∈Γn∩CC

1

2
[h(A1A2A3), h(A2A3A4)]

≤ max
h∈Γn∩CC

1

2
[h(A1A2) + h(A2A3) + h(A3A4)]

≤ 3

2
logN.
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Roadmap

Given degree constraints DC and a disjunctive datalog rule

P :
∨
B∈B

TB ←
∧
F∈E

RF

Answer (Worst-case Output Size Bound)

max
D|=DC

log |P (D)| ≤ max
h∈Γn∩HDC

min
B∈B

h(B) = polymatroid bound.

Question (Algorithm)

Compute a model for P within Õ(2polymatroid bound)

Question (Gathering fruits)

Plug bound/algorithm into Meta Algorithm, what do we get?



Connection to Shannon-flow Inequalities

Lemma (Linearize it)

There exists non-negative λ = (λB)B∈B, with ‖λ‖1 = 1, s.t.

max
h∈Γn∩HDC

min
B∈B

h(B) = max
h∈Γn∩HDC

∑
B∈B

λB h(B) (1)

Lemma (Shannon-flow inequality)

There exists δ ≥ 0 s.t. 2polymatroid bound =
∏

(X,Y,NY |X)

N
δY |X
Y |X , and

∑
B∈B

λB · h(B) ≤
∑

(X,Y,NY |X)

δY |X · h(Y |X), ∀h ∈ Γn (2)

(2) is a (vast) generalization of Shearer’s lemma
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PANDA (Proof-Assisted eNtropic Degree-Aware)

I What?
I Compute a model for our disjunctive datalog rule

I Run within Õ
(

2polymatroid bound
)

= Õ

 ∏
(X,Y,NY |X)

N
δY |X
Y |X

:

I How? Proof as symbolic instructions
I Construct a Proof Sequence for the corresponding

Shannon-flow inequality
I Proof steps→ relational operators.
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Proof sequence
Shannon-flow inequality: h(Y |X)

def
= h(Y )− h(X), X ⊆ Y∑

B∈B
λB · h(B) ≤

∑
(X,Y,NY |X)

δY |X · h(Y |X)

Proof sequence, convert RHS to LHS using following steps

(In)equality Steps (X ⊆ Y )

h(X) + h(Y |X) = h(Y ) h(X) + h(Y |X)→ h(Y )

h(Y ) = h(X) + h(Y |X) h(Y )→ h(X) + h(Y |X)

h(Y ) ≥ h(X) h(Y )→ h(X)

h(Y |X) ≥ h(Y ∪ Z|X ∪ Z) h(Y |X)→ h(Y ∪ Z|X ∪ Z)

Theorem
There is a proof sequence for every Shannon-flow inequality.
The length is data-independent.
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Proof Steps As Relational Operators
Shannon-flow inequality:∑

B∈B
λB · h(B) ≤

∑
(X,Y,NY |X)

δY |X · h(Y |X)

Proof sequence,
Steps (X ⊆ Y ) Relational Operator

h(X) + h(Y |X)→ h(Y )

(join)

h(Y )→ h(X) + h(Y |X)

(data partition)

h(Y )→ h(X)

(projection)

h(Y |X)→ h(Y ∪ Z|X ∪ Z)

(NOP)

Theorem
PANDA solves any disjunctive datalog rule P in time

Õ(N + poly(logN) · 2polymatroid bound for P )
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Example: P : T123 ∨ T234 ← R12 ∧R23 ∧R34 ∧R41.

|R12|, |R23|, |R34|, |R41| ≤ N

⇒ |P | ≤ N3/2

log |P | ≤ min(h(A1A2A3), h(A2A3A4)) (polymatroid bound)

≤ 1

2

(
h(A1A2A3) + h(A2A3A4)

)
(linearize)

≤ 1

2

(
h(A1A2) + h(A2A3) + h(A3A4)

)
(Shannon-flow)

≤ 3

2
logN (Cardinality constraints)

Proof sequence Proof Step

h(A1A2) + h(A2A3) + h(A3A4)
(
h(A3A4)→ h(A4|A3) + h(A3)

)
h(A1A2) + h(A2A3) + h(A4|A3) + h(A3)

(
h(A4|A3)→ h(A4|A2A3)

)
h(A1A2) + h(A2A3) + h(A4|A2A3) + h(A3)

(
h(A2A3) + h(A4|A2A3)→ h(A2A3A4)

)
h(A1A2) + h(A2A3A4) + h(A3)

(
h(A1A2)→ h(A1A2|A3)

)
h(A1A2|A3) + h(A2A3A4) + h(A3)

(
h(A1A2|A3) + h(A3)→ h(A1A2A3)

)
h(A1A2A3) + h(A2A3A4)
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)
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(h)
3 (A3)→ T123(A1, A2, A3)

)



Example: P : T123 ∨ T234 ← R12 ∧R23 ∧R34 ∧R41.
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Roadmap

Given degree constraints DC and a disjunctive datalog rule

P :
∨
B∈B

TB ←
∧
F∈E

RF

Answer (Worst-case Output Size Bound)

Polymatroid bound max
D|=DC

log |P (D)| ≤ max
h∈Γn∩HDC

min
B∈B

h(B)

Answer (Algorithm)

PANDA computes a model for P within Õ(2polymatroid bound)

Question (Gathering fruits)

Plug bound/algorithm into Meta Algorithm, what do we get?



Option 1: Full Conjunctive Query

Database D

Full conjunctive query

Qi Qi(D)∧
F∈E

RF

Output

AnswerT[n]
iTime oTime

Qo

iTime = max
D|=DC

|Qi(D)| ≤ max
h∈Γn∩HDC

2h([n]) = PANDA’s runtime

PANDA is worst-case optimal whenever the polymatroid
bound is tight!



Option 2: A Single Tree Decomposition

Let (T , χ) be a tree decomposition ofH to be chosen later

Database D

Multiple Conjunctive Rules

Qi Qi(D)∧
F∈E

RF

Output

Answer

∧
v∈V (T )

Tχ(v)
iTime oTime

Qo

iTime = max
D|=DC

|Qi(D)| ≤ max
D|=DC

max
v∈V (T )

|Pv(D)|

≤ 2maxv∈V (T ) maxh∈Γn∩DC h(χ(v)) = PANDA’s runtime

Pick the best (T , χ) before running PANDA:

min
(T ,χ)

max
v∈V (T )

max
h∈Γn∩CC

h(χ(v)) ≤ logN · fhtw(Q)

PANDA evaluates Q within Õ(N fhtw(Q))-time.



Option 3: Multiple Tree Decompositions

Database D

Multiple Disjunctive Datalog Rules!

Qi Qi(D)∧
F∈E

RF

Output

Answer

∧
B

∨
B∈B

TBiTime oTime

Qo

log iTime = max
D|=DC

log |Qi(D)| ≤ max
D|=DC

max
B

log |PB(D)|

≤ max
B

max
h∈Γn∩HDC

min
B∈B

h(B) = max
h∈Γn∩HDC

max
B

min
B∈B

h(B)

= max
h∈Γn∩HDC

max
(T ,χ)

min
v∈V (T )

h(χ(v)) = log(PANDA’s runtime)

max
h∈Γn∩HDC

max
(T ,χ)

min
v∈V (T )

h(χ(v)) ≤ logN · subw(Q)

PANDA evaluates Q within Õ(N subw(Q))-time.



Quantities of Interests

I X ∈ {Γ∗n,Γn,SAn}
I Y ∈ {HDC,HFD,HCC, logN · ED, logN · VD}

Define

LogSizeBoundX∩Y (P )
def
= max

h∈X∩Y
min
B∈B

h(B)

MinimaxwidthX∩Y (Q)
def
= min

(T ,χ)
max
v∈V (T )

max
h∈X∩Y

h(χ(v)),

MaximinwidthX∩Y (Q)
def
= max

h∈X∩Y
min
(T ,χ)

max
v∈V (T )

h(χ(v)).



Summary of Bounds

X

Y

Z

Γ
∗
n

Γn

SAn

HDC
HCC

ED · logN
VD · logN

Lo
gS
ize
Bo
un
d X
∩Y

(Q
)

log2 VB(Q)

log2 VB(Q)

log2 VB(Q)

ρ(Q) · log2 N

ρ∗(Q) · log2 N

ρ∗(Q) · log2 N

ρ(Q, (NF )F∈E )

log2 AGM(Q)

log2 AGM(Q)
DAPB(Q)

DAEB(Q)

M
ini
m
ax
wi
dt
hX
∩Y

(Q
)

tw(Q) + 1

tw(Q) + 1

tw(Q) + 1

ghtw(Q)

fhtw(Q)

fhtw(Q)da-fhtw(Q)

eda-fhtw(Q)

M
ax
im
inw

idt
hX
∩Y

(Q
)

tw(Q) + 1

tw(Q) + 1

tw(Q) + 1

ghtw(Q)

subw(Q)

da-subw(Q)

eda-subw(Q)



Many Open Questions

I Is the entropic bound computable under CC∪HDC or DC?

I Worst-case optimal algorithm for full conjunctive queries
under CC ∪ HDC or DC

I Worst-case optimal algorithm for disjunctive datalog
rules under CC ∪ HDC or DC

I Remove the annoying poly-log factor from PANDA

I Other choices for the propositional formula in the Meta
Algorithm, perhaps tradding off iTime and⊗?

I What about negations?
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I Worst-case optimal algorithm for full conjunctive queries
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Many Thanks!
Questions?
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Semantics of Our Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF )

A1 A3

A2

A4

R12 R23

R34R41

P123,234 : T123 ∨ T234 ← R12 ∧R23 ∧R34 ∧R41.

A1 A2

a 1
b 1
b 2

A2 A3

1 c
1 d
2 c

A3 A4

c 3
d 4
d 5

A4 A1

3 b
4 a
4 b

A1 A2 A3 A4

a 1 d 4
b 1 c 3
b 1 d 4
b 2 c 3

A1 A2 A3

b 1 c
b 2 c

A2 A3 A4

1 d 4
1 c 3
2 d 4
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Inclusive Disjunction



Semantics of Our Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
∧
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RF (AF )
A1 A3

A2

A4

R12 R23

R34R41

P123,234 : T123 ∨ T234 ← R12 ∧R23 ∧R34 ∧R41.

A1 A2

a 1
b 1
b 2

A2 A3

1 c
1 d
2 c

A3 A4

c 3
d 4
d 5

A4 A1

3 b
4 a
4 b

A1 A2 A3 A4

a 1 d 4
b 1 c 3
b 1 d 4
b 2 c 3

A1 A2 A3

b 1 c
b 2 c

A2 A3 A4

1 d 4
1 c 3
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No minimal model requirement
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P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF )
A1 A3
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1 c
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a 1 d 4
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1 d 4
1 c 3
2 d 4

Model size is max(|T123|, |T234|) = 3



Semantics of Our Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
∧
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RF (AF )
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1 c
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b 2 c

A2 A3 A4

1 d 4
1 c 3
2 d 4

Output size is the minimum over all models



Semantics of Our Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
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F∈E

RF (AF )
A1 A3
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R12 R23
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A1 A2

a 1
b 1
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A2 A3

1 c
1 d
2 c

A3 A4

c 3
d 4
d 5

A4 A1

3 b
4 a
4 b

A1 A2 A3 A4

a 1 d 4
b 1 c 3
b 1 d 4
b 2 c 3

A1 A2 A3

b 1 c
b 2 c

A2 A3 A4

1 d 4

A minimum-sized model of size 2



Semantics of Our Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF )
A1 A3

A2
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R12 R23

R34R41
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1 c
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3 b
4 a
4 b

A1 A2 A3 A4

a 1 d 4
b 1 c 3
b 1 d 4
b 2 c 3

A1 A2 A3

b 1 c
b 2 c

A2 A3 A4

1 d 4

A minimum-sized model of size 2
Hence, the output size is 2



Output Size of a Disjunctive Datalog Rule

P :
∨
B∈B

TB(AB)←
∧
F∈E

RF (AF )

|P (D)| def
= min

T:T|=P
max
B∈B
|TB|

A1 A3

A2

A4

R12 R23

R34R41

CC : |R12| ≤ N, |R23| ≤ N, |R34| ≤ N, |R41| ≤ N.

I P123,234 : T123 ∨ T234 ← R12 ∧ R23 ∧ R34 ∧ R41.

max
D|=CC

|P123,234(D)| ≤ N3/2

I P ′ : T123 ← R12 ∧ R23 ∧ R34 ∧ R41.

|P ′(D)| = N2 , for some D

Using Option 3, 4-cycle query answerable in Õ(N3/2)-time,
matching [Alon, Yuster, Zwick’97]
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A1 A3

A2

A4

R12 R23

R34R41

CC : |R12| ≤ N, |R23| ≤ N, |R34| ≤ N, |R41| ≤ N.

I P123,234 : T123 ∨ T234 ← R12 ∧ R23 ∧ R34 ∧ R41.

max
D|=CC

|P123,234(D)| ≤ N3/2

I P ′ : T123 ← R12 ∧ R23 ∧ R34 ∧ R41.

|P ′(D)| = N2 , for some D

Using Option 3, 4-cycle query answerable in Õ(N3/2)-time,
matching [Alon, Yuster, Zwick’97]



Polymatroid Bound: Examples

Q(A1, A2, A3, A4)← R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

A1 A3

A2

A4

R12 R23

R34R41

I |R12|, |R23|, |R34|, |R41| ≤ N |Q| ≤ N2

log |Q| = h(A1A2A3A4) ≤ h(A1A2) + h(A3A4) ≤ 2 logN

I deg12(A1A2|A1),deg12(A1A2|A2) ≤ D |Q| ≤ D ·N3/2

2 log |Q| = 2h(A1A2A3A4)

≤ h(A2A3) + h(A3A4) + h(A4A1) + h(A2|A1) + h(A1|A2)

≤ 3 logN + 2 logD

I A1 → A2, A2 → A1 |Q| ≤ N3/2
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Polymatroid Bound is not tight!

Proof Strategy

I Take a non-Shannon inequality (modified from
[Zhang-Yeung’98])
11h(ABXY C) ≤ 3h(XY ) + 3h(AX) + 3h(AY ) + h(BX)

+ h(BY ) + 5h(C) + h(ABXY C|AB) + h(ABXY C|AC)

+ 4h(ABXY C|AXY ) + h(ABXY C|BXY )

+ 2h(ABXY C|XC) + 2h(ABXY C|Y C) (3)

I Construct a query Q where (3) gives the (entropic) bound

11 log |Q| = 11h(ABXY C) ≤ 11 logN3 + 5 logN2 = 43 logN

I Construct a polymatroid h satisfying Q’s constraints such that

11h(ABXY C) = 44 logN
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Beyond Worst-case Optimality

I Output-sensitive algorithms

Õ
(

Nd + |output|
)

Intrinsic Cost Output Cost

I Submodular width as a candidate for d [Marx JACM’13]

FPT ⇔ Bounded subw(Q)

Boolean Q ⇒ Õ
(
N

subw(Q) ×c )
I Our goals

Any Q ⇒ Õ
(
N

da- subw(Q) ×1
+ |output|

)
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(
N

da- subw(Q) ×1
+ |output|

)



Beyond Worst-case Optimality

I Output-sensitive algorithms

Õ
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Submodular Width

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t))

= min
(T,χ)

max
t∈V (T )

max
h∈ED∩Γn

h(χ(t))

= min
(T,χ)

max
h∈ED∩Γn

max
t∈V (T )

h(χ(t))

subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

subw(Q) ≤ fhtw(Q)
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