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A Query Evaluation Problem

» Hypergraph H = ([n], ), £ C 2"
» Attribute A4;, 1 € [n], Ay .= {AJ |] S J}, J C [n]
» Relation Rp(Ap) foreach F' € €&, Ry for short

> e.g. R123 for R123(A1, AQ, Ag)
> e.8. Tos for T25(A2, A5)

Problem (Boolean Conjunctive Query (BCQ))

Q: S+ /\ Rp , /lcanall Rr be satisfied at once?
Fe&

Question
How do we evaluate Q) efficiently?

Conjunctive, count, aggregate queries are fine too.
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What do we mean by “efficiency”?

Database centric complexity framework
» Assumption 1: query size < data size

» Data complexity
» Fixed parameter tractability (e.g. parameter = some
function of query size)

O(something) = O (f(|query]|) - polylog(|datal) - something)

» Assumption 2: known constraints on input relations

» Cardinalities of materialized relations,  or upper bounds
» cardinality constraints (CC)

» Functional dependencies, the more the merrier
» FD constraints (FDC)
» Degree bounds, the more the merrier

> Degree constraints (DC)
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Example

Q : S() < Ris A Ros AN Ry A Ryq

NAL+ Ay = As.
R4 R34
H = ([4],{12,23,34,14,123}) 08
A | Ay Ay | A Az | As Ay | Ay
2 1 1 c C 3 3 2
4 1 1 d d 4 4 4
4 2 2 c d 5 4 5
5 2 e 6
e 7

» Cardinalities: |R12| =4, |Ra3| =3, ...
» ED: {Al,AQ} — Ag, {Ag,AQ} — Ay, ...

def

» Degree Bounds: degs, (A4]A3 = 2) = [04,—(R34)| <2, Vo, ...



Degree- generalize cardinality- and FD-constraints

DC D CCUFDC

» Degree Constraints (DC):

degF(Ay’Ax)ﬁNnX, XCcCYCFe&



Degree- generalize cardinality- and FD-constraints

DC D CCUFDC

» Degree Constraints (DC):

degF(Ay|Ax) SNY|X7 XCYCFe€

» Cardinality Constraints (CC):

|Rp| < N & degp(Ap|Ag) < Npp & N.



Degree- generalize cardinality- and FD-constraints

DC D CCUFDC

» Degree Constraints (DC):

degF(Ay|Ax) < NY|X7 XCYCFe€

» Cardinality Constraints (CC):

|Rp| < N degp(Ap|Ag) < Npjp < N.

» Functional Dependencies (FDC):

Ax - Ay & degF(Ay‘Ax> < NY\X déf 1.
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Islands of tractability (redrawn from D. Marx’s slides)

Prior results with cardinality constraints

not FPT

Bounded

submodular width

Bounded fractional
hypertree width

Bounded
(generalized)
Hypertree Width

Bounded
fractional
edge cover number

Bounded
Treewidth

We want the same map with degree constraints.
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A Meta Algorithm (i.e. Meta Query Plan)

Datalog rule
Database D Qi Qi(D) Qo
. A propositional .
/\ Rr iTime formula on oTime
Feg relations Tj, j € J

|

|

| ~

! overall time = O(|input| + iTime + oTime)

(a) oTime = |Q;(D)| + |answer]|
» i.e. Q, evaluatable in linear time

(b) |T|me:£a§C|Qi(D)|

» i.e. ); evaluatable within its worst-case output size

» Design Q); s.t. (a) holds and (b) as small as possible

Output

Answer
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Option 1: Full Conjunctive Query

Full conjunctive query

Database D Qi Q:(D) Qo Output
/\ Rp iTime T oTime Answer
Fee

» oTime = |Q;(D)| + |answer| trivially true
> iTime = ]ﬁagc |Qi(D)] worst-case optimal algorithm

» Known if all DC are cardinality constraints
» NPRR [Ngo, Porat, Ré, Rudra PODS’12]
» Leapfrog-Triejoin [Veldhuizen ICDT’14]
» Generic Join [Ngo, Ré, Rudra SIGMOD Records 2013]

» Unknown for general DC until our work
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Detour: Tree Decompositions, Informally

S() « R(a,b,d) Ne <dAT(c,b,d) NU(b,e) ANV (c,e)
ANb+e=fAW(be,g) N NX(i,j,h) Ne —b=k.

» Every relation is covered by some bag
» Bags conntaining a given variable are connected
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Detour: Tree Decompositions, Formally

» Hypergraph H = ([n], &)
» A Tree Decomposition of A is a pair (7, x) where
» T =(V(T),E(T))isatree
» x : V(T) — 2[" assigns a bag x(v) to each tree-node v
» Every hyperedge F' € € is covered by some bag (F' C x(v))
» Bags containing Vi € [n]| forms a subtree

See [Gottlob et al 2016], Gems of PODS.
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» Yannakakis for join, FDB/InsideOut for aggregates
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Option 2: A Single Tree Decomposition

Fix (T, x)
Multiple Conjunctive Rules
Database D Qi Q:(D) Qo Output
/\ Rp iTime /\ Ty 0) oTime Answer
Fe€& veV(T)
» Q;(D) is Olteanu’s factorized database (FDB)
» oTime = |Q;(D)]| + |answer|
» Yannakakis for join, FDB/InsideOut for aggregates
» iTime = max |@;(D)| < max max |P,(D
DEDC Q:i(D)] < D|:DCveV(T)| »(D)|
> PU : TX(’U) <— /\ RF v e V(T)

Fe&



Option 2: A Single Tree Decomposition

Fix (T, x)
Multiple Conjunctive Rules
Database D Qi Q:(D) Qo Output
/\ Rp iTime /\ Ty 0) oTime Answer
Fe& veV(T)
» Q;(D) is Olteanu’s factorized database (FDB)
» oTime = |Q;(D)]| + |answer|
» Yannakakis for join, FDB/InsideOut for aggregates
> iTime = max < max max |FP,(D
. |Q(D)] < max. max | (D)
> Py Ty /\ Rrp veV(T)

Fe&

min max max |P,(D)| < Nt < yehtw(H) < ntw(H)+1
(T,x) DE=CCveV (T)
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Option 3: Multiple Tree Decompositions

How to evaluate this?

Database D @ Qi(D) Qo Output
/\ Rp iTime \/ /\ Ty () oTime Answer
Fe€ (T x) veV(T)

> \/ ranges over non-redundant TDs (7, x)
» oTime = |Q;(D)| + |answer|
» Union of Yannakakis on all TDs

> iTime = (D) < 2
iTime Sr‘lzagle,( )| <
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Example: Q : S() — R12 N R23 VAN R34 N\ R41

(To3 N Ti34) V (Th2a A To34) < Ri2 A Rag A R3q A\ Ryy

By distributivity, rewrite an equivalent the head:

(Th23 V Tig4) A (Th23 V To34) A (Ti34 V Th24) A (T34 V Tza)
< Rias N Rag AN R3g N\ Ryq

(Each “clause” has one bag per TD)
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Option 3: Multiple Tree Decompositions

Multiple Disjunctive Datalog Rules!

Database D Qi Q:(D) Qo Output
/\ Ry iTime /\ \/ Ts oTime Answer
Fe€ B BeB

» oTime = |Q;(D)| + |answer]|
» Union of Yannakakis on all TDs
iTi o |Qi(D)] < max max |Pp(D)|

» Pg: \/ Tg + /\ Rr disjunctive datalog rule
BeB Fe€

max max |Pg(D)| < Nsubw(H) < pyfhew ()
DECC B

subw = submodular width (Daniel Marx, JACM’2013)
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Option 1:

Qi : T34 <= Ri2 A Rag N\ R3g N\ Rap
Option 2:
either Q; : Tio3 NT134 < Ri9 A Rog A R3g N\ Ry
orQ; : Tho4 N'To34 <= Ria A\ Ro3 A R3q N\ Ryy
Option 3:
Qi : (T23 A T134) V (Th2a A Toza) < Ria A Rag A R3q A\ Ray

Equivalent to:

P123,124 : Ty23 V Ti24 < Ri2 A R23 A R3q A Rq1
P123,234 ¢ Th23 V T234 < Ri2 A R23 A R3q A Rax
Pi34,124 ¢ T134 V Ti24 < R12 A Raz A R34 AN Ray

P134,234 : Ty34 V T234 < Ri12 A Ra3 A R3q A Ryq1
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Example: Q : S() < ng VAN R23 AN R34 N R41

Option 1: iTime = mz¢ (D)| = N?
p iTime Sr‘lzwglez( )|
Qi : T34 <= Ri2 A Rag N\ R3g N\ Rap
Option 2: iTime = m: (D)| = N?
p iTime S@S{c‘@( )|
either Q; : Tho3 ANTi34 < Rio A Rog A R3q N Ry
orQ; : Tho4 N'To34 <= Ria A\ Ro3 A R3q N\ Ryy
Option 3: iTime = (D)| = N3/2
p iTime iagc‘@( )|
Qi : (T23 A T134) V (Th2a A Toza) < Ria A Rag A R3q A\ Ray

Equivalent to:

P123,124 : Ty23 V Ti24 < Ri2 A R23 A R3q A Rq1
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Roadmap

Given degree constraints DC, and a disjunctive datalog rule

P \/TB<—/\RF

BeB Fe&

Question (Worst-case Output Size Bound)
Fi - P(D
ind a good upper-bound for [I)I'lzag(c’ (D)

Question (Algorithm)
Design an algorithm evaluating P within the bound.

Question (Gathering fruits)
Plug bound/algorithm into Meta Algorithm, what do we get?

4




Table of Contents

Output Size Bounds and Information Theory



High-level View of the Bound

Given degree constraints DC, a disjunctive datalog rule

P \/TB<—/\RF

BeB Feg

We shall prove bounds of the form
max log |P(D)| < some function of
DEDC
s.t. h is (approximately) entropic
and h satisfies degree constraints
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Q(A1, Az, A3, Ay) < Ri2 A Roz A R3a A Rys.

Ay Ao As Ay
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Hynie(A1A2) <log|Ri2|, Hynif(A2A43) <log|Ra3|, Hunif(AzA4) < log|Rszal,

Hynif(A2| A1 = @) <log|oa, —aRi2|, Hunif(A2|A1 = D) <log o, Rz ...
Hunif(A2| A1) < log max |oa, = Ri2|

—_—

degp,, (A2|A1)
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> Q : Tjyy /\ Rp, and degree constraints DC
Fe&

> ];?:as(c log |Q(D)| < sup h([n])

» subject to (whatever H,,;¢ satisfies):
» his Entropic
» There is some distribution on A, such that h(X) is the
marginal entropy on A x, for all X
» h satisfies DC
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Entropic Bound for Full Conjunctive Queries

v

Q : Ty /\ Rp, and degree constraints DC
Fe&

max log [Q(D)] < suph([n]

v

v

subject to (whatever H,,;¢ satisfies):
» his Entropic
» There is some distribution on A, such that h(X) is the
marginal entropy on A x, for all X
» h satisfies DC

> W(Y|X) € h(Y)—n(X) <logNyx, XCYCFe&

v

Good Bound, but not computable!



Hierarchy of Set Functions

/ h : 2"l - R, non-negative, monotone, h(#)) = 0 \

WX)<h(Y)ifX CY

-~

SA,, := {h | his sub-additive}
(X UY)<h(X)+h(Y)

~

p

I, :={h|his submodular}
MXUY)+h(XNY)<h(X)+h(Y)

-

N

T, : topological closure of I'*

I';, = {h : his entropic}

M, : Modular

h(X) =7 h(z)

TET

~

~




Bounds for Full Conjunctive Query

def ’

» HDC < {n h(Y|X) <log Nyx, Y(X,Y,Nyx)}



Bounds for Full Conjunctive Query

» HDC Y {h | W(Y|X) <logNyx, Y(X,Y,Nyx)}

» Then,
max log |Q(D)| < max h([n]) entropic bound
DEDC heT,,NHDC

- .
< e h([n])  polymatroid bound

< max h([n]) sub-additive bound.
heSA,NHDC



Size Bounds for Full Conjunctive Queries

Bound Entropic Bound Polymatroid Bound

Definiti 1 < h 1 < h
ehnition o8|l = he%r*nl?l)jDC ([n)) | log @I < helr“ri%ﬁoc (In])




Size Bounds for Full Conjunctive Queries

Bound Entropic Bound Polymatroid Bound

Definiti lo < max h(|n lo < max_ h(|n
cfnivon | log|Q < max h([n]) | log|Ql <, max h(ln])
CC only AGM bound (Tight) AGM bound (Tight)

[Atserias et al. FOCS’08]

[Atserias et al. FOCS’08]
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Size Bounds for Full Conjunctive Queries

Bound Entropic Bound Polymatroid Bound
Definition | lo < max h(n]) | lo < max_ h(n
5101 < max h(n)) | log|Ql < ma A(ln)
CConl AGM bound (Tight) AGM bound (Tight)
v [Atserias et al. FOCS’08] [Atserias et al. FOCS’08]
Entropic Bound for FD Polymatroid Bound for FD
CC + FD only [Gottlob et al. JACM’12] [Gottlob et al. JACM’12]
(Tight [Gogacz et al. ICDT’17]) (Not tight [our work] )
DC Entropic Bound for DC Polymatroid Bound for DC

(Tight [our work] )

(Not tight [our work] )




Disjunctive Datalog: Size Bounds

P\ To(Ap) = A\ Re(Ar)  [PD) ™ win o 75
BeB Fe&

Theorem ( our work )

max log|P(D)| < max minh(B) Tight
DEDC hel; NHDC BEB
Entrop;gbound
<  max minh(B) Not Tight
hel',NHDC BeB

J/

Polymatroid bound

Imply all known bounds for (Full) Conjunctive Queries!



Earlier Example

P: \/ TB(AB) — /\ RF(AF)
BeB Feg
def .
PD)| = T
PO i, e 175l

CC: |Riof <N, [Ro3| <N, |Rau| <N, [Ryu|<N.

Piaz 234 Tio3 V To34 + Riag AN Raz3 AN Rags N Ry



Earlier Example

P: \/ TB(AB) — /\ RF(AF)

BeB Fe&
P(D)| Y min max|Ts|
T:TEP BeB

CC: |Ri2|] <N, |Ra3| <N, |Rssl <N, |Ry|<N.

P123,234 Tio3 V To34 + Riag AN Raz3 AN Rags N Ry

]51‘13(}:((: log |P123’234 (D)| S herlr“l,?%(CC min{h(AlAgAg), h(A2A3A4)}

1
< —
=~ heIIr‘l,?r)W{CC 5 [h(AlAQAg), h(A2A3A4)]

1
~ hEIFSF}W(CC i[h(A1A2) + h(AgAg) + h(A3A4)]
< %log N.



Table of Contents

Shannon-flow Inequalities and the PANDA Algorithm



Roadmap

Given degree constraints DC and a disjunctive datalog rule

P: \/Ts+ M Rr

BeB Freg

Answer (Worst-case Output Size Bound)

z : _ . '
rr)?:agc log |P(D)| < ot i h(B) = polymatroid bound

Question (Algorithm)

Compute a model for P within O (2P°lymairoid boundy

Question (Gathering fruits)
Plug bound/algorithm into Meta Algorithm, what do we get?

v
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Lemma (Linearize it)

There exists non-negative A\ = (A\g)peB, With || A||1 = 1, s.L.
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Connection to Shannon-flow Inequalities

Lemma (Linearize it)

There exists non-negative A = (Ap)pep, With | A1 = 1, s.t.

max min h(B) = max Z Ap h(B
hel’',NHDC BeB hEFnﬂHDC

1)

Lemma (Shannon-flow inequality)

; polymatroid bound __ Sy |x
There exists > 0 s.t. 2 = H NY|X
(X,Y,Ny|x)

Y Ap-h(B)< > dyix - h(Y]X), VhET,

BeB (X,Y,Ny|x)

, and

2)

(2) is a (vast) generalization of Shearer’s lemma




PANDA (Proof-Assisted eNtropic Degree-Aware)

» What?

» Compute a model for our disjunctive datalog rule
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PANDA (Proof-Assisted eNtropic Degree-Aware)

» What?
» Compute a model for our disjunctive datalog rule

> Run within O (gremateidbound) _ G - TT - Ny ) :
(X,Y,Ny|x)
» How? Proof as symbolic instructions

» Construct a Proof Sequence for the corresponding
Shannon-flow inequality
» Proof steps — relational operators.



Proof sequence

Shannon-flow inequality: h(Y|X) o h(Y)—h(X), X CY
S Ap-h(B)S > byix - h(Y]X)
BeB (X,Y,Ny|x)

Proof sequence, convert RHS to LHS using following steps

(In)equality Steps (X CY)
h(X)+h(Y|X)=h(Y) hX)+h(Y|X) — h(Y)
h(Y) = h(X) + h(Y]X) h(Y) = h(X) + h(Y]X)
h(Y) = h(X) h(Y) = h(X)
Y| X)>h(YUZIXUZ) hY|X)—=h(YUZIXUZ)



Proof sequence
def

Shannon-flow inequality: h(Y|X)=hY)-h(X),XCY
S Ap-h(B)S > byix - h(Y]X)
BeB (X,Y,Ny|x)

Proof sequence, convert RHS to LHS using following steps

(In)equality Steps (X CY)
h(X)+h(Y|X)=h(Y) hX)+h(Y|X) — h(Y)
h(Y) = h(X) + h(Y]X) h(Y) = h(X) + h(Y]X)
h(Y) = h(X) h(Y) = h(X)
Y| X)>h(YUZIXUZ) hY|X)—=h(YUZIXUZ)

Theorem

There is a proof sequence for every Shannon-flow inequality.
The length is data-independent.




Proof Steps As Relational Operators

Shannon-flow inequality:

S Ap-h(B)< D> byx - h(Y]X)

BeB (X,Y,Ny|x)
Proof sequence,
Steps (X CY) Relational Operator
hX) + h(Y]X) = h(Y)
B(Y) = h(X) + h(Y]X)
hY) = h(X)
LY|X)—=h(YUZIXUZ)
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S Ap-h(B)< D> byx - h(Y]X)

BeB (X,Y,Ny|x)
Proof sequence,
Steps (X CY) Relational Operator
h(X)+ h(Y|X) = h(Y) (join)
B(Y) = h(X) + h(Y]X)
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LY|X)—=h(YUZIXUZ)
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Proof Steps As Relational Operators

Shannon-flow inequality:

S Ap-h(B)< D> byx - h(Y]X)

BeB (X,Y,Ny|x)
Proof sequence,
Steps (X CY) Relational Operator
h(X)+ h(Y|X) = h(Y) (join)

h(Y) = h(X) + h(Y|X) (data partition)
h(Y) — h(X) (projection)
LY|X)—=h(YUZIXUZ)



Proof Steps As Relational Operators

Shannon-flow inequality:

S Ap-h(B)< D> byx - h(Y]X)

BeB (X,Y,Ny|x)
Proof sequence,
Steps (X CY) Relational Operator
h(X)+ h(Y|X) = h(Y) (join)

h(Y) = h(X) + h(Y|X) (data partition)
h(Y) — h(X) (projection)
hY|X) = k(Y U Z|X U Z) (NOP)



Proof Steps As Relational Operators

Shannon-flow inequality:

S Ap-h(B)< D> byx - h(Y]X)

BeB (X,Y,Ny|x)
Proof sequence,
Steps (X CY) Relational Operator
h(X) + h(Y|X) = h(Y) (join)
h(Y) = h(X) + h(Y|X) (data partition)
h(Y) — h(X) (projection)
MY |X) = h(Y U Z|XUZ) (NOP)
Theorem

PANDA solves any disjunctive datalog rule P in time
O(N + poly(log N) . 2polymatroid boundforP)
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Example: P Ti93V T34 < Riog N\ Rog A\ R3y N\ Ry;.
|Rizl, |Rogl, [Raal, |[Run| < N = |P| < N*?
log |P| < min(h(A41A2A43), h(A2A3A4)) (polymatroid bound)
< %(h(AlAzAg) + h(A3A3A4)) (linearize)
(R(A1A2) + h(A2A43) 4+ h(A3Ay)) (Shannon-flow)

<

< -logN (Cardinality constraints)

N W N~

Proof sequence Proof Step
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log |P| < min(h(A41A2A43), h(A2A3A4)) (polymatroid bound)
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|Rial, |Rasl, |Raa|, |Ru| < N = |P| < N%2

log |P| < min(h(A41A2A43), h(A2A3A4)) (polymatroid bound)
< %(h(AlAzAZ%) + h(Az243A4)) (linearize)
1
5( (A1A2) + h(A2A3) + h(A3Ay)) (Shannon-flow)
g log N (Cardinality constraints)
Proof sequence Proof Step
h(AlAQ) + h(AQAg) + h(A3A4) ( (A3A4) — h(A4‘A3) —+ h(Ag))
h(AlAQ)+h(/\2/\3)—|—h,(A4|A3)+h(A3) (h(A4|A3 — h( 1|‘ A A3) )
h(AlAz) -+ ’Z(AQA:;) -+ /L(r\ 1‘/—\243) -+ h(Ag) (h(AQAg + h(- ‘ Ao —‘; 4) h(A2A3A4))
h,(AlAQ) + }I/(A2A3A4) + }L(Ag) (h(AlAQ — h(AlA2|A3))

}L(A1A2|A3) + }1<A2A3A4) —+ h(Ag)



Example: P Ti93V T34 < Riog N\ Rog A\ R3y N\ Ry;.
|Rial, |Rasl, |Raa|, |Ru| < N = |P| < N%2

log |P| < min(h(A41A2A43), h(A2A3A4)) (polymatroid bound)
(R(A1A2A3) + h(AzA3Ay)) (linearize)

(R(A1A2) + h(A2A43) 4+ h(A3Ay)) (Shannon-flow)

OOL\DI)—ll\DI'—‘

—log N (Cardinality constraints)

[\V]

Proof sequence Proof Step
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h(A1A2|A3) + h(A2A3A4) + h(A3) (h(A1A2|As) + h(A3) = h(A1A2A3))
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3 (R(A1A2A3) + h(AzA3Ay)) (linearize)
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|Ri2|,|Ras|, | Raa|, |Rs1| <N = |P| < N3?

h(AsAs) — h(A4|As) + h(As)
h(Aa|As) — h(As|A2As)

h(A2As) + h(As| A2 As) — h(A2A3Ay)
h(A1As) — h(A1As|A3)

h(A]AQlAg) + h(Ag) — h(AlAgAg)
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Example: P Ti93V T34 < Riog N\ Rog A\ R3y N\ Ry;.
|Ri2|,|Ras|, | Raa|, |Rs1| <N = |P| < N3?

h(A3A4) — h(A4]A3) + h(A3) R34(Asz, Ay) — Réi)(A:i,Azl),Rgh) (As)
h(A4|A3) = h(A4|AsAs) R{)(As, As) = R{) (A3, As)

h(A2Ag) + h(As| A2 As) — h(AzA3As)  Ras(As, As) M RY) (A3, Ag) = Taga(As, As, As)
h(A1Az) — h(A1A2|As) Ri2(A1, Ag) — Rio(Ay, As)

h(A1A2|A3) + h(Ag) — h(AlAgAg) RIQ(AI,AQ) X Réh)(Ag,) N T123(A1,A2,A3)
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Roadmap

Given degree constraints DC and a disjunctive datalog rule

P \/ Tg /\.RF

BeB Feg

Answer (Worst-case Output Size Bound)

Polymatroid bound log |P(D)| < in h(B
olymatroid bound max og | P( ”‘h&%gﬁoc?eusl (B)

| —n—
A\

Answer (Algorithm)

PANDA computes a model for P within O (2Plymatroid bound)

Question (Gathering fruits)
Plug bound|/algorithm into Meta Algorithm, what do we get?

v




Option 1: Full Conjunctive Query

Full conjunctive query

Database D Qi Qi(D) Qo Output
/\ Rp iTime T oTime Answer
Feg

iTime = max |Q;(D)] < max 2" — PANDA’s runtime
DEDC heT,,NHDC

PANDA is worst-case optimal whenever the polymatroid
bound is tight!



Option 2: A Single Tree Decomposition

Let (T, x) be a tree decomposition of H to be chosen later

Multiple Conjunctive Rules

Database D Qi Q:(D) Qo Output
/\ Rp iTime /\ Ty w) oTime Answer
Feg veV(T)

iTime = < P,(D
Time = max |Q:(D))| s max [P, (D)
< 9QmaXy ey (T) MaXperyNDC h(x(v)) = PANDA’s runtime
Pick the best (7, x) before running PANDA:

i h <log N - fht
fnin maanax Al (x(v)) < log w(Q)

PANDA evaluates Q within O(N(@))_time.



Option 3: Multiple Tree Decompositions

Multiple Disjunctive Datalog Rules!

Database D Qi Q:(D) Qo Output
/\ Rp iTime /\ \/ Ty oTime Answer
Fe€ B BeB

logiTime = ]:I)I'lzaS(C log |Q:(D)| < ]g?:asic mgxlog]PB(Dﬂ

<max max minh(B)= max maxminh(B)
B hel',NHDC BeB hel',NAHDC B BeB

= ax max min h(x(v)) = log(PANDA’s runtime)
hGFnﬂH DC (T ,x) veV(T)

h <log N - sub
hel“ng)ljoc %I%agvemvl(r%_) (x(v)) < log subw(Q)

PANDA evaluates Q within O(N*“*"(@))-time.



Quantities of Interests

» X e {T,,T,,SA.}
» Y € {HDC,HFD,HCC,log N - ED,log N - VD}
Define

LogSizeBound yy (P) aof max glilé h(B)
€XNY Be

Minimaxwidth xqy (Q) o (121;1) Ug‘l/a(};) ,nax h(x(v)),

Maximinwidth xqy (Q) def ,ax (?1;1) vér‘l/a&(_) h(x(v)).



Summary of Bounds

- HDC
DAEB(@)

CC
. H ED. log N7 VD .|
8y AGM(Q) p*(@) o log N .
2

r,
DAPB -
SA, @ log, AGM(¢p) i — .
P(Q) - log, v log, vp, ¢
| 2 VB(Q) S
- P(Q, (NF)FES) £(Q) “log, v Q’Oé\
()

log, vB (@)
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Many Open Questions

» Is the entropic bound computable under CC UHDC or DC?

» Worst-case optimal algorithm for full conjunctive queries
under CCUHDC or DC

» Worst-case optimal algorithm for disjunctive datalog
rules under CC U HDC or DC

» Remove the annoying poly-log factor from PANDA

» Other choices for the propositional formula in the Meta
Algorithm, perhaps tradding off iTime and ®?

» What about negations?



Many Thanks!
Questions?
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P
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P \/ TB(AB) A /\ RF(AF) Ry R34
BeB Fee t@,/

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry
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Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

Ay | As Ay | As As | Ag Ay | Ay
a 1 1 c [ 3 3 b
b 1 1 d d 4 4 a
b 2 2 C d 5 4 b

A | Ax | Az | Ay

a 1 d 4

b 1 [¢ 3

b 1 d 4

b 2 [¢ 3
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P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

Ay | A A | Az A3z | Ay Ay | A
a 1 1 c [ 3 3 b
b 1 1 d d 4 4 a
b 2 2 C d 5 4 b
A | Ax | Az | Ay Al | Ay | A3 Ay | Az | Ay
a 1 d 4 b 1 C 1 d 4
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b 1 d 4 2 d 4
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Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

Ay | A A | Az A3z | Ay Ay | A
a 1 1 c [ 3 3 b
b 1 1 d d 4 4 a
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Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

A | A Az | Az Az | Ay Ay | Ay

a 1 1 c [ 3 3 b

b 1 1 d d 4 4 a

b 2 2 C d 5 4 b

A | Ax | Az | Ay A | As | As Ay | Az | Aq

a 1 d 4 b 1 C 1 d 4

b 1 c 3 b 2 [¢ 1 c 3

b 1 d 4 2 d 4
b 2 [¢ 3 .. .

No minimal model requirement



Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

Ay | A A | Az A3z | Ay Ay | A
a 1 1 c [ 3 3 b
b 1 1 d d 4 4 a
b 2 2 C d 5 4 b
A | Ax | Az | Ay Al | Ay | A3 Ay | Az | Ay
a 1 d 4 b 1 C 1 d 4
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Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

A1 | 4z A5 | A3 A; | Az A, | A7
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b 1 1 d d 4 4 a
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A | Ay | A3 | Ay Al | Ay | A3 Ay | Az | Ay
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P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

A | Ao Ay | Az Az | Ay Ay | A
a 1 1 C C 3 3 b
b 1 1 d d 4 4 a
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Ay Ao Az | Ay Ay Ao As Ag As Ay
a 1 d 4 b 1 c 1 d 1
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Semantics of Our Disjunctive Datalog Rule

P: \/ TB(AB) < /\ RF(AF)
BeB Fe&

Pi93 234+ 1123V Th34 < Rio A Rog A\ R3q A\ Ry

A, | A As | As As | Ax A | A1

a 1 1 C C 3 3 b

b 1 1 d d 4 4 a

b 2 2 c d 5 4 b
Ay | Ax | Az | Ag Ay | Ax | Az Ay | Az | Ay
a 1 d 4 b 1 c 1 d 1

b 1 [¢ 3 b 2 [¢
b 1 d 4 .. . .
b 5 c 3 A minimum-sized model of size 2

Hence, the output size is 2
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Output Size of a Disjunctive Datalog Rule
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BeB Fe&

def .
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Output Size of a Disjunctive Datalog Rule

P \/ TB(AB) — /\ RF(AF)
BeB Fe&

def .
PD)| = T
PO i, e 17w

CC: |Ri2] €N, |Ras| <N, |R34l <N, |Ru|<N.

> Pi23934 Tio3 V T34 < Ria A Raz AN R3g N Ry

P, D)| < N3/2
lgljzaé(c| 123,234( )|_

| 2 P : Tio3 < Ris N Rag3 N R3s N Ry
|P'(D)| = N? , for some D

Using Option 3, 4-cycle query answerable in O(N*/?)-time,
matching [Alon, Yuster, Zwick'97]
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Polymatroid Bound: Examples

Q(Ala AQ; A37 A4) — RlQ(Ala AQ); R23(A27 A3)7
R34(As, Ag), Ry1(Ag, Ay).

> |Ria|,[Ros|, |Raal, |[Ru| < N

log |Q| = h(A1A2A3Ay) < h(A1A2) + h(A3Ay) < 2log N

> degyy(A1A2[A1),deg y(A1A2][A2) < D Q| < D- N2
2log|Q| = 2h(A1A2A3A4)
< h(A2A3) -+ h(A3A4) -+ ]L(A4A1) -+ h(AQ‘Al) + h(Al‘AQ)
< 3logN + 2log D

> A1—>A2, A2—>A1 |Q|SN3/2
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[Zhang-Yeung'98])
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+  h(BY) +5h(C) + h(ABXYC|AB) + h(ABXY C|AC)
+ 4h(ABXYC|AXY) +h(ABXYC|BXY)
+ 2h(ABXYC|XC)+ 2h(ABXYC|YC) ®3)
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Polymatroid Bound is not tight!

Proof Strategy

» Take a non-Shannon inequality (modified from
[Zhang-Yeung'98])
11R(ABXYC) < 3h(XY) 4 3h(AX) 4 3h(AY) + h(BX)
h(BY) 4 5h(C) + h(ABXY C|AB) + h(ABXY C|AC)
4h(ABXY C|AXY) + h(ABXYC|BXY)
2h(ABXY C|XC) + 2h(ABXYC|Y C) ®3)

+ + +

» Construct a query @ where (3) gives the (entropic) bound
11log|Q| = 11h(ABXYC) < 11log N® 4+ 5log N? = 43log N

» Construct a polymatroid & satisfying Q’s constraints such that
11h(ABXYC) = 44log N
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