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ABSTRACT

In this thesis, we present a bijective proof of the ¢g-Mehler formula. The proof is in the
same style as Foata’s proof of the Mehler formula. Since Foata’s proof was extended to
show the Kibble-Slepian formula, a very general multilinear extension of Mehler formula,
we hope that the proof provided in this thesis helps find some multilinear extension of the
g-Mehler formula.

The basic idea to obtain this proof comes from generalizing a result by Gessel. The
generalization leads to the notion of species on permutations and the g-generating series
for these species. The bijective proof is then obtained by applying this new exponential for-
mula to a certain type of species on permutations and a weight preserving bijection relating
this species to the g-Mehler formula. Some by-products of the g-exponential formula are

also derived.
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Chapter 1

I ntroduction

In this thesis, we present a bijective proof of the ¢g-Mehler formula. The proof is in the same
style as Foata’s proof of the Mehler formula. Since Foata’s proof was extended to show the
Kibble-Slepian formula, a very general multilinear extension of Mehler formula, we hope
that the proof provided in this thesis helps find a multilinear extension of the g-Mehler
formula.

The rest of the thesis is organized as follows. Section 1.1 introduces the Hermite poly-
nomials, the Mehler formula and its extensions. Section 1.2 presents a g-analogue of the
Mehler formula. Section 1.3 discusses the only known version of the g-exponential for-
mula, which is influential on the proof of the main result of the thesis. Chapter 2 contains
the Foata-style proof of the ¢-Mehler formula introduced earlier. Section 2.1 introduces
a variation of the g-Hermite polynomials, whose corresponding ¢-Mehler formula is to be
shown. Section 2.2 develops a new type of species on permutations, their generating se-
ries, and several nice consequences derived from this new species. Section 2.3 discusses a
g-analogue of the bicolored n-involutionary graphs and their properties. This g-analogue
also belongs to the new class of species introduced in Section 2.2, thus they satisfy certain
identity. Section 2.4 finishes the Foata-style proof of the ¢g-Mehler formula by bijectively
showing relations between the g-analogue of the bicolored n-involutionary graphs and the

new variation of the ¢g-Hermite polynomials. Lastly, Chapter 3 concludes the thesis and



1.1 The Mehler formula and its extensions 2
discusses related issues and future works arising from the thesis.

1.1 TheMehler formula and its extensions

Throughout this thesis, we use R[z] to denote the ring of polynomials in z on R, p,(z) a
polynomial in R[z] of degree n, and £ : R[z] — C a linear functional. We often think of
L(p(z)) as fabp(x)da(:v) for some non-decreasing function «(x) on the interval [a, b].

A sequence {p,(x)}22, is called an orthogonal polynomial sequence with respect to £

(or to the distribution da(x)) if for all m,n € N we have

E( m(x)pn(x)) = hpOmm, (1.1)

where h,, € C and §,,, is the Kronecker symbol. Relation (1.1) is often called the orthog-

onality relation of the sequence. In terms of the distribution da(x), it reads

b
/a P () pn(z)da(x) = hyyOpn - (1.2)
Obviously, not all linear functionals have an orthogonal polynomial sequence. Let
wn == L(z™), called the nth moment of £, then £ has an orthogonal polynomial sequence
iff none of the Hankel determinants for the sequence {u,, }22, vanishes.
For convenience, we often normalize the polynomials so that all of them are monic.
It is not difficult to show that any monic orthogonal polynomial sequence satisfies a three

term recurrence:

Pn+1 (37) = (37 - Cn)pn(x) - /\npnfl(x)a (13)

where po(z) = 1and p_;(z) = 0.
There are 5 classes of the so-called classical orthogonal polynomials (see [1, 5]), in-
cluding the Jacobi, the ultraspherical (or Gegenbauer), the Chebyshev, the Laguerre, and

the Hermite polynomials.
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Definition 1.1. The Hermite polynomials H,,(z) are the orthogonal polynomials with re-

spect to the normal distribution =%, They can be defined by

Hy(z) = (=1)"e"” d’;(;:Z | (1.4)
The orthogonality relation for the Hermite polynomials is
/00 H,(2)H,(z)e * dz = 2"n\\/T6mm, (1.5)
and the three term recurrence is
H,1(z) =22H,(z) — 2nH, (). (1.6)

The proofs of these relations involve the use of a very powerful tool: the exponential gen-
erating function, as illustrated below.

The fact that

2 1 o 2 o
e—x - e—t e?za:tdt
7l

can be used to repeatedly differentiate e=* n times, yielding
dre="  (24)"

dzn /7

It is now not difficult to find the exponential generating function for the sequence

{Hn(z) 170

—t2 tn621$tdt.

> Hla)y = f}(—l)”ewz’ (OF [~ evmea)

/ ot QZzt( ( 2irt)" )dt
— n!

/ ftz 2zt(w 'r)dt

e (@

7
T
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Hence,

3 Hilz)o =¥ (1.7)
0 n.

From (1.7), relations (1.5) and (1.6) can be readily verified.

Moreover, the right hand side of (1.7) “almost” looks like the exponential generating
function for some set of weighted combinatorial objects. It thus makes sense to first trans-
form H,(z) into an equivalent form, whose exponential generating function is also the ex-
ponential generating function for a simple set of weighted combinatorial objects. We then
hopefully could derive nice relations about H,,(x) from combinatorially studying these ob-
jects. This equivalent form, known as the normalized Hermite polynomials, is defined as

follows.

H,(z) := w (1.8)

Replacing (1.8) into (1.7), and let t = +/2r, we get the generating function for the
normalized Hermite polynomials:
— 7 t" Tt—t2/2
ZHn(I)—' =e . (1.9)
n.
n=0
Throughout this thesis, we shall use [1, n] to denote the set of integers from 1 to n. The
standard notation is [rn], but we do not use this to avoid confusion with [n], which is also
denoted by [n]. Let M, be the set of all matchings (not necessarily perfect) on [1, n]. For
each matching o € M,,, let F'(«) denote the number of fixed points, and |«| the number of

edges of a.. Also define the weight function w(«) for each o € M, by

w(a) = (—1)lelgF@) (1.10)
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with z being an indeterminate. Basically, each fixed point of « is weighted by = and each
edge of « is weighted by —1. Now, it is not difficult to see that
Hy(z) =) w(a) (1.11)
a€ My,
because the exponential generating function for both the left and the right hand side of
(1.11) is exp(2t — 2 /2). Due to this combinatorial interpretation, the H,,(z) are also called
the matching polynomials. The matching interpretation allows us to show combinatorially
many relations on the Hermite polynomials. Firstly, it allows us to easily write down a
formula for the H,,(z) polynomials:
~ n
H = - —3)...1)(=1)kgm %, :
n(@)= ) (%) ((2k — 1)(2k — 3)...1) (- 1)fz (1.12)
0<k<n/2
Secondly, the well known Mehler formula:
1 2ty — t*(2° +y°)
————€eXDp
V1— 12 2(1 —1¢?)

could now also be proved combinatorially (see Foata [6]). For a discussion of this proof and

S Hala) ) = (113
n=0 )

its relation to other combinatorial results on orthogonal polynomials, the reader is referred
to Stanton [16].

The Mehler formula is often referred to as the bilinear extension of (1.9). Carlitz [3, 4]
found several multilinear extensions. Kibble [13], and later independently Slepian [15]
found an extension, known as the Kibble-Slepian formula, whose specializations include
all other extensions. Louck [14] proposed another extension which was proved combina-
torially to be equivalent to the Kibble-Slepian formula by Foata [7].

To describe the Kibble-Slepian formula, let us first introduce some notation. For each
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integer n > 2, define a symmetric n x n matrix R by

rij |f ) 7é j,
(R)i; =
1 otherwise,
where {r;;}; j>1 isan infinite sequence of indeterminates. Let z = (z1,. .., 2,)’ beavector

of n indeterminates. Let A/ be the set of all symmetric matrices N = (v;;) (1 < 4,5 < n)
of order n such that »;; = 0 for all 7 < n, and that v;; is a non-negative integer for all 7 # j.

Also, for a fixed N € N, let the ith row sum of N be
Si = Vit + Vg + -+ Vi

The Kibble-Slepian formula reads

I I Vij

- - i< 1 1
H, (2)...Hg (2, i) = ex (— 2Tz —2TR 12 ) . 1.14
1<J

Example 1.2. Whenn =2, R = (}!), x = 2, and y = 2, the Kibble-Slepian formula
(1.14) reduces to the Mehler formula (1.13).

Example 1.3. When n = 3, let
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then the Kibble-Slepian formula becomes

e ﬁ IfI f{ T.msntk B
zl;o metn () Hnn (Y) n-Hc(Z)m_

1
V1—12—52— 124 2rst 8
2rst(z® + y* + 22) — 22 (r? + %) — A (r? + %) — 22(s* + )
2(1 — 72 — s2 — 12 + 2rst)
2zy(r — st) + 2xz(s — rt) + 2yz(t — rs)
2(1 — 72 — s2 — 12 + 2rst)

exp [

(1.15)

Foata and Garsia [8] extended Foata’s proof [6] of the Mehler formula to give a combi-
natorial proof of the Kibble-Slepian formula. The left hand side of (1.14) was interpreted
as the exponential generating function of the so-called n-involutionary graphs, while the

right hand side could be written as the exponential of the series
1 1 1 1

where §;; is the Kronecker symbol. They showed that expression (1.16) is the generating
function for the “connected components” of the n-involutionary graphs. Consequently, the

exponential formula applies, proving (1.14).

1.2 Theg-Mehler formula and its extensions

Throughout this thesis, we shall use («a; q),, (or (a),, for short) to denote the ¢-shifted fac-

torial:

(@)n=(a;¢)n == (1 —a)(1 —aq)...(1 —ag" ).
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The g-analogue of an natural number » is denoted by [n],, and the well known Gaussian

coefficient G(n, k) is denoted by [Z]q They are defined as follows.

0], == 0

[n]q = 1+q+...+qn—1’n21

n — (@)n _ (1—-q¢")...(1— qn—k+1) )
[k]q T @Dkl (1—¢b)...(1—q) ,0< k< n.

Most often, we shall drop the subscript ¢ when there is no potential confusion.
A g¢-analogue of the Hermite polynomials, called the ¢g-Hermite polynomials, was in-
troduced by Rogers, who used them to prove Rogers-Ramanujan identities. Following

[11], the g-Hermite polynomials can be defined by their generating function H(z,t | q) as

follows.
H.t]9)= Y Hy(e |0 =] : <l @)
rd (@n oy (1— 2ztq" + 12¢%F)
The three term recurrence for H,(x | q) is
Hpp(z | q) =22Hy(z | q) — (1 - ¢")Hp1(z | q). (1.18)

To get the corresponding version H,,(z | ¢) of H,(z), we also have to normalize the

H,(z | q). Define

Hy(z | q) :=

(1.19)

with the new three term recurrence:

Hpn(z|q)=aHu(z|q)— 14+ q+ -+ ¢ Hu1(z | ). (1.20)
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As in the case of H,(z), there is a combinatorial interpretation for H,(z | ¢), due
to Ismail, Stanton and Viennot [11]. As expected, this combinatorial interpretation gives
H,(z | q) as a g-analogue of the matching polynomials. Notice that each o € M,, can be

viewed as an involution on [1, n]. Define a new statistic on « as follows.

eca

where the sum goes over all edges e of o, and if e = (4, j), i < j, then
s(e):=|{k|i<k<j,and a(k) < j}|

Pictorially, imagine putting n points 1,...,n in this order on a horizontal line, then
drawing all edges of « on the upper half plane. The statistic s(e) for an edge e is the
number of points & lying between ¢ and j such that & is either a fixed point or an end-point

of some edge e’ € a, both of whose end-points are on the left of j (see Figure 1.1).

1 i k alk) j n

Figure 1.1: lllustration of s(e), where e = (4, j), i < j.

It is now an easy matter to prove

Hy(z|q)= ) @(a), (1.21)

a€EMy
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where
() = (—1)lelgl@gs@), (1.22)

We only need to verify that the right hand side of (1.21) satisfies the same recurrence (1.20)
as H,(z | q). Also notice that when ¢ = 1, H,(z | ¢) reduces to the matching polynomials.

On the same line of reasoning as in the previous section, one would hope that (1.21)
helps combinatorially discover the g-analogues of the Mehler formula and its extensions.
This turned out to be not easy. There are several known equivalent forms of the g-Mehler

formula. In terms of H,(z | ¢), it reads

- tn () oo
HEZ:O Hy(cos 8 | g)Hn(cos ¢ | q) (@G Q)n (e =i te—ibtiv_teid—ip teidtio) (1.23)
or

o tn

Y Hu(z| QHuly | @) =

n=0 (q)n

%) oo

. &) (129)
H (1 — dtghzy + 26°¢* (=1 + 22° + 2¢°) — 483¢**zy + t*¢™)
k=0

On the other hand, let 4, (x | ¢) be the generating function for the number of subspaces
of Iy :
e g) =S [”] 2*, (1.25)
then it is not difficult to prove that
H,(cosf | q) = e ™h, (2| q).
This gives another equivalent form of (1.23):

> (e [ainly |t = (1.26)

GO (D)oo(Tt) oo (U)o (TYt) oo
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It is this form of the ¢g-Mehler formula which has the only known combinatorial proof
as was shown in [11], using the vector space interpretation as above. However, it does not
seem to be possible to extend this proof to find a multilinear extension of the g-Mehler
formula, using the same approach as with the regular Mehler formula. Firstly, we need
a g-analogue of the exponential formula, which is not known in general. (A somewhat
specialized ¢g-analogue of the exponential formula was devised by Gessel [9], but we do not
know how to use his method on linear spaces over finite fields.) Secondly, linear subspaces,
although very useful in enumeration arguments, are difficult to be dealt with in bijective
arguments. Hence, besides needing a g-analogue of the exponential formula, we also need
a different combinatorial proof of ¢-Mehler formula which uses some easier-to-describe

combinatorial objects.

1.3 A g-exponential formula

Gessel [9] gave a partial answer to the question raised near the end of the previous section.
His paper was influential in the proof of the ¢g-Mehler formula presented in this thesis.
He first gave a g-analogue of functional composition for Eulerian generating functions,
which can be thought of as a g-analogue of exponential generating functions, then used this
method to enumerate permutations by inversions and distribution of left-to-right maxima.
The enumeration of permutations by inversions also gives rise to yet another variation of
the ¢g-Hermite polynomials. Any g-analogue of the exponential formula needs to address an
important issue, namely the g-weight for each combinatorial object has to be well-behaved
so that we can compose generating functions while preserving the weights. Gessel showed
how to define a weight function on permutations so that his g-exponential formula could be

used to enumerate certain permutations by inversions. Let us briefly describe his approach
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here.

Firstly, we define a g-analogue of the derivative:

_f(@) = flat)
Df(t) = 7(1 ot (1.27)
Notice that
D1 = 0, and
i tnfl
Dn_!(l B (n—1)

Secondly, assuming f(0) = 0, a g-analogue ¢, of themap ¢ : f — J;—’f could be defined
as ¢,(f) = I, where £ = 1 and for k > 1

Df = pf . flk=1 with f*(0) = 0.
An equivalent explicit form for £ can also be given. Suppose
o0 tn
) =" far—s
"0 n.q

then the f,, ;, satisfy

n n

frt1he = Z {TZ] fiviifn—ig—1 = Z [ﬂ Jnjri1fik—1

i=0 =0
where f, , = 0whenn < k.
Next, let f be a function such that f(0) = 0 and g be a g-exponential generating

function:

o0 t”
9(t) = Zgnn—,-
n=0 q
We define a g-analogue of g(f), denoted by g[f], as follows.

glf1=> gnf™. (1.28)
n=0
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It is easy to see that this g-functional composition satisfies the chain rule:

D(glf]) = (Dg)lf]- Df. (1.29)

Now, let e(¢) be the g-analogue of the exponential function:

Let f be a function such that f(0) = 0, and

O =Y forr.
n=0 q

Let g be the g-analogue of e/, namely g(¢) = (e[f])(t). If g’s exponential form is

o0 t"
n—0 N
then equating coefficients from the chain rule (1.29) for e[f], it is not difficult to show that

1 ifn=20
In+1 = . (1.30)

Shco [Mgn-kfer1 ifn>1

Moreover, using the fact that Dg = ¢D f and the definition of D, we can write g(¢) in terms

of g(qt). Iterating this resulting recurrence, we obtain an infinite product form of e[f] as

follows.
had 1
el = Ho (1= (1—q)g"t-Df(g"t)) (31

This looks very close in form to a ¢g-Mehler formula. For example, let us consider equation
(1.24). To combinatorially prove a (1.24)-like identity for some variation H,,(x | ¢) of the

g-Hermite polynomials we could attempt to do the following:
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e Find a function f so that the right hand side of (1.24) is the same as the right hand
side of (1.31),

¢ Simultaneously, find a combinatorial proof that g, = H,(x | ¢)H,(y | q) satisfies

relation (1.30).

e Moreover, as we have mentioned earlier, we also need to pick H,, so that it enu-
merates better-behaved combinatorial objects than the vector subspaces, preferably

a g-analogue of the involutionary graphs.

This idea is going to be the driven force behind our result, although what we will show is

slightly more general than what was just described.



Chapter 2

Main Result

In this chapter, we describe a Foata-style proof of ¢g-Mehler formula for yet another varia-

tion of the ¢g-Hermite polynomials.

2.1 Another variation of g-Hermite polynomials

The version of g-Hermite polynomials just mentioned, denoted by H,(z | ¢) is a different
form of the one described by Gessel [9]. In order to define H,(x | ¢) combinatorially and
to give motivations for defining it, we need some definition.

Let S,, denote the symmetric group on [1, n] as usual. More generally, we use Sym(N)
to denote the set of all permutations on a set N of n distinct integers. Each word g =
iy ..., where {i,...,4,} = N could be thought of as a permutation on N written in one
line notation, i.e. 3 € Sym(N). The set N is called the content of 3, and is denoted
by cont(3). Let ¢ : N — [1,n] be the trivial one-to-one correspondence between N and
[1, n] which preserves order, then ¢ transforms each 3 € Sym(N) into ¢(5) € S,. The
permutation ¢(3) € S, is called the reduced permutation of 3, and is denoted by red((3).

A permutation 5 € Sym/(N) is basic if 3 begins with the greatest element of cont(53).
In one line notation, each permutation = = =y ...m, of S, can be decomposed uniquely
into blocks 7 = 3, ... Bx where each block g; is a basic permutation which begins with a

left-to-right maximum. For example, 7 = 53162784 is decomposed uniquely into 4 blocks

15
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as follows.
=531 62 7 84.

We call this decomposition the basic decomposition of 7.
A weight function w defined on permutations with values over some commutative al-

gebra over the rationals is said to be multiplicative if it satisfies two conditions
() w(m) = w(red(r)).
(i) If By ... By is the basic decomposition of 7, then w(m) = w(B;) . .. w(Bk).

From here on, we use B,, to denote the set of all basic permutations on [1, n], D,, the set
of all permutations on [1, n] with only basic blocks of size at most 2, and () the number
of inversions of a permutations 3 € Sym(N). Gessel proved the following simple but

important theorem.

Theorem 2.1 (Gessel, 1982). Suppose w is a multiplicative function on permutations. Let

gn=Y_ w(m)g'™, and

TESR

Jn = Z w(ﬂ)ql(ﬁ)-

BEBn

Then,

Do =e|> far
n=0 q n=1 q

Hence, in a sense, the basic permutations are the “connected components” of a permu-

tation. An important corollary of this theorem is:
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Corollary 2.2. Supposer € S, has b; () basic blocks of length i. Letw(r) = 2™ ... 2%,

where the x; are indeterminates, then clearly w is multiplicative. Let g,, = Z w(m)g ™,
TES

and g(t | ¢) = Zgn o ,then

1
g(t
(tle) H 1— (1— q)g"tX (g5 2)’
where X () = Y02 ) Zpat™.
A special case of this corollary gives us the promised new variation of the ¢g-Hermite

polynomials. Set X (¢) = z - t% + 1 - ¢!, so that

2™ ifr e D,
w(mr) =

0 otherwise,

and hence

q) = Z xbl("r)ql(w)

weDy,

Theorem 2.1 now gives the q-exponential generating function for g,, as an infinite product:

= 1
_ ﬁ L
S e () R )
! 1
= 2.1
kl:[o 1 — 2uzgk + 22¢2F’ 2.1)
where v = “”‘\7 and z = ity/(1 — ¢)gq. Comparing (2.1) with (1.17), then applying
(1.19) give
o~ [ —ix
gn(z | @) =i"q2 H, (— q) (2.2)
(= |q) 7 |
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It is quite interesting that a proof of (2.2) can be provided combinatorially. First, we
rewrite the right hand side of (2.2) using the matching interpretation (1.21) of H,(z | ¢) as
follows.

. F(a)
‘n n/2 17 4 n a (24
Zq/an (7|Q> = i"q>2 E | ‘ (%)

aEMy,

= ) (D) (=) T@) 2"

aEMy,

= ¥ gr@gleb

aEM,

w3

Now, (2.2) can be put in a combinatorial form as in the following proposition, whose proof

will be bijective.

Proposition 2.3.

Z g gl Z £F(@) glel+s(a

€Dy aEM,
Proof. We first describe a bijection ¢ : D, — M,,, and then show that ¢ is also weight
preserving. Given © € D,,, each size-2 basic block w71 (7 > mry1) gives rise to an
edge (mg11, ) OF (7). The rest are fixed points. Figure 2.1 shows the mapping when

T=15362784.

15362784#0m

12 3 45 6 7 8

I(r) =8 lal + s(a) =8

Figure 2.1: Illustration of the weight-preserving map from D,, onto M,,.

To see that ¢ is weight-preserving, suppose a = (). Firstly, under this bijection

clearly b;(m) = F(«). Secondly, for each edge e = (4,7) of a with j > 4, s(e) + 1
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counts the number of inversions created by 7 and a number larger than 7 preceding it in 7.

Summing the quantity s(e) + 1 over all edges e of «, we get s(a) + |«/. O

We are now ready to define our new variation of ¢g-Hermite polynomials combinatori-

ally.

Definition 2.4. Let H,(z | q) be defined by

Hy(z|q):= ) w(a), (2.3)
a€E My,
where
w(a) = @ glel+sl@) (2.4)

The corresponding g-Mehler formula for these H,, can be written as

o0

tn
> Hulw | ) Haly | q)—-

n=0

(¢*t?) oo (2.5)
Hitio [(1 _ t2q2k+2)2 _ t(l _ q)qk ((1 + t2q2k+2)a:y + tqk+1($2 + y2))] .

2.2 Weighted P-species

In this section, we note that the “connected components” of Theorem 2.1 do not have to be
restricted to basic permutations. They could be any “combinatorial structures” defined on
permutations as long as the weight function is multiplicative. To formally describe what
this means, we will use the language of species as those in [2]. Our combinatorial structures
on permutations shall be called P-species (for permutation species).

We will be dealing with weighted species, thus we first need to make precise what a

weighted set means.
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Definition 2.5. Let K C C be an integral domain and A = K]g, t,,%,...] be a ring of
formal power series or of polynomials over K on the variables ¢, t;,.... An A-weighted
set is a pair (A, w) where Aisasetand w : A — A is a function associating a weight w(a)

to each element ¢ € A.

Definition 2.6. An A-weighted set (A, w) is said to be summable if for each monomial
= g™t7't5? . .., the number of elements « € A whose weight w(a) contributes a non-

zero coefficient to p is finite.
Now, we are ready to define our weighted combinatorial structures on permutations.
Definition 2.7. An A-weighted P-species is a rule F which

(i) to each totally ordered set N, and each permutation o € Sym(N), associates an

A-weighted set (F[N, o], w),

(ii) to each increasing bijection v : N; — N,, and each permutation o € Sy, (=

S|n,|), associates a weight-preserving bijection
Flv, 0]+ (FINy, 01], w) — (F[Na, 02, w),
where o, € Sym(N;) and o5 € Sym/(N,) are derived from o in the natural way.
Moreover, these functions F[v, o] must also satisfy the functorial properties:

Flldy,0] = Idsn (2.6)

FlBoy,0] = FlB,0]oFly,0] (2.7)

Basically, the functorial properties say that the weighted sets (F[N, o], w) depend only

on the fact that V is totally ordered and on N’s cardinality. When N has cardinality n, we



2.2 Weighted P-species 21

shall use F[n, o] to denote F|N, o], and F[n] to denote

U Fln,ol.

oESH

In words, F[n, o] is the set of all structures of P-species F on the permutation o of a totally
ordered set of size n, and F|n] is the set of all structures of P-species  on a totally ordered

set of cardinality n.

Definition 2.8. Let F be an A-weighted P-species with weight function w. The P-generating

series of F is the ¢g-exponential formal power series F, (¢ | ¢) with coefficients in A defined
by

Fult]a) = 2 1F Il 29

n>0 q
where the g-inventory |F[n]|,, is

| F[n]|w == Z Z w(a)q'). (2.9)

0€Sn a€Fn,o]

To this end, the next step is to develop a general version of Gessel’s theorem on PP-
species. Theorem 2.1 was about partitioning permutations into basic blocks with a multi-
plicative weight function on the blocks. We shall generalize this notion by first defining the

so-called permutation partition.

Definition 2.9. Given o € S, a permutation partition = of ¢ is a sequence of non empty

words 7 = (o7, .. ., 0%) such that

O =0109...0
in one line notation, and that the largest elements of o4,..., 0, form an increasing se-
quence.

We shall write 7 F o for “z is a permutation partition of .”
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We are now ready to define a P-species whose “connected components” are structures

of another IP-species.

Definition 2.10. Let F, be a weighted P-species with weight function v. Define the P-
species G, = &(F),, with weight function w as follows. For each totally ordered set N

and o € Sym(N), define

GIN, o] := | J FINy, 1] x -+ x F[Ng, 03], (2.10)
o
where 7 = (074, ..., 0%), and N; = cont(o;), forall i = 1,..., k. Moreover, for each

G = (Fla"'aFk) Ef[Nlao-l] X Xf[NkaO-k]
we associate
w(G) =v(Fy)...v(Fy). (2.11)

This is the analogue of the multiplicative property in Theorem 2.1. The fact that £(F).,,
is a P-species is easy to verify.
At last, we have all the notations needed for a generalization of Theorem 2.1.

Theorem 2.11. Let F, be a P-species of structures with weight function ». Let G,, be the

IP-species & (F),, defined as above. Define a sequence {g, 1}, by go = 1 and
= |G[n]fw, n=1.
Let { f.}>2, be the sequence defined by f, = 0, and
fir1 = |Flk + 1]}, fork > 0.

Then,

o0

= " > tn 1
1 o = o . 2.12
+ ;g nly ¢ Lz:; f n!q] H (1 —q)qg™t - DF,(q™)) (212)

n= O
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namely

Gult|q) = e[F(t| )] (213)

Proof. We only need to verify that the sequences g,, and f,, satisfy relation (1.30), namely

when n > 1 we have

n

n
In+1 = Z {k] In—k frt1-

k=0

Recall that each G € G[n + 1] is a sequence of structures of 7: G = (Fy,..., F,).
Let oy, ..., 0, be the corresponding permutations (or words) underlying Fi, ..., F,,. Let
N; = cont(o;), foreach i = 1,...,m. Notice that n + 1 € N,,. Suppose |F,,| = k + 1,
k>0,andletV = N,,. Let K =V — {n+1},and let V = [1,n + 1] — V. For any
two integer sets X and Y, let (X, Y') denote the number of inversions created by pairs of

numbers in X and Y, namely
I(X,Y) =[{(i,j) |i>j,ie X,j €Y}

Note that I(V,V) = I(V, K) by this definition, since n + 1 € V. Furthermore, let
G' € G[V] be the structure of species G obtained from G by removing F,,. For each
structure C' of any P-species, we shall use o(C) to denote the underlying permutation of
C.

It is clear that
I(0(G)) = I(V,K) + I(0(G") + I(a(Fyn)),
and that

w(G) = w(G)v(F,).



2.2 Weighted P-species 24

In order to form a G € G[n + 1], we can first pick a k-subset K of [1,n] (0 < k < n),
form V = K U {n + 1}, finally concatenate any pair of G’ € G[V] and F,, € F[V].

Consequently, by definition and the multiplicativity of w we can write

Jni1 = Z w(G)qI(U(G))
GEQW+H

= Z DD q 175 s (G @D x p(Flp)g" )

k=0 K, K|=k G'€G[V] Fm €F[V

= Z YOS T X w(G)g ) () g )

k= 0K‘K| kG'egG,_ k Fm€Fp41

n

_ I({n]- K,K) @ E) o(F g @)
YUY« > w(G)g > v(Fa)g

k=0 K,|K|=k G'eG, & Frn€Fp41
2?: n
k=0

O

Example 2.12. Clearly Theorem 2.11 implies Theorem 2.1 and thus all other consequences

of Theorem 2.1 as derived by Gessel [9].

Example 2.13. Take v = 1 sothat w = 1 in Theorem 2.11, we obtain

= " (£ 0) oo (105 @) o
1+ gt = , (2.14)
; n!q Hn:0(1 _ thn + t2q2n+1)

where,

gn =Y {m |7k o}lg".

gES,

In fact, when ¢ — 1, g,, counts the number of sets of words on [1, n] whose contents are
disjoint and whose union of contents is exactly [1,n]. While, when ¢ — 1 the right hand
side of (2.14) goes to exp(t/(1 — t)). Thus, we could have proven easily identity (2.14)

combinatorially when ¢ = 1.
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Following Gessel’s line of derivation, we can generalize the previous example, as an-

other corollary of Theorem 2.11, as follows.
Corollary 2.14. Letw = (o4, ..., 0x) be any permutation partitionof o € S,,. Let b;(7) be
b;(m)

the number of words of size ¢ of =. Define a weight function w for 7 by w(w) = [[, z;"",

and let

=) w(m)g". (2.15)

€Sy o
Then,
had 1
Gu(t|q) = : (2.16)
g (1-(1-qqtX(qt))
where

X(t) = an+1[n + 1],t".
n=0

Write 7 b, o if 7 - o and all words of 7 are of size at most k. Set X (¢) = z+ (1+¢)t,

so that

QL CONN Y O S
w(r) =

0 otherwise,

and hence

a:|q sz I(U

g€Sy ka0

Corollary 2.14 gives

n had 1
Gu(z,t|q) = (x| q)— =
@tl9) nz_% (@] )n!q gl—(l—Q)q”tX(q”t)
1

I
8

(2.17)

1 — 2uzgk + 22¢%’

B
Il

0
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where u = 5 /37 and 2 = it/1 — ¢2. We now get

» n/2 5 —ix
ool =i () o
and thus,
> > @@= (1+ )@t (2.19)
o€Sy o0 aEMp

We already had a somewhat indirect combinatorial interpretation of (2.18). We leave the

direct proof of (2.19) open for now.

2.3 A g-analogue of the bicolored n-involutionary graphs

In this section, we introduce a g-analogue of the bicolored n-involutionary graphs, then
apply Theorem 2.11 for these graphs, one of whose corollaries will be the g-Mehler formula

(2.5).

Definition 2.15. A graph G = (N, E) is called an ordered bicolored n-involutionary

graph if G satisfies the following conditions:
1. G has n vertices labeled by n distinct positive integers in V.
2. G has no multiple edges, but can have loops.

3. The n vertices of G line up on a horizontal line, so that we can speak of a vertex
being on the left or right of another, and so that the vertices of G forms a permutation

7(G) = mmy ... 7, € Sym(N).
4. Each edge of G is colored either red or blue.

5. Each vertex of G is incident to exactly 2 edges of different colors.
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6. A non-loop edge of G can only connect some ; to ;1 unless it completes a cycle

of G.

7. Let C4,...,C,, be the connected components of G from left to right. Let L(C)
denote the largest vertex number in a connected component C' of GG, then 7(G) must

satisfy the condition that L(C,) < - -- < L(Cy,).

8. For each connected component C, the vertex numbered L(C') has to be on the left of

the blue edge incident to it.

9. If a connected component C' is a cycle, then the vertex numbered L(C') has to be the
left most vertex among all vertices of C. It is not difficult to see that the connected
components of G can only be in one of 5 forms as shown in Figure 2.2. In the figure,

the bold lines represent blue edges and the thin lines represent red edges.

i : Blue
Red
L(C)
L(C) L(C)
L(C) L(C)
Y Y T T

Figure 2.2: Possible connected component types of an ordered bicolored n-involutionary

graph.

Let G denote the set of all ordered bicolored n-involutionary graphs on N, where N
Is an n-set of positive integers. Let Cy be the set of all graphs in Gx which have exactly

one connected component. When N = [1, n], G,, and C, shall be used for convenience.
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Let ¢ : N — [1,n| be the trivial one-to-one correspondence between N and [1, n]
which preserves order. For each G € Gy, let red(G) denote the graph obtained from G by
renumbering each vertex v of G by ¢(v). Conversely, we also use N (&) to denote the set

of vertices of G.

Definition 2.16. A weight function w defined on G with values over some commutative

algebra over the rationals is said to be multiplicative if it satisfies the following conditions:
() w(G) =w(red(Q)).

(it) If v, ...,y are the connected components of G (which are ordered bicolored invo-

lutionary graphs themselves), then w(G) = w(v1) . .. w(y).

The following theorem is obviously a very special case of Theorem 2.11 applied to the

ordered bicolored involutionary graphs.

Theorem 2.17. Supposed w is a multiplicative function on G,,. For n > 0, define a se-
quence {g,}32,

go = D_ w(G)g"™D.

GeEGn

Let { fn}22, be the sequence defined by f, = 0, and

frn= 3 w(C)g" @)

CeCria

for £ > 0. Then,

ol =[S nt
nzognn!q =" nl,
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We are now ready to take the first step of the plan outlined at the end of Chapter 1 by
specializing w so that the right hand side of (1.31) is the same as the right hand side of
(2.5), where the function f in (1.31) is

(e o] tn
n=0 4
Definition 2.18. Let GG be a graph in Gx. For each edge e (respectively vertex i) of G,

let C'(e) (respectively C'(i)) denote the connected component containing e (respectively 7).

Define a weight function 6 on each edge e of G as follows.

)
g ifeisanon-loop red edge

g ifeisnon-loop, blue and to the left of L(C/(e))
f(e) = 41 ifeisnon-loop, blue and to the right of L(C(e))

y ifeisaredloop

& if e is a blue loop
Let 6 be a weight function defined on Gy by:

66 = [ o).

e€E(Q)
then obviously 6 is multiplicative.
We call an ordered bicolored n-involutionary graphs with the weight # associated a
bicolored (g, n)-involutionary graph. Figure 2.3 shows an example of such a graph. In the

figure, the largest vertex number L(C) in each component C' has been put in bold face.

Lemma 2.19. Let @ be the function defined above, and { f,,}>° , be a sequence defined by

fo=0and

fa= > 0(C)g" ™), whenn > 1.

CeCn,
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q

X X x

Ot det § Loty el Heoal
5 1 10 8 4 7 6 12 14 11 13 15 2

3 9

T =(3,9,5,1,10,8,4,7,6,12,14,11,13,15, 2) I(w) =33

0(G)g'™ = q"x%y® x ¢*
Figure 2.3: An example of a bicolored (g, n)-involutionary graph.

Moreover, let

ftla): an o

Then,

Proof. Firstly, we claim that
forsr = ([K] + [k + 1])g** (2k) gy

To see this, let us consider Figure 2.2. The components in Co1 can only be the paths
which start and end with different colored loops, and have largest vertex number 2k + 1.
Summing 6(C)q" ™€) over all components C' which start with a blue loop and end with a

red loop we get the term
[klg™ (2k)!yzy,
while the components which start red and end blue introduce the term

[k + 1] (2k) oy
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The details are easy to be verified and hence omitted here.

Secondly, we claim that
Forya = @22k + 1)y + [k + 1] 2k + 1)l (2* + ¢°).

Here, the term ¢3*+2(2k + 1)!, is from the cycle components, [k + 1]¢****(2k +1)!,2% from
the paths which start and end with a blue loop, and [k + 1]¢%**1(2k + 1)!,y? from the paths

which start and end with a red loop.

By definition,
o0 t”
f(t | Q) = an_'
0 nﬂ
o 2k+1
= Y (K] + [k + 1)g™* (2k) oy ———— +
pa (2k+ 1),
00 t2k+2
3k+2 2k+1
;(q (2k + 1), + [k + )¢+ (2K + 1), (2 +y))(2k+2)!q'
Hence,

o
f(t]q) = Z (k] + [k + 1)) g**zyt®* + Zq3k+2t2k+1 +
k=0 k=0

D e+ g (2 + 7)) (2.20)
k=0

Now, we calculate each term of (2.21) separately as follows.

o0

myz (K] + [k + 1) ¢ = zy(1+£2¢%) Y [k + 1]g*¢*
k=0

00 k
— :vy(l + t2q2) Z (Z q2(k—j)+3j> t2k

k=0 \j=0

oo o0
= 2y(1 + 2¢%) Z {22 Z 129 g3
i=0 §=0

(4 ¢)xy
(- 2¢%)(1 — £2¢3)°

(2.22)
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Similarly,

o

Zq3k+2t2k+1 _ lq :
k=0 L=t¢’

2

(2.23)

and

e 00 k
(xQ + y2) Z[k + 1]q2k—|—1t2k+1 — (3:2 + yQ)tC]Z (Z q2lc+j> t2k
k=0 \j=0

k=0
[es) k
_ (Q:Z + yZ)tqZ (Z q2(k—j)+3j) 12(k=3)+2j
k=0 \j=0 (2.24)
o0

o
_ (xQ + yQ)tq Z t2iq2z’ Z t2jq3j
i=0 j=0
tq(z* + y*)
(1 —12¢%)(1 - £2¢%)

Combining (2.22), (2.23) and (2.24) yields (2.20). 0J

Corollary 2.20. Let # be the function defined above, and {g,}5°, be a sequence defined

by

gn =Y 0(G)g" "D, (2.25)
Then,
olt] ) = 1)
[155, [(1 — £2¢%+2)2 — ¢(1 — q)g* (1 + 2¢** ) zy + tgh+1 (22 + y?))]
where
o0 t"
g(t|q) = Zgn—,
o n.q

Proof. This is straightforward from Theorem 2.17, Lemma 2.19 and equation (1.31). [
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2.4 A bijective proof of the g-Mehler formula

Now, we have enough tools to show (2.5) bijectively. By Corollary 2.20, to prove (2.5)
we are left to demonstrate that H,(z | ¢)H,(y | ¢) = g,. We shall show this relation

combinatorially as formally put in the following theorem.

Theorem 2.21. Let H,, be defined combinatorially by equation (2.3), and g,, by equation
(2.25). Then,

E[n(x | q)Hn(y | q) = gn.

Proof. We want to find a weight-preserving bijection ¢ which maps a pair (a,a’) €
My X My toagraph G € G,y1. Let (o, ') be a pair of matchings in M, 1 X M, 1,
where the fixed points of « are weighted by x and of o’ by y. As before, we view the
vertices 1, ...,n+1 of o and o' as lying on a horizontal line from left to right in that order,
with the edges drawn on the upper half plane. Let p1, ..., p. (@ < n + 1) be the sequence
of vertices of « starting from the right which are not left end-points of «’s edges. Similarly,
let p},...,pl, be the corresponding sequence for o’. Notice that p; = p| = n + 1. Let
e1,...,eq (respectively ef, ... ,eia,‘) be the set of edges of « (respectively ) ordered by
their right end-points starting from the right.

Our idea is to start from the right, look simultaneously at p; and p}, p, and p}, ...
determine the “right place” to stop and build up the right most connected component of
G based on the relative distribution of edges and points of « and o’ seen so far. Then,
remove certain points and edges from « and o' to get 5 and 3’ respectively, and re-apply
the method to get the next (from the right) connected component of GG, and so on.

Looking at p; and p', p, and p5, ... there will roughly be 5 situations as follows.



2.4 A bijective proof of the g-Mehler formula 34

1. Atsome k + 1, all of p; and pi,, 1 < i < k + 1, are right end-points of edges in « and

o' respectively, and j = k£ + 1 is the least integer such that s(e;) = 0.

2. We meet a fixed point p,, .1 of « and then a fixed point p,; of o’ where m < k. For
this case to be disjoint from case 1, it is necessary that all edges e of o whose right

end-points are on the right of p,,,., have s(e) > 0.
3. We meet a fixed point p;, ., of o strictly before a fixed point p;, of «.
4. Two fixed points of « are met before any fixed points of «'.
5. Two fixed points of o' are met before any fixed points of «.

Note that similar to case 2, the cases 3, 4, and 5 need to be defined so that they are disjoint
from case 1. These cases determine our “right place” to stop as mentioned above.

Formally, we consider 5 cases as follows.

Case 1. Thereexistsak, 0 < k < @1 such that

(i) j = k+1isthe smallest integer where s(e;) = 0. (i.e. s(e;) > 0forall j < k.)

(i) Forall j =1,...,k+1, e; has right end-point p; and e} has right end-point p’;.

The situation is depicted in Figure 2.4. Let 5 (respectively ') be the matching

Figure 2.4: lllustration of case 1.
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obtained by removing e, ..., ez and their end-points (respectively ei,..., e, 4
and their end-points) from « (respectively «'). We shall construct G = ¢(«, ') such
that the last connected component of G isacycle C = (n+1, i941, - - -, 31), and that
(8, B') forms the rest of the components of G. Let R = {iok1, .- ., 41} be set of the
rest of the points on the cycle as shown. To do this, we need to pick a permutation
0 = logy1---11 € Sym(R), where R = {igk11,--.,%1} is a set of distinct integers
in [1, n], such that the contribution w¢ of this cycle C' to the weight of G is exactly
equal to the contribution wg of ey, ..., ex,1 to the weight of o plus the contribution
wg of e}, ..., e, to the weight of o’. Notice that removing the edges e; and e
does not have any effect on the total weights of the rest of edges of « and o'. Let
U =[1,n]— R, and I(U, R) be the number of inversions created by pairs of numbers

inU x R, namely the number of pairs (u,r) € U x R such thatu > r.

As each red edge on C'is weighted ¢ and each blue edge weighted 1, it is easy to see

that
we G URIFL(@)+2k+1 | kit (2.26)
wg = "l gZitis) (2.27)
Wy = g S (2.28)

Hence, we need to pick ¢ such that

(U, )+ 1(0) =} s(es) + Z s(e}) — k. (2.29)
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Observe that
s(ex+1) = 0, (2.30)
1<s(e) < n+1-2§, Vj=1,...,k, (2.31)
0<s(e;) < n+1-2j, Vi=1,....k+1 (2.32)

Now, define a function f on {1,...,2k + 1} by

n—t+2—s(e;) ift=25j=1,...,k
ft) =

n—t+1-—s()) ift=2j-1,j=1,....,k+1

Then, recursively determine iy, . . ., o1 1, €lement by element starting from 4, work-

ing toward 79 1 as follows.
iy = the f(¢)th smallest number in [1,n] — {i1,...,4; 1} (2.33)

Itis easy to check that1 < f(t) <n— (t—1)forallt =1,...,2k + 1 so that 4, is

well defined. Moreover,

2k+1

I(U,R)+1(0) = t_zlI{jijreceedsit,j>it,j#n+1}|
- 3= == 10)
= i(n—(2j—1)—f(2j))+§(n—(2j—2)—f(2j—1))
_ j:s(ej)+§s(e;)—k,

which is exactly (2.29).

Case 2. Thereexistsak, 0 <k < Z,and anm, 0 < m < k such that
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(i) Forall j =1,...,m, p, is the right end-point of e;, and s(e;) > 0. Moreover,
Pma1 1S @ fixed point, which is weighted by z. And, forall j = m+2,...,k+1,
p; is the right end-point of e;_;.

(i) Forall j = 1,...,k, p} is the right end-point of e}. And, p},,, is a fixed point

weighted by y.

The situation is depicted in Figure 2.5. This time, the last component C of G starts

€k

‘‘‘‘‘‘‘‘ AUR AT

n+1 Zz

Figure 2.5: Illustration of case 2.

with a red loop and ends with a blue loop. The point n + 1 is the (2m + 1)st point
from the right. Let o, R, U be defined as in the previous case, then the corresponding

we, wg and wh; are as follows.

we = ¢IORTIE@+2m  2km (2.34)
wp = ¢ goime) g (2.35)
Wl = gt qTae) Ly, (2.36)
Hence, we need to pick ¢ so that
k k
I(U,R)+I(0) = Z s(e;) + Z s(e;) —m. (2.37)
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Fort=1,...,2k, the corresponding f(t) is:

e

n—t+2—s(e;) ift=24j=1,....m

f(t):<n—t+1—3(ej) ift=25,7=m+1,...k (2.38)

n—t+1-s(e)) ift=2j-1,j=1,... .k
\

As in the previous case, i, is defined by (2.33). To show that #; is well defined and

that they satisfy (2.37), we only need to observe that

1<s(e) < n+1-2j j=1,....,m (2.39)
0<s(ej) < n+l1—-(2j+1), j=m+1,...,k (2.40)
0<s(e;) < n+1-25, j=1,... .k (2.41)

Case 3. Thereexistsak, 1 <k < Z,andanm, 0 <m < k — 1, such that
(i) Forall j = 1,...,k, p; is the right end-point of e;, and p,; is a fixed point
weighted z.
(ii) Forallj =1,...,m, s(e;) > 0.
(i) For all j = 1,...,m, p; is the right end-point of e;., pm1 1S @ fixed point

weighted y, and for all j = m +2,...,k + 1 p; is the right end-point of e} .

The situation is depicted in Figure 2.6. In this case, we have

wc — qI(UsR)+I(U)+2m+1 . q2k_(m+1) . ij (242)
wy = ¢ qSi-%@) g (2.43)
wly = b g Ly (2.44)
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Yy

% Z n+1
e;c e’m+1 e’ 6’1 - = ®—6 """""" G € e O

m Tok iam 42 t2m+1 22 i@
444444444444444444444 g 1<k<2, 0<m<k-1

Figure 2.6: Illustration of case 3.

Hence, we need to pick o so that
k
I(U,R)+I(0) = Z s(ej) + Z s(e;) —m. (2.45)

Fort=1,...,2k, the corresponding f(t) is:

e

n—t+2—s(e;) ift=245j=1,....m

n—t+1—s(e) ift=24,j=m+1,...,k
£(t) =3 ! (2.46)

n—t+1—s() ft=2j-1,7=1,...,m

\n—t—i—l—s(ej) ift=2j—1,7=m+1,...,k.

As in the previous case, i, is defined by (2.33). To show that #; is well defined and

that they satisfy (2.45), we only need to observe that

1<s(e;) < n+1-2j, j=1,....,m (2.47)
0<s(ej) < n+1-2j, j=m+1,...k (2.48)
0<s(e;) < n+1-24, j=1,...,m (2.49)
0<s(e;) < n+l1—-(2j+1), j=m+1,... k. (2.50)

—~

Case 4. Thereexistsak, 0 < k <

1) and an m, 0 < m < k, such that
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(i) Forall j =1,...,m, p, is the right end-point of e;, and s(e;) > 0. Moreover,

Pm+1 and pyo are fixed points weighted z. Forall j =m +2,...,k+ 1, p; is

the right end-point of e;_;.

(i) Forall j =1,...,k + 1, p; is the right end-point of e’

The situation is depicted in Figure 2.7. In this case, we have

Figure 2.7: lllustration of case 4.

I(U,R)+I(o)+2m | 2k+1-m _ .2

we = (¢ q "X
wE — qk . qu:l s(ej) . 1‘2
wh, = gt T,

Hence, we need to pick ¢ so that

I(U,R)+I(0) = Zs(ej) + Zs(eg) —m.

Fort=1,...,2k + 1, the corresponding f(¢) is:

/

n—t+2—s(e) ift=24j=1,...,m

FO =9n—t+1—-s(e;) ift=25,j=m+1,....k

n—t+1-—s()) ift=2-1,7=1,...;k+1.

\

(2.51)
(2.52)

(2.53)

(2.54)

(2.55)
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As in the previous case, 7, is defined by (2.33). To show that 7; is well defined and

that they satisfy (2.54), we only need to observe that

1<s(ej) < n+1-24, j=1,....,m (2.56)
0<s(ej) < n+l1—-(2j+1), j=m+1,...,k (2.57)
0<s(e;) < n+1-25, j=1,....k+1 (2.58)

Case 5. Thereexistsak, 0 < k < - andanm, 0 < m < k, such that

(i) Forall j =1,...,m, p} is the right end-point of ’. Moreover, p;, ., and p}, ,,
are fixed points weighted y. For all j = m + 2,...,k + 1, pj is the right

end-point of ¢’ _,.
(i) Forall j =1,...,k + 1, p; is the right end-point of e;.

(iii) Forall j =1,...,m, s(e;) > 0.

The situation is depicted in Figure 2.8. In this case, we have

k+1 X
Yy n 4
@ - ™ 1 2 (p— O e —o e —4 )
i2k+1’2’“ 2m+41 i1
,,,,,, ¥ ) 0<k<™3l, 0<m<k

Figure 2.8: Illustration of case 5.

we = qI(U,R)+I(a)+2m+1 _q2k+17(m+1) -y2 (2.59)

wp = gt S s(e) (2.60)

wly = b gTiee) 2 (2.61)
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Hence, we need to pick ¢ so that

I(U,R)+I(0) = . s(e;) + Zs(e}) —m.

Fort=1,...,2k + 1, the corresponding f(¢) is:

(

n—t+2-—s(e;) ift=245j=1,....m
n—t+1-—s() ift=2j5,j=m+1,... )k

n—t+1-s(e) ift=2j-1,7=1,....m

kn—t—i—l—s(ej) ift=2j—-1,j=m+1,...,k+ 1.

42

(2.62)

(2.63)

As in the previous case, i, is defined by (2.33). To show that 7; is well defined and

that they satisfy (2.62), we only need to observe that

1<s(ej) < n+1-25, j=1,....m
0<s(e;) < n+1-2j, j=m+1,... k+1
OSS(e;-) < n+1-2j, j=1,....m
0<s(ef) < n+1-(2j+1), j=m+1,...,k

(2.64)
(2.65)
(2.66)

(2.67)
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Discussions

We can show formula (2.5) in case ¢ = 1 by showing

n
Int1 = < Z (Qk N 1) Gn—2k—1(2k + 1)!>
0<2k+1<n
n
0<2k<n
+ ( Z (2k n l)gn2k1(k’ +1)(2k + 1)) x

0<2k+1<n

0<2k+1<n
where g, is defined to be H,,(z | 1)H,(y | 1), so that we don’t need to prove the ¢ = 1
version of Theorem 2.21. This relation has a very simple bijective proof. The series g,, in
this case can be written as

= 3 afeyre
(a,0! )€ My X My,

This time, we can think of the pair («, ') as a pair of matching on the same set of n points
1,...,n. Color edges of « blue and o red where the fixed points are the loops. The graph
G formed by « and o' has the following properties: (a) each vertex is incident to exactly
two edges (including loops) of different colors. Each component of G is either an even

cycle, or a path which starts and ends with a loop. Each blue loop is weighted by z and

43
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red loop by y. Equation (3.1) follows readily by considering what type of component the
vertex n + 1 is located in. The first term is the result of » + 1 being on an even cycle, the
second term is when n + 1 is on a path whose two loops have different colors, and the last
two terms correspond to the case when n + 1 is on a path whose two loops are of the same
color. Unfortunately, this simple bijection does not generalize to the general ¢ case, even
after we have ordered the components of G in the way we did earlier. However, this does
yield another simple proof of the Mehler formula.

One of the keys to our proof is showing Theorem 2.21 combinatorially, making this
proof almost completely analogous to Foata’s proof of the Mehler formula. However, for
n > 3 we do not yet know the corresponding relationship.

Recall our initial motivation for finding a Foata-style proof of the ¢-Mehler formula,
which was to combinatorially find multilinear extensions, especially a multilinear extension
of the Kibble-Slepian formula would be very interesting to have. More work needs to be
done to reach this goal. Several multilinear extensions have been found by Karande and
Thakare [12], and Ismail and Stanton [10]. In particular, Karande and Thakare found two

extensions as follows.

e T‘mSntk
k,mz,;‘:o Pk (@ | @)k (Y | @) Pann (2 | q)m =
(2Yt?) 0o (TYTS) 00
() oo (2) 00 (Y1) o0 (TYE) 00 (27 ) 00 (T27) o0 (ys) (yzs)oo

o0

(zt); (yt); (zyt)ip rs? i+ 7] (zr)i(ys);2*
2 oy, @) Z =
Define the polynomials ¢, (x,t | q) by

xt|q=i[} Vt". (3.3)

k=0
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Then,
s Tmsntk
mZ (@ | oy | Db (2 | Db (0| 05— =

(zwr?) oo
(2wt) 00 (£7) oo () 00 (ZWT) 00 (WT) o0 (W) 00 (Y108 ) 00 (WS ) 00

N (2wr) ik (Wi (Wh) ik
Z( Jitjtk (W )itk z ((y s)j(ws);

4,5 k=0 (zwr?)itivk(2)i(@);(@)x

X

. 1 S
¢i(Q]7JUJS,§ | q)(ys)' 2. (3.4)
Ismail and Stanton found a different version of (3.4). To describe their result, we need

a definition. Let

& (fll,---aakﬂ
k+1Pk
bi,..., b

._ - (a’l)n---(ak+1)n z"
q’x) =2 (b1 - (k) (@

n=0

which is the ¢g-analogue of the hypergeometric series .1 Fj. Then, we have

D " Bea(a | @t /ta | @)ha(ts/ts | q)(gﬂ _

q m(q)n

m,n=0

403 ( et 4 q) 403 ( ahheltsatt ) g, q) 5
+ .

1 1
(@)oo Hj:1(tj)oo (1/a)0o Hj:1(atj)oo

By specializing variables and applying Gauss’ theorem on ,¢1, this equation reduces to the

g-Mehler formula (1.26). They actually found a general version of (3.5). Let

kPr—1 <q/la’0’ ) N kPr—1 (a;;’o "% g, Q) (36)
(@)oo [T (t) oo (1/@)00 [Tj=1 (at5)oo

H(ty,... tg,a) =

Then,

tmf

k
Z hm1+ +mk(a ‘ Q) ml(tl/tQ ‘ Q) mk t2k 1/t2k ‘ q H
J:1

mi,...,mEp=0

:H(tl,...,t%,a), (37)
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and
N B 1T 15
Z Py 4eeetmptn (@ | @) Py (81 /T2 | @) -+ - Pany (P2r—1/t2k | @) ( )+ H ( )J
M1 ,eeey Mg ,N=0 9)n j=1 q)m;

= H(tl, Ce ,tgk,a). (38)

However, equations (3.7) and (3.8) hold for a < 0 and |¢;| < min(1, —1/a), not as formal
power series as the ¢g-Mehler formula does.
It should be noted that there is no known “vector space proof” of the equations (3.2),

(3.4), and (3.5). Equation (3.2) looks closest to the n = 3 case of the Mehler formula as in

Example 1.3:
00 B _ ~ Tmsntk
" Hpin(@) B (y) nk(2) ey =
m,n,k=0
1

X
V1—12—§2— 24 st
exp [2rst(m2 + 2+ 2%) — 2 (r? + 8%) — A (r? + %) — 22(s* + 1?)
2(1 — 72 — s2 — 12 + 2rst)
2zy(r — st) + 2xz(s — rt) + 2yz(t — rs)
2(1 —r2 — s2 — 12 + 2rst)

(3.9)

However, if we wish that every g-analogue of an exponential formula is an infinite product,

then (3.2) is far from expectation.
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