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ABSTRACT

In this thesis, we present a bijective proof of the � -Mehler formula. The proof is in the

same style as Foata’s proof of the Mehler formula. Since Foata’s proof was extended to

show the Kibble-Slepian formula, a very general multilinear extension of Mehler formula,

we hope that the proof provided in this thesis helps find some multilinear extension of the� -Mehler formula.

The basic idea to obtain this proof comes from generalizing a result by Gessel. The

generalization leads to the notion of species on permutations and the � -generating series

for these species. The bijective proof is then obtained by applying this new exponential for-

mula to a certain type of species on permutations and a weight preserving bijection relating

this species to the � -Mehler formula. Some by-products of the � -exponential formula are

also derived.
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Chapter 1

Introduction

In this thesis, we present a bijective proof of the � -Mehler formula. The proof is in the same

style as Foata’s proof of the Mehler formula. Since Foata’s proof was extended to show the

Kibble-Slepian formula, a very general multilinear extension of Mehler formula, we hope

that the proof provided in this thesis helps find a multilinear extension of the � -Mehler

formula.

The rest of the thesis is organized as follows. Section 1.1 introduces the Hermite poly-

nomials, the Mehler formula and its extensions. Section 1.2 presents a � -analogue of the

Mehler formula. Section 1.3 discusses the only known version of the � -exponential for-

mula, which is influential on the proof of the main result of the thesis. Chapter 2 contains

the Foata-style proof of the � -Mehler formula introduced earlier. Section 2.1 introduces

a variation of the � -Hermite polynomials, whose corresponding � -Mehler formula is to be

shown. Section 2.2 develops a new type of species on permutations, their generating se-

ries, and several nice consequences derived from this new species. Section 2.3 discusses a� -analogue of the bicolored � -involutionary graphs and their properties. This � -analogue

also belongs to the new class of species introduced in Section 2.2, thus they satisfy certain

identity. Section 2.4 finishes the Foata-style proof of the � -Mehler formula by bijectively

showing relations between the � -analogue of the bicolored � -involutionary graphs and the

new variation of the � -Hermite polynomials. Lastly, Chapter 3 concludes the thesis and

1



1.1 The Mehler formula and its extensions 2

discusses related issues and future works arising from the thesis.

1.1 The Mehler formula and its extensions

Throughout this thesis, we use #�$ %'& to denote the ring of polynomials in % on # , ()�*�+%,� a

polynomial in #�$ %-& of degree � , and .0/1#�$2%'&43 5 a linear functional. We often think of.6�7(8��%,�9� as :<;= (8�+%,�9>	?@�+%,� for some non-decreasing function ?4��%,� on the interval $BA*�DC!& .
A sequence ED(*�1��%,�DFHG�JI1K is called an orthogonal polynomial sequence with respect to .

(or to the distribution >	?@��%,� ) if for all LM���MNMO we have.QPR(TSU�+%,��(1�1��%,�WVU�YXT�[Z\S8�1� (1.1)

where X1��N]5 and Z\S8� is the Kronecker symbol. Relation (1.1) is often called the orthog-

onality relation of the sequence. In terms of the distribution >	?4��%,� , it reads^ ;= (1S_��%,�+(1�*�+%,�9>	?@�+%,�`�YXT�aZbSc�Td (1.2)

Obviously, not all linear functionals have an orthogonal polynomial sequence. Lete ��/f�g.6�+% � � , called the � th moment of . , then . has an orthogonal polynomial sequence

iff none of the Hankel determinants for the sequence E e �hF G�iI1K vanishes.

For convenience, we often normalize the polynomials so that all of them are monic.

It is not difficult to show that any monic orthogonal polynomial sequence satisfies a three

term recurrence: (1�ij,kl��%,�`�m�+%onqpD�a��(1�1��%,�rnts1�l(T�vu*kl�+%,�\� (1.3)

where (*KH��%,�`�0w and ()u*kl�+%,���yx .

There are z classes of the so-called classical orthogonal polynomials (see [1, 5]), in-

cluding the Jacobi, the ultraspherical (or Gegenbauer), the Chebyshev, the Laguerre, and

the Hermite polynomials.



1.1 The Mehler formula and its extensions 3

Definition 1.1. The Hermite polynomials {|�*�+%,� are the orthogonal polynomials with re-

spect to the normal distribution 
 u	}\~ . They can be defined by{��1��%,�`����n�wJ� � 
 } ~ > � 
 u	}\~>a% � d (1.4)

The orthogonality relation for the Hermite polynomials is^ Gu G {�S_�+%,�9{��1��%,�9
 u	} ~ >�%��Y� � �r�7� �"Z\S8�1� (1.5)

and the three term recurrence is{��ij,kl��%,�`���H%-{��*�+%,�<n��v��{��vu*k\��%,�\d (1.6)

The proofs of these relations involve the use of a very powerful tool: the exponential gen-

erating function, as illustrated below.

The fact that 
 u	}\~ � w� � ^ Gu G 
 u	��~ 
i��� }D� >��
can be used to repeatedly differentiate 
 u	} ~ � times, yielding> � 
 u	} ~>a% � � ���v��� �� � ^ Gu G 
 u	� ~ � � 
 ��� }D� >a�bd

It is now not difficult to find the exponential generating function for the sequenceEH{��T��%,�DF G�JI1K : G� �iI1K {��T��%,�H� ��r� � G� �JI1K ��n�wJ� � 
 }\~�� ���v��� �� � ^ Gu G 
 u	��~ � � 
 ��� }D� >a�W��� ��c�� 
 }\~� � ^ Gu G 
 u	� ~ 
 ��� }D�@� G� �iI1K ��n_�H� � �9� ��c� � >a�� 
 } ~� � ^ Gu G 
 u	��~ 
i��� ���f}iu	��� >a�� 
 }\~ 
 u*��}iu	����~ d



1.1 The Mehler formula and its extensions 4

Hence, G� �JI1K {��*�+%,� � ��c� ��
i� }D��u	� ~ d (1.7)

From (1.7), relations (1.5) and (1.6) can be readily verified.

Moreover, the right hand side of (1.7) “almost” looks like the exponential generating

function for some set of weighted combinatorial objects. It thus makes sense to first trans-

form {��1��%,� into an equivalent form, whose exponential generating function is also the ex-

ponential generating function for a simple set of weighted combinatorial objects. We then

hopefully could derive nice relations about {��*�+%,� from combinatorially studying these ob-

jects. This equivalent form, known as the normalized Hermite polynomials, is defined as

follows.

 {��1��%,�@/¡� {��T�+%,¢ � �[�� �J£ � d (1.8)

Replacing (1.8) into (1.7), and let �¤� � � � , we get the generating function for the

normalized Hermite polynomials: G� �JI1K  {��*�+%,� � ��c� �Y
 }D��u	��~�£ � d (1.9)

Throughout this thesis, we shall use $¥wa���,& to denote the set of integers from w to � . The

standard notation is $2�,& , but we do not use this to avoid confusion with $2�,&�¦ which is also

denoted by $2�,& . Let ��� be the set of all matchings (not necessarily perfect) on $7wa�!�,& . For

each matching ?§N¨��� , let ©���?r� denote the number of fixed points, and ª2?«ª the number of

edges of ? . Also define the weight function ¬�� ?­� for each ?§NM��� by¬���?r�4/¡���Wn®w
�\¯ °�¯ %'± � ° � � (1.10)
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with % being an indeterminate. Basically, each fixed point of ? is weighted by % and each

edge of ? is weighted by n®w . Now, it is not difficult to see that {��*�+%,��� �°[²J³�´ ¬�� ?­� (1.11)

because the exponential generating function for both the left and the right hand side of

(1.11) is µ\¶h·8��%*��n�� � ¢a�a� . Due to this combinatorial interpretation, the
 {��1��%,� are also called

the matching polynomials. The matching interpretation allows us to show combinatorially

many relations on the Hermite polynomials. Firstly, it allows us to easily write down a

formula for the
 {��1��%,� polynomials: {��*�+%,�`� �K�¸�¹l¸	�i£ � � ��aº �»P ���aº�n¼w
�½���aº¾nq¿��)didid\w V �Wn®w
� ¹ % �Hu � ¹ d (1.12)

Secondly, the well known Mehler formula:G� �JI1K  {��*�+%,�  {��1� ÀT� � ��r� � w� w«n�� � µ\¶h· � �H��%'À¾n§� � ��% �rÁ À � ��1��wÂn§� � � � (1.13)

could now also be proved combinatorially (see Foata [6]). For a discussion of this proof and

its relation to other combinatorial results on orthogonal polynomials, the reader is referred

to Stanton [16].

The Mehler formula is often referred to as the bilinear extension of (1.9). Carlitz [3, 4]

found several multilinear extensions. Kibble [13], and later independently Slepian [15]

found an extension, known as the Kibble-Slepian formula, whose specializations include

all other extensions. Louck [14] proposed another extension which was proved combina-

torially to be equivalent to the Kibble-Slepian formula by Foata [7].

To describe the Kibble-Slepian formula, let us first introduce some notation. For each
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integer �¨Ãy� , define a symmetric �¨ÄÅ� matrix Æ by

��Æ6� �ÈÇ � ÉÊÊË ÊÊÌ � �ÈÇ if �ÎÍ�Ï� ,w otherwise,

where E � �ÈÇ F �ÑÐ ÇbÒ k is an infinite sequence of indeterminates. Let Ó¾����Ó	kb�id½did½�DÓ½�a��Ô be a vector

of � indeterminates. Let Õ be the set of all symmetric matrices Ö×�Ø��Ù �ÈÇ � ( w�ÚÛ�����¤Ú�� )

of order � such that Ù �¡� �Yx for all �`Ú¼� , and that Ù �ÈÇ is a non-negative integer for all �ÎÍ�Ï� .

Also, for a fixed ÖÜNoÕ , let the � th row sum of Ö be� � �ÛÙ � k Á Ù �7� ÁyÝJÝJÝ
Á Ù � �hd
The Kibble-Slepian formula reads�Þ ²�ß  {Qà�áb��Óvk9�)did½d  {Qà ´ ��Ó½�a�[â �ÑãvÇ �vä�å æ�ÈÇ

â �RãvÇ Ù �ÈÇ � � w� ç µlè-Æ µ\¶h· � w� P�Ó Ô ÓUnqÓ Ô Æ u*k ÓaVH�§d (1.14)

Example 1.2. When ���é� , Æé�ê� k­��ck � , %]�mÓvk , and Àë�mÓ � , the Kibble-Slepian formula

(1.14) reduces to the Mehler formula (1.13).

Example 1.3. When �ë�Y¿ , let

ÆY� ìííííî w � �� w �� � w
ï½ððððñ � and Ó¾� ìííííî % À Ó

ï½ððððñ �
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then the Kibble-Slepian formula becomesG�S Ð � Ð ¹DI1K  {�SrjT�*�+%,�  {�Srj1¹�� ÀT�  {��ij1¹a� Ó��H� S � � � ¹LM���c�¡º,� �w� w«n � � nt� � n§� � Á � � �½� Äµ\¶h·�ò � � �½�l��% � Á À � Á Ó � �rn§% � � � � Á � � �­n§À � � � � Á � � �rn§Ó � ��� � Á � � ��T�WwÂn � � nt� � n§� � Á � � �½�9� Á�H%'À)� � nt�i�9� Á �H%-Ó*����n � �9� Á �vÀhÓ*���cn � �H��1�Ww«n � � n�� � n�� � Á � � �½�9� ó (1.15)

Foata and Garsia [8] extended Foata’s proof [6] of the Mehler formula to give a combi-

natorial proof of the Kibble-Slepian formula. The left hand side of (1.14) was interpreted

as the exponential generating function of the so-called � -involutionary graphs, while the

right hand side could be written as the exponential of the seriesw�UôRõ wç µlè-Æ Á w� � �ÑÐ Ç P�Z �ÈÇ nö� Æ u*k � �ÈÇ V
Ó � Ó Ç (1.16)

where Z �ÈÇ is the Kronecker symbol. They showed that expression (1.16) is the generating

function for the “connected components” of the � -involutionary graphs. Consequently, the

exponential formula applies, proving (1.14).

1.2 The ÷ -Mehler formula and its extensions

Throughout this thesis, we shall use ��A*ø!�[��� (or ��A���� for short) to denote the � -shifted fac-

torial: � A�������� A*ø!�a���Q/¡�ù�Ww«nqA��½��wÎn§A	�[�)dididi�Ww«n�A�� �vu*k �\d
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The � -analogue of an natural number � is denoted by $2�,&�¦ , and the well known Gaussian

coefficient úo���r�bº1� is denoted by û � ¹Dü ¦ . They are defined as follows.$Bxv& ¦ /¡� x$2�,& ¦ /¡� w Á � ÁyÝJÝJÝiÁ � �vu*k ���]Ãýwò � º1ó ¦ /¡� � �[���� �[���vu�¹[� �[�W¹ � �Ww«n§� � �)did½dJ�WwÂn�� �vu�¹!j,k ���wÎn�� ¹ �)dididJ��w«n§�a� �!x|Úyº»Úö�rd
Most often, we shall drop the subscript � when there is no potential confusion.

A � -analogue of the Hermite polynomials, called the � -Hermite polynomials, was in-

troduced by Rogers, who used them to prove Rogers-Ramanujan identities. Following

[11], the � -Hermite polynomials can be defined by their generating function {§��%þ���«ªJ�[� as

follows.

{��+%þ���@ªi�[�4/f� G� �JI1K {��T�+%]ªl�[� � �� �[��� � Gâ¹DI1K w�Ww«nt�H%*��� ¹ Á � � � � ¹ � ��ª �Jª	��wad (1.17)

The three term recurrence for {|�T�+%]ªl�[� is{��Jj,k\��%Mªi�[�<�Û�H%-{��1��%Mªl�a�rny��w«n§� � �9{��Hu*kl��%Mª½�a�bd (1.18)

To get the corresponding version
 {��1��%tª	�a� of

 {��1��%,� , we also have to normalize the{��1��%Mªi�[� . Define  {��T��%¨ª½�[�@/¡� {��*� } � � w«n§�Qªi�[��Ww«n§�[� �i£ � � (1.19)

with the new three term recurrence: {��ij,kl��%Mª½�a�<�ö%  {��1��%¨ªl�a�rny��w Á � ÁöÝJÝJÝ
Á � �vu*k �  {��vu*kl�+%Mªi�[�\d (1.20)
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As in the case of
 {��*�+%,� , there is a combinatorial interpretation for

 {��1��%Ûª-�[� , due

to Ismail, Stanton and Viennot [11]. As expected, this combinatorial interpretation gives {��1��%�ªH�[� as a � -analogue of the matching polynomials. Notice that each ?öNt�q� can be

viewed as an involution on $¥wa���,& . Define a new statistic on ? as follows.�	��?­�4/f� � ÿ ²i° �	��

�
where the sum goes over all edges 
 of ? , and if 
��m��������� , ����� , then��� 

�4/¡� ªfEvº ª½�`�¼º����a� and ?@��ºT�4���1F*ª

Pictorially, imagine putting � points wa�½didid½��� in this order on a horizontal line, then

drawing all edges of ? on the upper half plane. The statistic �	� 

� for an edge 
 is the

number of points º lying between � and � such that º is either a fixed point or an end-point

of some edge 
 � NM? , both of whose end-points are on the left of � (see Figure 1.1).

k � Ç �¹° �¡¹!�
k � Ç �¹ ° �f¹D�
k � Ç �¹

ÿ
ÿ
ÿ

ÿ �ÿ �
Figure 1.1: Illustration of �	��

� , where 
��m� �9����� , �`��� .

It is now an easy matter to prove {��1��%Mª½�a�<� �°[²J³ ´  ¬�� ?­�b� (1.21)
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where  ¬���?r�<����n�w
�b¯ °�¯ %'± � ° � � à�� ° � d (1.22)

We only need to verify that the right hand side of (1.21) satisfies the same recurrence (1.20)

as
 {��*�+%Åªb�[� . Also notice that when �®�0w ,

 {��1�+%Åª\�a� reduces to the matching polynomials.

On the same line of reasoning as in the previous section, one would hope that (1.21)

helps combinatorially discover the � -analogues of the Mehler formula and its extensions.

This turned out to be not easy. There are several known equivalent forms of the � -Mehler

formula. In terms of {Q�1��%Mª½�a� , it readsG� �JI1K {��*� �����	� ªi�[�9{��T� �
����� ªi�[� � ����hø��a��� � �+� � � G�+�W
 u ��
 u ��� ���W
 u ��
 j ��� ���W
 ��
 u ��� ���W
 ��
 j ��� � G � (1.23)

or G� �iI1K {��1��%Mªi�[�9{��T� À�ª½�a� � �� �[��� � ��� � � GGâ¹DI1K P wÎn��[��� ¹ %'À Á �
� � � � ¹ �Wn®w Á �H% � Á �vÀ � �rn��v���!��� ¹ %'À Á ���b��� ¹ V d (1.24)

On the other hand, let X*�*�+%Åª½�[� be the generating function for the number of subspaces

of � � ¦ : XT�*��%Mªl�a�`� �� ¹DI1K ò � º ó % ¹ � (1.25)

then it is not difficult to prove that{��1� �����	� ªi�[�<�Y
 u � � 
bXT�*� 
i����
�ª½�a�bd
This gives another equivalent form of (1.23):G� �JI1K XT�*�+%]ªl�[��XT�*��À�ªi�[� � �� ��ø!�[��� � �+%'À�� � � G���9� G ��%*�9� G ��À��9� G ��%'À	�9� G (1.26)



1.3 A � -exponential formula 11

It is this form of the � -Mehler formula which has the only known combinatorial proof

as was shown in [11], using the vector space interpretation as above. However, it does not

seem to be possible to extend this proof to find a multilinear extension of the � -Mehler

formula, using the same approach as with the regular Mehler formula. Firstly, we need

a � -analogue of the exponential formula, which is not known in general. (A somewhat

specialized � -analogue of the exponential formula was devised by Gessel [9], but we do not

know how to use his method on linear spaces over finite fields.) Secondly, linear subspaces,

although very useful in enumeration arguments, are difficult to be dealt with in bijective

arguments. Hence, besides needing a � -analogue of the exponential formula, we also need

a different combinatorial proof of � -Mehler formula which uses some easier-to-describe

combinatorial objects.

1.3 A ÷ -exponential formula

Gessel [9] gave a partial answer to the question raised near the end of the previous section.

His paper was influential in the proof of the � -Mehler formula presented in this thesis.

He first gave a � -analogue of functional composition for Eulerian generating functions,

which can be thought of as a � -analogue of exponential generating functions, then used this

method to enumerate permutations by inversions and distribution of left-to-right maxima.

The enumeration of permutations by inversions also gives rise to yet another variation of

the � -Hermite polynomials. Any � -analogue of the exponential formula needs to address an

important issue, namely the � -weight for each combinatorial object has to be well-behaved

so that we can compose generating functions while preserving the weights. Gessel showed

how to define a weight function on permutations so that his � -exponential formula could be

used to enumerate certain permutations by inversions. Let us briefly describe his approach
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here.

Firstly, we define a � -analogue of the derivative:��� ���9�<� � �+�9�rn � � �
�9���wÎn��a��� d (1.27)

Notice that � w � xT� and� � ��r�B¦ � � �Hu*k� � n�wJ�\�B¦ d
Secondly, assuming

� � x��<�Yx , a � -analogue  )¦ of the map  / � 3 !#"¹
$ could be defined

as  -¦J� � �<� �&% ¹(' , where
�)% K*' �ùw and for º,+�w��� % ¹-' � ��� Ý � % ¹lu*k.' � with

� % ¹(' ��x��`��xhd
An equivalent explicit form for

� % ¹(' can also be given. Suppose� % ¹(' �+�9�`� G� �JI1K � � Ð ¹ � ��c��¦ �
then the

� � Ð ¹ satisfy� �ij,k Ð ¹Î� �� � I1K ò � � ó � � j,k Ð k � �vu �ÑÐ ¹lu*k­� �� Ç I1K ò � � ó � �vu Ç j,k Ð k � ÇWÐ ¹lu*k
where

� � Ð ¹Î��x when �¨�¼º .

Next, let
�

be a function such that
� � x��]� x and / be a � -exponential generating

function: /)�+�9�<� G� �JI1K /v� � ��c��¦ d
We define a � -analogue of /)� � � , denoted by /)$ � & , as follows./)$ � &'� G� �JI1K /v� � % �#' d (1.28)
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It is easy to see that this � -functional composition satisfies the chain rule:� �0/)$ � &+�r�m� � /T�½$ � & Ý ��� d (1.29)

Now, let 
	���9� be the � -analogue of the exponential function:
	���9�`� G� �JI1K � ��r�B¦ d
Let

�
be a function such that

� � x��<�Yx , and� ���9�<� G� �iI1K � � � ��c��¦ d
Let / be the � -analogue of 
 ! , namely /)���9�<����
	$ � &+�l���9� . If / ’s exponential form is/)�+�9�<� G� �JI1K /v� � ��c��¦ �
then equating coefficients from the chain rule (1.29) for 
	$ � & , it is not difficult to show that

/H�Jj,k<� ÉÊÊË ÊÊÌ
w if �ë��x1 � ¹DI1K û � ¹ ü /v�Hu�¹ � ¹!j,k if �¨Ãýw d (1.30)

Moreover, using the fact that
� /Q�2/ ��� and the definition of

�
, we can write /)���9� in terms

of /)� �
�9� . Iterating this resulting recurrence, we obtain an infinite product form of 
	$ � & as

follows. 
	$ � &��+�9��� Gâ�JI1K w�Ww«nö��wÎn��[�W� � � Ý ��� ��� � �9�9� d (1.31)

This looks very close in form to a � -Mehler formula. For example, let us consider equation

(1.24). To combinatorially prove a (1.24)-like identity for some variation 3{��1��%]ª
�a� of the� -Hermite polynomials we could attempt to do the following:
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4 Find a function
�

so that the right hand side of (1.24) is the same as the right hand

side of (1.31),4 Simultaneously, find a combinatorial proof that /	�¨� 3{��T�+%Ïª��a�53{��1��À�ª��a� satisfies

relation (1.30).4 Moreover, as we have mentioned earlier, we also need to pick 3{�� so that it enu-

merates better-behaved combinatorial objects than the vector subspaces, preferably

a � -analogue of the involutionary graphs.

This idea is going to be the driven force behind our result, although what we will show is

slightly more general than what was just described.



Chapter 2

Main Result

In this chapter, we describe a Foata-style proof of � -Mehler formula for yet another varia-

tion of the � -Hermite polynomials.

2.1 Another variation of ÷ -Hermite polynomials

The version of � -Hermite polynomials just mentioned, denoted by 3{��T��%�ªi�a� is a different

form of the one described by Gessel [9]. In order to define 3{��1��%�ªJ�[� combinatorially and

to give motivations for defining it, we need some definition.

Let 6,� denote the symmetric group on $¥wa���,& as usual. More generally, we use 6<À�L]��Ö �
to denote the set of all permutations on a set Ö of � distinct integers. Each word 7ù���k)d½did�� � where E
�Wkb�idididl�!����F6�ÛÖ could be thought of as a permutation on Ö written in one

line notation, i.e. 7 N86­À�L]��Ö � . The set Ö is called the content of 7 , and is denoted

by p
9
�,�l�07c� . Let  q/,Ö 3 $7wa�!�-& be the trivial one-to-one correspondence between Ö and$7wa�!�-& which preserves order, then  transforms each 7YN:6­ÀhL]� ÖÅ� into  r�07c��N26þ� . The

permutation  r�07c�4N;6)� is called the reduced permutation of 7 , and is denoted by � 
J>-�<7c� .
A permutation 7�N=6­ÀhL]� ÖÅ� is basic if 7 begins with the greatest element of p
9
�,�l�07r� .

In one line notation, each permutation �y�Ø�ck,did½d9�*� of 6)� can be decomposed uniquely

into blocks �§�>7�k,didid(7*¹ where each block 7 � is a basic permutation which begins with a

left-to-right maximum. For example, �Å�Yz[¿hw@?���A�B�� is decomposed uniquely into � blocks

15
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as follows. � �Ûzv¿TwC?��DAEB��1d
We call this decomposition the basic decomposition of � .

A weight function ¬ defined on permutations with values over some commutative al-

gebra over the rationals is said to be multiplicative if it satisfies two conditions

(i) ¬����þ�<�y¬�� � 
J>-�+�8��� .
(ii) If 7)k,didid(7*¹ is the basic decomposition of � , then ¬��+�8�<��¬��07þkW�)did½d�¬��07*¹i� .

From here on, we use F�� to denote the set of all basic permutations on $7wa�!�-& , ��� the set

of all permutations on $7wa�!�-& with only basic blocks of size at most � , and G,�07r� the number

of inversions of a permutations 7 N86­À�L]��Ö � . Gessel proved the following simple but

important theorem.

Theorem 2.1 (Gessel, 1982). Suppose ¬ is a multiplicative function on permutations. Let/v�6� �H ²JIl´ ¬����þ�W�LK � H � � and

� �®� �M ²@N�´ ¬��07c�W�LK � M � d
Then, G� �iI1K /H� � ��c��¦ �y
 O G� �iI,k � � � ��c��¦�P

Hence, in a sense, the basic permutations are the “connected components” of a permu-

tation. An important corollary of this theorem is:
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Corollary 2.2. Suppose ��NQ6"� has C � ���8� basic blocks of length � . Let ¬��+�8�<�ö% ; á � H �k dididW% ; ´ � H �� ,

where the % � are indeterminates, then clearly ¬ is multiplicative. Let /	��� �H ²JIl´ ¬����þ�W�LK � H � ,
and /)���Âªl�a�`� G� �JI1K /v� � ��c��¦ , then

/)�+�@ªi�[�<� Gâ¹DI1K ww«nö�Ww«n��[�W� ¹ ��Rq� � ¹Dj,k �9� �
where Rt���9�<� 1 G�JI1K %*�ij,k�� � .

A special case of this corollary gives us the promised new variation of the � -Hermite

polynomials. Set Rt���9�<�y% Ý � K Á w Ý � k , so that

¬��+�8�<� ÉÊÊË ÊÊÌ
% ; á�� H � if ��NM���x otherwise,

and hence /v�T�+%]ªl�[��� �H ²JS ´ % ; á�� H � �LK � H � d
Theorem �hd�w now gives the � -exponential generating function for /�� as an infinite product:/)��%þ���@ª½�a�<� G� �JI1K /v�1��%Mª½�a� � ��r�B¦ � Gâ¹DI1K wwÎny��wÂn��a��� ¹ ��Rt��� ¹Dj,k �9�� Gâ¹DI1K wwÎny��wÂn��a��� ¹ �l��% Á � ¹Dj,k �9�� Gâ¹DI1K wwÎnt�LT,Óv� ¹ Á Ó � � � ¹ � (2.1)

where TÏ� u � }#U k�u�¦� U ¦ , and Ó¨� ���JV �Ww«n��[�W� . Comparing (2.1) with (1.17), then applying

(1.19) give /v�1��%Mª½�a�<��� � � ´ ~  {�� � nÎ��%� � ªi� � (2.2)
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It is quite interesting that a proof of (2.2) can be provided combinatorially. First, we

rewrite the right hand side of (2.2) using the matching interpretation (1.21) of
 {��T��%Mªl�a� as

follows. � � � �J£ �  {�� � n�� %� � ª½� � � � � � ´ ~ �°[²i³ ´ �Wn®w
�\¯ °�¯ � à�� ° � � n�� %� � � ± � ° �� �°[²i³ ´ P � � ��n�wJ� ¯ °�¯ ��n���� ± � ° � V % ± � ° � � ´ ~ uXWZY [#\~ j*à�� ° �� �°[²i³ ´ %'± � ° � �h¯ °�¯ j*à�� ° �
Now, (2.2) can be put in a combinatorial form as in the following proposition, whose proof

will be bijective.

Proposition 2.3. �H ²JS ´ % ; á�� H � � K � H � � �°[²J³ ´ % ± � ° � � ¯ °�¯ j*à�� ° � d
Proof. We first describe a bijection � /-�|� n,3 �]� , and then show that � is also weight

preserving. Given �ÛNy�Q� , each size- � basic block �,¹\�'¹Dj,k ( �'¹]+m�'¹Dj,k ) gives rise to an

edge ���'¹Dj,kb���'¹i� of � ���þ� . The rest are fixed points. Figure 2.1 shows the mapping when� �ùw�z6¿^?��_A^B`� .
ka b ced � � �f� agbhc:d�k � �K � H �vI d ¯ °�¯ j«à�� ° �vI d

Figure 2.1: Illustration of the weight-preserving map from ��� onto �]� .

To see that � is weight-preserving, suppose ?é� � ���8� . Firstly, under this bijection

clearly Cik½�+�8�¤� ©���?r� . Secondly, for each edge 
q� � �9����� of ? with �h+ � , �	��

� Á w
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counts the number of inversions created by � and a number larger than � preceding it in � .

Summing the quantity �	��

� Á w over all edges 
 of ? , we get �	��?r� Á ª ?Îª .
We are now ready to define our new variation of � -Hermite polynomials combinatori-

ally.

Definition 2.4. Let 3{��*�+%]ªl�[� be defined by3{��1��%¨ªl�a�@/f� �°[²i³ ´ 3¬���?­�b� (2.3)

where 3¬���?­�4/f�y%'± � ° � ��¯ °�¯ j*à�� ° � d (2.4)

The corresponding � -Mehler formula for these 3{�� can be written asG� �iI1K 3{��1��%Mªi�[�i3{��T� À�ª½�a� � ��r�B¦ � ��� � � � � Gj G¹!I1K û���wÎn§� � � � ¹Dj � � � n§�l�Ww«n§�[�W� ¹ P �Ww Á � � � � ¹Dj � ��%'À Á ��� ¹!j,k ��% � Á À � � V ü (2.5)

2.2 Weighted k -species

In this section, we note that the “connected components” of Theorem 2.1 do not have to be

restricted to basic permutations. They could be any “combinatorial structures” defined on

permutations as long as the weight function is multiplicative. To formally describe what

this means, we will use the language of species as those in [2]. Our combinatorial structures

on permutations shall be called � -species (for permutation species).

We will be dealing with weighted species, thus we first need to make precise what a

weighted set means.
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Definition 2.5. Let lem 5 be an integral domain and nê�ol�$ $2�h���lkH�9� � �idididW& & be a ring of

formal power series or of polynomials over l on the variables �h���lk\�id½did . An n -weighted

set is a pair �<p��!¬U� where p is a set and ¬ý/ZpY3qn is a function associating a weight ¬���A��
to each element AoNrp .

Definition 2.6. An n -weighted set �0p¾�!¬_� is said to be summable if for each monomiale �é� ��s � � ák � � ~� didid , the number of elements A�NDp whose weight ¬���A�� contributes a non-

zero coefficient to e is finite.

Now, we are ready to define our weighted combinatorial structures on permutations.

Definition 2.7. An n -weighted � -species is a rule t which

(i) to each totally ordered set Ö , and each permutation uéN86­À�L]��ÖÅ� , associates ann -weighted set �.tM$ÈÖë�vu,&��!¬_� ,
(ii) to each increasing bijection wù/ÂÖok¤n,3 Ö � , and each permutation uéNx6 ¯ Þ á ¯ ( �6 ¯ Þ ~ ¯ ), associates a weight-preserving bijectiontÅ$yw8�vu)&�/'�0tÅ$BÖ�kb�vu)k�&��!¬U�4n,3 �0tÅ$BÖ � �vu � &��!¬U�b�

where u)kÂN;6­À�L]��Ö�kW� and u � N;6­À�L]��Ö � � are derived from u in the natural way.

Moreover, these functions tÅ$yw8�vu)& must also satisfy the functorial properties:tÅ$zG�> Þ �vu)&Ø� G�>�{ % Þ Ð | ' (2.6)tM$y7~}�w8�vu)&Ø� tÅ$y7���u)&�}�tM$ w8�vu)& (2.7)

Basically, the functorial properties say that the weighted sets �.tM$ÈÖë��u)&���¬U� depend only

on the fact that Ö is totally ordered and on Ö ’s cardinality. When Ö has cardinality � , we
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shall use tM$2�r��u)& to denote tM$ÈÖë��u)& , and tÅ$2�,& to denote�|J²@I\´ tÅ$È�c�vu)&�d
In words, tM$2�r��u)& is the set of all structures of � -species t on the permutation u of a totally

ordered set of size � , and tÅ$2�,& is the set of all structures of � -species t on a totally ordered

set of cardinality � .

Definition 2.8. Let t be an n -weighted � -species with weight function ¬ . The � -generating

series of t is the � -exponential formal power series ©��r����ªD�[� with coefficients in n defined

by ©&�<�+�Âª½�[�@/¡� � � Ò K ª tÅ$È�-&9ª � � ��c��¦ � (2.8)

where the � -inventory ª tÅ$È�-&9ª � isª tÅ$È�-&9ª �Å/f� �|
²JI ´ �= ² { % � Ð | ' ¬�� A��W�LK � | � d (2.9)

To this end, the next step is to develop a general version of Gessel’s theorem on � -

species. Theorem 2.1 was about partitioning permutations into basic blocks with a multi-

plicative weight function on the blocks. We shall generalize this notion by first defining the

so-called permutation partition.

Definition 2.9. Given uqN�6�� , a permutation partition � of u is a sequence of non empty

words �Å���<u)k\�id½did½�vu*¹i� such that u �fu)k-u � didid(u*¹
in one line notation, and that the largest elements of uck\�½didid½��u*¹ form an increasing se-

quence.

We shall write �r�]u for “ � is a permutation partition of u .”
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We are now ready to define a � -species whose “connected components” are structures

of another � -species.

Definition 2.10. Let t�� be a weighted � -species with weight function � . Define the � -

species �������@�0t»��� with weight function ¬ as follows. For each totally ordered set Ö
and u¨N;6­ÀhL]� ÖÅ� , define�«$ÈÖë�vu)&þ/f� �HJ� | tÅ$BÖ�kb�vu)k�&þÄ ÝJÝJÝ Ä�tM$ÈÖ�¹H�vu*¹\&�� (2.10)

where �Å���<u)k\�idid½d½�vu*¹i� , and Ö � �Yp
9
�,�l�0u � � , for all �c�ùwa�id½didl�Dº . Moreover, for eachúg��� ©`k\�id½did½�D©8¹i�@N�tÅ$ÈÖQkb�vu)k�&8Ä ÝJÝJÝ Ä�tÅ$BÖ®¹[�vu*¹b&
we associate ¬�� ú¾�<���,��©`k��)d½did(�,� ©c¹J�bd (2.11)

This is the analogue of the multiplicative property in Theorem 2.1. The fact that �@�0t»�#�
is a � -species is easy to verify.

At last, we have all the notations needed for a generalization of Theorem 2.1.

Theorem 2.11. Let t�� be a � -species of structures with weight function � . Let �&� be the� -species �@�0t»��� defined as above. Define a sequence E@/a�	F G�JI1K by /[K4�ùw and/H�®� ª �«$È�-&9ª �c� �]Ãýw[d
Let E � ��F G�JI1K be the sequence defined by

� K4�Yx , and� ¹Dj,k`�éª tÅ$�º Á w½&9ª �
� for º�Ãöxhd
Then, w Á G� �JI,k /H� � ��c��¦ �Y
 O G� �iI,k � � � ��c��¦ P � Gâ�JI1K w�Ww«ny��wÎn��a��� � � Ý � ©&�[� � � �9�9� d (2.12)
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namely ú`�­���Âªl�a�`��
	$È©)�a���Âªl�[��&�d (2.13)

Proof. We only need to verify that the sequences /	� and
� � satisfy relation (1.30), namely

when �MÃgw we have /H�Jj,k<� �� ¹DI1K ò � º ó /H�vu�¹ � ¹!j,kbd
Recall that each ú×Nf�«$È� Á w½& is a sequence of structures of t : ú � � ©@k\�½didid\�D©8S@� .

Let u�k\�id½did½�vu1S be the corresponding permutations (or words) underlying ©@k\�id½didl�!©8S . LetÖ � �mp#9H�-�l�<u � � , for each �Â� wa�½didid\�!L . Notice that � Á w�NtÖ¾S . Suppose ª ©cS6ª1�éº Á w ,ºqÃØx , and let � � Ö®S . Let � ����nYE
� Á w[F , and let 3� �Ü$7wa�!� Á w½&)n�� . For any

two integer sets R and � , let G,�.RÅ���¾� denote the number of inversions created by pairs of

numbers in R and � , namelyG)�.RÅ���¾�`� ªfEh���������Âª½�i+��a�!�`N�R ���oNQ�QF*ª¡d
Note that G)��3�|���¾�]� G,�Z3�|���¨� by this definition, since � Á wYN�� . Furthermore, letú � N��«$v3�®& be the structure of species � obtained from ú by removing ©­S . For each

structure � of any � -species, we shall use u`����� to denote the underlying permutation of� .

It is clear that G)�0u`��ú����<��G,��3�����¨� Á G,�<u`� ú � ��� Á G,�0u`��©þS@�9�\�
and that ¬���ú��<��¬���ú � ���)� ©8S4�\d
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In order to form a ú N��«$2� Á w½& , we can first pick a º -subset � of $7wa�!�-& ( x»ÚYº Úy� ),

form � �e����E
� Á w[F , finally concatenate any pair of ú � N8�«$v3�®& and ©8SÜNxtÅ$��U& .
Consequently, by definition and the multiplicativity of ¬ we can write/H�Jj,kÜ� �� ²�� % �ij,k.' ¬�� ú¾����K � | � � �R�� �� ¹DI1K �� ÐB¯ � ¯ I1¹ �� � ²J� %¡ ¢ ' �±@£8² { % ¢ ' � K �  ¢ Ð � � Ä ¬�� ú � �W� K � | � � � �R� Är�)� ©8S4�W� K � | � ±@£ �R�

� �� ¹DI1K �� ÐB¯ � ¯ I1¹ �� � ²J� ´#¤ " �± £ ² { "¦¥ á � K �  ¢ Ð � � Äë¬���ú � ��� K � | � � � ��� Ä��,��©þSÂ��� K � | � ±@£ ���
� �� ¹DI1K ìî �� ÐB¯ � ¯ I1¹ � K � % �
'7u � Ð � � ïñ ìî �� � ²J� ´#¤ " ¬���ú � �W� K � | � � � ��� ïñ ìî �±@£þ² { "*¥ á �,��©þS@��� K � | � ± ��� ïñ
� �� ¹DI1K ò � º ó /H�vu�¹ � ¹Dj,kDd

Example 2.12. Clearly Theorem 2.11 implies Theorem 2.1 and thus all other consequences

of Theorem 2.1 as derived by Gessel [9].

Example 2.13. Take �¨§�w so that ¬:§éw in Theorem 2.11, we obtainw Á G� �iI,k /H� � ��r�B¦ � �+�bø!�a� G ������ø!�[� Gj G�JI1K PDw«nq�
��� � Á � � � � �ij,k V � (2.14)

where, /H��� �|J²@I\´ ªfEJ��ª½�r�]urF*ª � K � | � d
In fact, when � 3 w , /[� counts the number of sets of words on $7wa�!�-& whose contents are

disjoint and whose union of contents is exactly $¥wa���,& . While, when �»3 w the right hand

side of (2.14) goes to µ\¶h· P �9¢1��wUnÏ�9� V . Thus, we could have proven easily identity (2.14)

combinatorially when �®�0w .
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Following Gessel’s line of derivation, we can generalize the previous example, as an-

other corollary of Theorem 2.11, as follows.

Corollary 2.14. Let � �m�0u"k\�idididl�vu*¹i� be any permutation partition of u�NQ6"� . Let C � �+�8� be

the number of words of size � of � . Define a weight function ¬ for � by ¬����þ�4� j � % ; å � H �� ,

and let /H��� �|J²JIl´ � HJ� | ¬��+�8�W� K � | � d (2.15)

Then, ú_�r�+�Âªi�[�<� Gâ�JI1K wP w«ny�WwÂn��[�W� � ��Rt��� � �9� V � (2.16)

where Rt�+�9�<� G� �JI1K %*�Jj,k½$2� Á w½&R¦W� � d
Write ����¹©u if �Q�,u and all words of � are of size at most º . Set Rt���9�<�y% Á �Ww Á �[��� ,

so that ¬����8�<� ÉÊÊË ÊÊÌ
% ; á�� H � if �r� � ux otherwise,

and hence /H�1��%Mªi�[�<� �|J²@I ´ �H@� ~ | % ; á�� H � �LK � | � d
Corollary 2.14 givesú_�­��%þ�9�Âª½�[�`� G� �JI1K /v�1��%Mªl�[� � ��r�B¦ � Gâ�JI1K ww«ny�WwÂn��[�W� � ��Rq� � � �9�� Gâ¹DI1K ww«nq��T-Ó[� ¹ Á Ó � � � ¹ � (2.17)
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where T�� u � ���ª k�u�¦k�j1¦ and Ó��y� � V w«n§� � . We now get/)��%Mªl�a�`�y� � ��w Á �[� �J£ �  { � n�� %� w Á �¬«««« � � (2.18)

and thus, �|J²JIl´ �HJ� ~ | % ; á�� H � ��K � | � � �°[²J³�´ �Ww Á �a�b¯ °�¯ � à�� ° � %'± � ° � d (2.19)

We already had a somewhat indirect combinatorial interpretation of (2.18). We leave the

direct proof of (2.19) open for now.

2.3 A ÷ -analogue of the bicolored ­ -involutionary graphs

In this section, we introduce a � -analogue of the bicolored � -involutionary graphs, then

apply Theorem 2.11 for these graphs, one of whose corollaries will be the � -Mehler formula

(2.5).

Definition 2.15. A graph ú � ��Ö¤��®�� is called an ordered bicolored � -involutionary

graph if ú satisfies the following conditions:

1. ú has � vertices labeled by � distinct positive integers in Ö .

2. ú has no multiple edges, but can have loops.

3. The � vertices of ú line up on a horizontal line, so that we can speak of a vertex

being on the left or right of another, and so that the vertices of ú forms a permutation�`��ú��<�y��k�� � didid9�*�QNQ6<À�L]��Ö � .
4. Each edge of ú is colored either red or blue.

5. Each vertex of ú is incident to exactly � edges of different colors.
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6. A non-loop edge of ú can only connect some � � to � � j,k unless it completes a cycle

of ú .

7. Let ��k\�½didid\���4S be the connected components of ú from left to right. Let ¯Î�<�¾�
denote the largest vertex number in a connected component � of ú , then ��� ú¾� must

satisfy the condition that ¯Î�<�Uk��4� ÝJÝJÝ �°¯Î���4S@� .
8. For each connected component � , the vertex numbered ¯Î�<�¾� has to be on the left of

the blue edge incident to it.

9. If a connected component � is a cycle, then the vertex numbered ¯Î�<�¾� has to be the

left most vertex among all vertices of � . It is not difficult to see that the connected

components of ú can only be in one of z forms as shown in Figure 2.2. In the figure,

the bold lines represent blue edges and the thin lines represent red edges.

} ±
N	²z³ ÿ´ ÿ*µ¶ ��·*�

± ±
¶ ��·*�¶ ��·*�

± }
}}

¶ ��·*�¶ ��·*�
Figure 2.2: Possible connected component types of an ordered bicolored � -involutionary

graph.

Let � Þ denote the set of all ordered bicolored � -involutionary graphs on Ö , where Ö
is an � -set of positive integers. Let ¸ Þ be the set of all graphs in � Þ which have exactly

one connected component. When Ö �m$7wa�!�-& , �"� and ¸T� shall be used for convenience.
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Let  /ÎÖ 3 $¥wa���,& be the trivial one-to-one correspondence between Ö and $7wa�!�-&
which preserves order. For each ú�NQ� Þ , let � 
J>-��ú�� denote the graph obtained from ú by

renumbering each vertex � of ú by  r�0�h� . Conversely, we also use Ö§��ú�� to denote the set

of vertices of ú .

Definition 2.16. A weight function ¬ defined on � Þ with values over some commutative

algebra over the rationals is said to be multiplicative if it satisfies the following conditions:

(i) ¬���ú��<�y¬�� � 
J>-��ú���� .
(ii) If w*kb�idid½d½��w�¹ are the connected components of ú (which are ordered bicolored invo-

lutionary graphs themselves), then ¬�� ú¾�<�ö¬��.w,kW�)didid9¬��.wh¹½� .
The following theorem is obviously a very special case of Theorem 2.11 applied to the

ordered bicolored involutionary graphs.

Theorem 2.17. Supposed ¬ is a multiplicative function on �8� . For �ùÃ x , define a se-

quence E@/[�	FHG�iI1K /H�®� �� ²��l´ ¬���ú��W� K � H � � ��� d
Let E � ��F G�JI1K be the sequence defined by

� K4�Yx , and� ¹!j,k<� �· ²
¹ "¦¥ á ¬������W�LK � H ��·*���
for º�Ãöx . Then, G� �iI1K /H� � ��c��¦ �y
 O G� �iI,k � � � ��c��¦ P
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We are now ready to take the first step of the plan outlined at the end of Chapter 1 by

specializing ¬ so that the right hand side of (1.31) is the same as the right hand side of

(2.5), where the function
�

in (1.31) is� ���9�<� G� �iI1K � � � ��c��¦ d
Definition 2.18. Let ú be a graph in � Þ . For each edge 
 (respectively vertex � ) of ú ,

let �o� 

� (respectively �o����� ) denote the connected component containing 
 (respectively � ).
Define a weight function � on each edge 
 of ú as follows.

� ��

�`� ÉÊÊÊÊÊÊÊÊÊÊÊÊÊË ÊÊÊÊÊÊÊÊÊÊÊÊÊÌ

� if 
 is a non-loop red edge� if 
 is non-loop, blue and to the left of ¯Î�<�o� 

���w if 
 is non-loop, blue and to the right of ¯Î�<�o� 

���À if 
 is a red loop% if 
 is a blue loop

Let � be a weight function defined on � Þ by:� � ú¾�`� âÿ ²Jº � � � � � 

�\�
then obviously � is multiplicative.

We call an ordered bicolored � -involutionary graphs with the weight � associated a

bicolored � ���!�"� -involutionary graph. Figure 2.3 shows an example of such a graph. In the

figure, the largest vertex number ¯Î����� in each component � has been put in bold face.

Lemma 2.19. Let � be the function defined above, and E � �hF G�iI1K be a sequence defined by� K@�Yx and � ��� �· ²
¹ ´ � �<�¾����K � H ��·*�R� � when �¨Ãýwad
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� k »(¼ d½ ca � k � k�k »v¾k � �} ¦ k ¦ ¦k ¦ k b »(¿±} ± } ±¦ ¦ k ¦ kH I®� � ÐÁÀ�Ð a Ð k Ð k K Ð d Ð � Ð c Ð b Ð k ��Ð k � Ð k�k Ð k � Ð k a Ð�� � K � H �HI ���Â�ÃÅÄiÆ0Ç�È(É�Ê#ËÍÌ]Ç�Î�Ï�Ð-Ñ@Ð�ÒÓÇ�Ð�Ð
Figure 2.3: An example of a bicolored ���h�!��� -involutionary graph.

Moreover, let � ���Âªl�a�@/f� G� �JI1K � � � ��r�B¦ d
Then, ��� ���@ª½�a�<� ��w«n�� � � � ����� � Á �Ww Á � � � � ��%'À Á ���T��% � Á À � ���w«n�� � � � �½�Ww«n§� � � � � d (2.20)

Proof. Firstly, we claim that� � ¹Dj,k<���9$�º	& Á $Bº Á w½&��W� � ¹ ���aº1�\�B¦9%'À-d
To see this, let us consider Figure 2.2. The components in ¸ � ¹Dj,k can only be the paths

which start and end with different colored loops, and have largest vertex number �[º Á w .

Summing � �����W� K � H ��·*��� over all components � which start with a blue loop and end with a

red loop we get the term $�º	&Ñ�H� ¹ ���aº1�\�B¦9%'À-�
while the components which start red and end blue introduce the term$�º Á wl&Ñ�H� ¹ ���aº1�\�B¦�%'À,d
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The details are easy to be verified and hence omitted here.

Secondly, we claim that� � ¹Dj � �y�L� ¹Dj � ���aº Á w
�b��¦ Á $�º Á w½&R� � ¹Dj,k ���aº Á w
�b��¦i��% � Á À � �\d
Here, the term � � ¹Dj � ���aº Á w
�\�B¦ is from the cycle components, $�º Á w½&R� � ¹Dj,k ���aº Á w
�\�B¦W% � from

the paths which start and end with a blue loop, and $�º Á w½&R� � ¹Dj,k ���aº Á w
�\�B¦�À � from the paths

which start and end with a red loop.

By definition,� ���Âªl�a�×� G� �iI1K � � � ��c��¦� G� ¹DI1K ��$Bº�& Á $Bº Á w½&��W� � ¹ ���aº1�b��¦W%'À � � ¹!j,k���aº Á w
�b��¦ ÁG� ¹DI1K P�� � ¹Dj �
���aº Á w
�b��¦ Á $�º Á wl&Ñ�H� ¹Dj,k ���aº Á w
�b��¦i��%'� Á À��b�9V � � ¹Dj ����aº Á �a�\�B¦ d
Hence,��� ���@ª½�a�<� G� ¹DI1K ��$Bº�& Á $�º Á wl&+���v� ¹ %'À���� ¹ Á G� ¹DI1K � � ¹Dj �9��� ¹Dj,k ÁG� ¹DI1K $Bº Á w½&R�H� ¹Dj,k ��%'� Á À��b����� ¹Dj,k

(2.21)

Now, we calculate each term of (2.21) separately as follows.%'À G� ¹DI1K ��$Bº�& Á $�º Á wl&+��� � ¹ � � ¹ �¼%'À���w Á � � � � � G� ¹!I1K $Bº Á w½&R� � ¹ � � ¹�¼%'À���w Á ���!�H�\� G� ¹!I1K � ¹� Ç I1K �H� �¡¹lu Ç �Rj � Ç � ��� ¹�¼%'À���w Á ���!�H�\� G� � I1K �������H��� G� Ç I1K ����Ç\� � Ç� ��w Á � � � � ��%'À�Ww«n§� � � � �½��wÎn�� � � � � d
(2.22)
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Similarly, G� ¹DI1K � � ¹Dj ����� ¹Dj,k � ��� �w«n�� � � � � (2.23)

and��% � Á À � � G� ¹DI1K $�º Á w½&R� � ¹Dj,k � � ¹Dj,k �m�+% � Á À � ����� G� ¹DI1K � ¹� Ç I1K � � ¹Dj Ç � � � ¹�m�+%'� Á Àh�!����� G� ¹DI1K � ¹� Ç I1K �H� �¡¹\u Ç ��j � Ç � ��� �f¹lu Ç ��j ��Ç�m�+%'� Á Àh�!����� G� � I1K �������H��� G� Ç I1K ����Ç\� � Ç� ���T��% �rÁ À � ���wÎn�� � � � �l�Ww«n§� � � � �
(2.24)

Combining (2.22), (2.23) and (2.24) yields (2.20).

Corollary 2.20. Let � be the function defined above, and E@/	�hF G�iI1K be a sequence defined

by /v�6� �� ²J� ´ � ��ú��W�LK � H � � ��� d (2.25)

Then,/)�+�@ªi�[�<� ��� � � � � Gj G¹DI1K û �WwÂn§� � � � ¹Dj � � � n§�l�Ww«n§�[�W� ¹ P �Ww Á � � � � ¹Dj � ��%'À Á ��� ¹Dj,k ��% � Á À � � V ü
where /)���@ªl�a�`� G� �iI1K /H� � ��r�B¦ d
Proof. This is straightforward from Theorem 2.17, Lemma 2.19 and equation (1.31).
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2.4 A bijective proof of the ÷ -Mehler formula

Now, we have enough tools to show (2.5) bijectively. By Corollary 2.20, to prove (2.5)

we are left to demonstrate that 3{��1��%yª'�a�53{��1��À ª*�[�¤�q/H� . We shall show this relation

combinatorially as formally put in the following theorem.

Theorem 2.21. Let 3{�� be defined combinatorially by equation (2.3), and /	� by equation

(2.25). Then, 3{��1��%Mªi�[�i3{��T� À�ª½�a�<�:/H��d
Proof. We want to find a weight-preserving bijection � which maps a pair ��?��D? � �yN�]�ij,k«Ä]�]�ij,k to a graph úØNC�,�Jj,k . Let ��?��D? � � be a pair of matchings in ���Jj,kÂÄ]�]�Jj,k ,
where the fixed points of ? are weighted by % and of ? � by À . As before, we view the

vertices wa�id½did½�!� Á w of ? and ? � as lying on a horizontal line from left to right in that order,

with the edges drawn on the upper half plane. Let (þk\�ididid\��( = ( A ÚY� Á w ) be the sequence

of vertices of ? starting from the right which are not left end-points of ? ’s edges. Similarly,

let ( � k �id½did½��( � = � be the corresponding sequence for ? � . Notice that (�k¾�é( � k �ê� Á w . Let
vk\�id½didl�!
 ¯ °�¯ (respectively 
 � k �½didid½�!
 � ¯ ° � ¯ ) be the set of edges of ? (respectively ? � ) ordered by

their right end-points starting from the right.

Our idea is to start from the right, look simultaneously at (8k and ( � k , ( � and ( � � , ...

determine the “right place” to stop and build up the right most connected component ofú based on the relative distribution of edges and points of ? and ? � seen so far. Then,

remove certain points and edges from ? and ? � to get 7 and 7 � respectively, and re-apply

the method to get the next (from the right) connected component of ú , and so on.

Looking at (�k and ( � k , ( � and ( � � , ... there will roughly be z situations as follows.
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1. At some º Á w , all of ( � and ( �� , w®Ú¼�`Úyº Á w , are right end-points of edges in ? and? � respectively, and ����º Á w is the least integer such that �	��
 Ç �`��x .

2. We meet a fixed point ('Srj,k of ? and then a fixed point (-¹!j,k of ? � where L Úyº . For

this case to be disjoint from case 1, it is necessary that all edges 
 of ? whose right

end-points are on the right of ('S­j,k have �	��

��+�x .

3. We meet a fixed point ( �S­j,k of ? � strictly before a fixed point (-¹Dj,k of ? .

4. Two fixed points of ? are met before any fixed points of ? � .
5. Two fixed points of ? � are met before any fixed points of ? .

Note that similar to case 2, the cases 3, 4, and 5 need to be defined so that they are disjoint

from case 1. These cases determine our “right place” to stop as mentioned above.

Formally, we consider z cases as follows.

Case 1. There exists a º , xQÚyº Ú �f�Hu*k��� , such that

(i) ���Ûº Á w is the smallest integer where �	��
 Ç ���yx . (i.e. ��� 
 Ç �Ô+¼x for all ��Ú�º .)

(ii) For all ���0wa�½didid½�Dº Á w , 
 Ç has right end-point ( Ç and 
 �Ç has right end-point ( �Ç .
The situation is depicted in Figure 2.4. Let 7 (respectively 7 � ) be the matching

Õ�Ö � ×�Ø×ÚÙ× Ù¡Û�Ü�Ø × Ù¡ÛÝ Ø
Ý.Þ Ø

Ý ÛÝ Û<ÜJØ Ý.ÞÛ�Ü�Ø Ý.ÞÛ ßà Øà Ûà Û<ÜJØ
à-Þ Øà-ÞÛ<ÜJØ à-ÞÛ á	â¬ãäâæå�ç ØÙ

Figure 2.4: Illustration of case 1.
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obtained by removing 
ak\�idididl�D
i¹Dj,k and their end-points (respectively 
 � k �idididl�D
 � ¹Dj,k
and their end-points) from ? (respectively ? � ). We shall construct úý� � � ? �D? � � such

that the last connected component of ú is a cycle �ý�m��� Á wa�!� � ¹Dj,k!�idididl�!�WkW� , and that� �<7`�v7 � � forms the rest of the components of ú . Let Æ��0E
� � ¹!j,kb�idididl�!�Wk!F be set of the

rest of the points on the cycle as shown. To do this, we need to pick a permutationut�m� � ¹Dj,k,didid!��k®N26­ÀhL]� Æ6� , where Æ � E
� � ¹Dj,kb�idid½d½�!��kDF is a set of distinct integers

in $¥wa���,& , such that the contribution ¬�· of this cycle � to the weight of ú is exactly

equal to the contribution ¬ º of 
[k\�½didid½�!
i¹Dj,k to the weight of ? plus the contribution¬ �º of 
 � k �id½didl�!
 � ¹Dj,k to the weight of ? � . Notice that removing the edges 
 Ç and 
 �Ç
does not have any effect on the total weights of the rest of edges of ? and ? � . Letè �m$¥w[�!�,&Jn»Æ , and G,� è �DÆ6� be the number of inversions created by pairs of numbers

in
è ÄMÆ , namely the number of pairs �0Tþ� � �4N è ÄMÆ such that T�+ � .

As each red edge on � is weighted � and each blue edge weighted w , it is easy to see

that ¬é· � � K ��ê Ð ´ ��j K � | �Rj � ¹!j,k Ý � ¹Dj,k
(2.26)¬ º � � ¹Dj,k Ý ��ë "¦¥ áæ*ì á à�� ÿ æ � (2.27)¬ �º � � ¹Dj,k Ý ��ë "¦¥ áæ*ì á à�� ÿ �æ � (2.28)

Hence, we need to pick u such thatG,� è �!Æ6� Á G,�<uþ�<� ¹Dj,k� Ç I,k ��� 
 Ç � Á ¹Dj,k� Ç I,k ��� 
 �Ç �rntº,d (2.29)
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Observe that �	��
i¹Dj,k9� � xT� (2.30)w6Úy��� 
 Ç � Ú � Á w«nq�l�a�îíT���0w[�idididl�bº,� (2.31)x�Úy��� 
 �Ç � Ú � Á w«nq�l�a�îíT���0w[�idididl�bº Á wad (2.32)

Now, define a function
�

on E	wa�id½didl�D�aº Á w[F by� �+�9�<� ÉÊÊË ÊÊÌ
� n�� Á ��nt�	��
 Ç � if �`�Y�l�a�����ùwa�½didid\�bº� n�� Á wÂnt�	��
 �Ç � if �`�Y�l��n¼wa���¾�ùwa�id½didl�Dº Á wad

Then, recursively determine ��k\�idid½d½�!� � ¹Dj,k , element by element starting from ��k , work-

ing toward � � ¹Dj,k as follows.���"� the
� �+�9� th smallest number in $¥wa���,&'nÏE
�9k\�ididid\�!����u*kbF	d (2.33)

It is easy to check that w¾Ú � ���9�«Ú�� ny���rnöw
� for all � ��wa�id½did½�b�[º Á w so that ��� is

well defined. Moreover,G,� è �!Æ6� Á G,�<u"� � � ¹Dj,k� ��I,k ªfE\�»ª!� preceeds ��� , �ï+Ï��� , �ÅÍ�ö� Á w[F*ª� � ¹Dj,k� ��I,k P ��ny���cn�w
�rn � �+�9� V� ¹� Ç I,k P � nö���½�®n¼w
�rn � ���½��� V Á ¹Dj,k� Ç I,k P ��ny���½��nt�a�8n � ���½�®n�w
� V� ¹Dj,k� Ç I,k ��� 
 Ç � Á ¹Dj,k� Ç I,k ��� 
 �Ç �rntº,�
which is exactly (2.29).

Case 2. There exists a º , xQÚyº Ú � � , and an L , xQÚ¼L Úyº such that
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(i) For all ��� w[�idididl�!L , ( Ç is the right end-point of 
 Ç , and �	� 
 Ç �ð+�x . Moreover,(1S­j,k is a fixed point, which is weighted by % . And, for all �¾��L Á �h�idididl�bº Á w ,( Ç is the right end-point of 
 Ç u*k .
(ii) For all � � wa�idid½d½�bº , ( �Ç is the right end-point of 
 �Ç . And, ( � ¹Dj,k is a fixed point

weighted by À .

The situation is depicted in Figure 2.5. This time, the last component � of ú starts

ñ×�Ø× Ù× Ù¡òÕ�Ö �× Ù¡òóÜJØô × ÙÁÛÝ.Þ Ø
Ý ØÝ òÝ òóÜJØÝ Û

Ý.ÞÛ Ý0ÞòóÜ�Ø Ý.Þòñô á	âÔãäâ å ÙLõ á	â÷öøâÔãß
Figure 2.5: Illustration of case 2.

with a red loop and ends with a blue loop. The point � Á w is the ���HL Á w
� st point

from the right. Let u , Æ ,
è

be defined as in the previous case, then the corresponding¬é· , ¬ º and ¬ �º are as follows.¬é· � � K ��ê Ð ´ �Rj K � | ��j � S Ý � � ¹\u	S Ý %'À (2.34)¬ º � � ¹ Ý � ë "æ�ì á à�� ÿ æ � Ý % (2.35)¬ �º � � ¹ Ý ��ë "æ�ì á à�� ÿ �æ � Ý À-d (2.36)

Hence, we need to pick u so thatG,� è �!Æ6� Á G,�<u"��� ¹� Ç I,k ��� 
 Ç � Á ¹� Ç I,k �	��
 �Ç �rn§LMd (2.37)
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For �­�ùwa�id½did½�b�[º , the corresponding
� ���9� is:

� �+�9��� ÉÊÊÊÊÊÊË ÊÊÊÊÊÊÌ
��n§� Á �_nt�	��
 Ç � if �<�Y�½� , ���0wa�ididid\�!L��n§� Á w«nt�	��
 Ç � if �<�Y�½� , ���yL Á wa�idididl�bº��n§� Á w«nt�	��
 �Ç � if �<�Y�½�®n¼w , ���gwa�idididl�bº,d (2.38)

As in the previous case, ��� is defined by (2.33). To show that ��� is well defined and

that they satisfy (2.37), we only need to observe thatw®Úy�	��
 Ç � Ú � Á wÂnt�½�a�é�¾�ùwa�idid½d½�!L (2.39)xQÚy�	��
 Ç � Ú � Á wÂny���½� Á w
�b�m���öL Á wa�ididid\�bº (2.40)xQÚy�	��
 �Ç � Ú � Á wÂnt�½�a�é�¾�ùwa�idid½d½�bº,d (2.41)

Case 3. There exists a º , w®Úyº Ú � � , and an L , xQÚ¼L Úyº�n¼w , such that

(i) For all ��� wa�idid½dl�bº , ( Ç is the right end-point of 
 Ç , and (*¹Dj,k is a fixed point

weighted % .

(ii) For all ���0wa�ididid\�!L , �	� 
 Ç ��+�x .

(iii) For all �Û� wa�idididl�!L , ( Ç is the right end-point of 
 �Ç , (1Srj,k is a fixed point

weighted À , and for all �¾��L Á �h�idid½d½�bº Á wc( Ç is the right end-point of 
 �Ç u*k .
The situation is depicted in Figure 2.6. In this case, we have¬é· � �LK ��ê Ð ´ ��j K � | �Rj � Srj,k Ý �H� ¹lu*��S­j,k�� Ý %'À (2.42)¬ º � � ¹ Ý � ë "æ*ì á à�� ÿ æ � Ý % (2.43)¬ �º � � ¹ Ý � ë "æ*ì á à�� ÿ �æ � Ý À,d (2.44)
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Figure 2.6: Illustration of case 3.

Hence, we need to pick u so thatG,� è �!Æ6� Á G,�<u"��� ¹� Ç I,k ��� 
 Ç � Á ¹� Ç I,k �	��
 �Ç �rn§LMd (2.45)

For �­�ùwa�id½did½�b�[º , the corresponding
� ���9� is:

� ���9�`� ÉÊÊÊÊÊÊÊÊÊË ÊÊÊÊÊÊÊÊÊÌ
��n§� Á �Unt�	� 
 Ç � if �`���½� , ���ùwa�½didid\�!L��n§� Á wÎnt�	� 
 �Ç � if �`���½� , ����L Á wa�½didid½�Dº��n§� Á wÎnt�	� 
 �Ç � if �`���½��n¼w , ���0wa�½didid½��L��n§� Á wÎnt�	� 
 Ç � if �`���½��n¼w , ���yL Á wa�id½didl�Dº .

(2.46)

As in the previous case, ��� is defined by (2.33). To show that ��� is well defined and

that they satisfy (2.45), we only need to observe thatw6Ú���� 
 Ç � Ú � Á wÎnt�l�a�m���gwa�idididl�!L (2.47)x�Ú���� 
 Ç � Ú � Á wÎnt�l�a�m���öL Á w[�ididid\�bº (2.48)x�Ú���� 
 �Ç � Ú � Á wÎnt�l�a�m���gwa�idididl�!L (2.49)x�Ú���� 
 �Ç � Ú � Á wÎny���½� Á w
�b�m����L Á w[�idididl�bº,d (2.50)

Case 4. There exists a º , xQÚyº Ú �f�Hu*k��� , and an L , xQÚ¼L Úyº , such that
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(i) For all ��� w[�idididl�!L , ( Ç is the right end-point of 
 Ç , and �	� 
 Ç �ð+�x . Moreover,(1S­j,k and (*¹Dj � are fixed points weighted % . For all ����L Á �h�ididid\�bº Á w , ( Ç is

the right end-point of 
 Ç u*k .
(ii) For all ���0wa�ididid\�bº Á w , ( �Ç is the right end-point of 
 �Ç .

The situation is depicted in Figure 2.7. In this case, we haveÝ ØÝ òÝ òóÜJØÝ Û
Ý.Þ ØÝ.ÞÛ�Ü�Ø ññ ñ ñ× Ø× ÙÁÛ×ÚÙÁÛ<ÜJØ Õ	Ö � × Ù× Ù¡òá�âÔã�âþå�ç ØÙ�õ á	â¬öøâÔãß

Figure 2.7: Illustration of case 4.

¬é· � � K ��ê Ð ´ �Rj K � | ��j � S Ý � � ¹Dj,k�u	S Ý % � (2.51)¬ º � � ¹ Ý � ë "æ*ì á à�� ÿ æ � Ý % � (2.52)¬ �º � � ¹Dj,k Ý ��ë "¦¥ áæ*ì á à�� ÿ �æ � d (2.53)

Hence, we need to pick u so thatG,� è �!Æ6� Á G,�<u"��� ¹� Ç I,k ��� 
 Ç � Á ¹!j,k� Ç I,k �	��
 �Ç �rn§LMd (2.54)

For �­�ùwa�id½did½�b�[º Á w , the corresponding
� ���9� is:

� �+�9�`� ÉÊÊÊÊÊÊË ÊÊÊÊÊÊÌ
��n§� Á �_nt�	��
 Ç � if �<�Y�½� , �¾�ùwa�idid½d½�!L��n§� Á w«nt�	��
 Ç � if �<�Y�½� , �¾��L Á wa�idid½d½�bº��n§� Á w«nt�	��
 �Ç � if �<�Y�½�®n¼w , ���0wa�ididid\�bº Á w[d (2.55)
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As in the previous case, ��� is defined by (2.33). To show that ��� is well defined and

that they satisfy (2.54), we only need to observe thatw®Úy�	��
 Ç � Ú � Á wÂnt�½�a�é�¾�ùwa�idid½d½�!L (2.56)xQÚy�	��
 Ç � Ú � Á wÂny���½� Á w
�b�m���öL Á wa�ididid\�bº (2.57)xQÚy�	��
 �Ç � Ú � Á wÂnt�½�a�é�¾�ùwa�idid½d½�bº Á wad (2.58)

Case 5. There exists a º , xQÚyº Ú �f�Hu*k��� , and an L , xQÚ¼L Úyº , such that

(i) For all ��� wa�½didid\�!L , ( �Ç is the right end-point of 
 �Ç . Moreover, ( �S­j,k and ( � ¹Dj �
are fixed points weighted À . For all �Û� L Á �h�½didid½�Dº Á w , ( �Ç is the right

end-point of 
 �Ç u*k .
(ii) For all ���0wa�ididid\�bº Á w , ( Ç is the right end-point of 
 Ç .

(iii) For all �¾�ùwa�idid½dl�!L , �	� 
 Ç ��+�x .

The situation is depicted in Figure 2.8. In this case, we have

ôô
Ý ØÝ Û<ÜJØ
Ý0Þ ØÝ0ÞòÝ0ÞòóÜ�ØÝ0ÞÛ ô ô× Ø× ÙÁÛ×�ÙÁÛ<ÜJØ Õ	Ö �

á�âÔãäâ åÿç ØÙ�õ á	âÔö¨â¬ãß × ÙýòóÜJØ
Figure 2.8: Illustration of case 5.

¬é· � � K ��ê Ð ´ �Rj K � | ��j � S­j,k Ý � � ¹!j,k�u*�fSrj,k�� Ý À � (2.59)¬ º � � ¹Dj,k Ý ��ë "¦¥ áæ�ì á à�� ÿ æ � (2.60)¬ �º � � ¹ Ý ��ë "æ�ì á à�� ÿ �æ � Ý À � d (2.61)
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Hence, we need to pick u so thatG,� è �!Æ6� Á G,�<u"��� ¹Dj,k� Ç I,k ��� 
 Ç � Á ¹� Ç I,k �	��
 �Ç �rn§LMd (2.62)

For �­�ùwa�id½did½�b�[º Á w , the corresponding
� ���9� is:

� ���9�<� ÉÊÊÊÊÊÊÊÊÊË ÊÊÊÊÊÊÊÊÊÌ
� n�� Á ��nt��� 
 Ç � if �`���½� , ���0w[�idididl�!L� n�� Á wÂnt��� 
 �Ç � if �`���½� , ���yL Á wa�½didid\�bº� n�� Á wÂnt��� 
 �Ç � if �`���½��n¼w , ���ùwa�½didid\�!L� n�� Á wÂnt��� 
 Ç � if �`���½��n¼w , ����L Á wa�½didid½�Dº Á wad

(2.63)

As in the previous case, ��� is defined by (2.33). To show that ��� is well defined and

that they satisfy (2.62), we only need to observe thatw6Ú���� 
 Ç � Ú � Á wÎnt�l�a�m���gwa�idididl�!L (2.64)x�Ú���� 
 Ç � Ú � Á wÎnt�l�a�m���öL Á w[�ididid\�bº Á w (2.65)x�Ú���� 
 �Ç � Ú � Á wÎnt�l�a�m���gwa�idididl�!L (2.66)x�Ú���� 
 �Ç � Ú � Á wÎny���½� Á w
�b�m����L Á w[�idididl�bº,d (2.67)



Chapter 3

Discussions

We can show formula (2.5) in case �6�0w by showing/v�ij,k<� � �K�¸ � ¹Dj,k�¸	� � ��[º Á w � /H�vu � ¹\u*k\���[º Á w
�\� �Á � �K�¸ � ¹l¸	� � ��aº � /H�vu � ¹����aº Á wJ�\� � %'ÀÁ � �K�¸ � ¹Dj,k�¸	� � ��aº Á w � /v�Hu � ¹lu*kl��º Á w
�½���aº Á wJ�\� � %'�Á � �K�¸ � ¹Dj,k�¸	� � ��aº Á w � /H�vu � ¹lu*kb��º Á w
�l���aº Á w
�\� � Àh�l� (3.1)

where /v� is defined to be 3{��T�+%Ïª'w
� 3{��T��À�ª'w
� , so that we don’t need to prove the �M�Üw
version of Theorem 2.21. This relation has a very simple bijective proof. The series /h� in

this case can be written as /H�®� �� °[Ð ° � � ²J³ ´ � ³ ´ % ± � ° � À ± � ° � d
This time, we can think of the pair ��? �!? � � as a pair of matching on the same set of � pointswa�½didid\�!� . Color edges of ? blue and ? � red where the fixed points are the loops. The graphú formed by ? and ? � has the following properties: (a) each vertex is incident to exactly

two edges (including loops) of different colors. Each component of ú is either an even

cycle, or a path which starts and ends with a loop. Each blue loop is weighted by % and
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red loop by À . Equation (3.1) follows readily by considering what type of component the

vertex � Á w is located in. The first term is the result of � Á w being on an even cycle, the

second term is when � Á w is on a path whose two loops have different colors, and the last

two terms correspond to the case when � Á w is on a path whose two loops are of the same

color. Unfortunately, this simple bijection does not generalize to the general � case, even

after we have ordered the components of ú in the way we did earlier. However, this does

yield another simple proof of the Mehler formula.

One of the keys to our proof is showing Theorem 2.21 combinatorially, making this

proof almost completely analogous to Foata’s proof of the Mehler formula. However, for�¨Ãö¿ we do not yet know the corresponding relationship.

Recall our initial motivation for finding a Foata-style proof of the � -Mehler formula,

which was to combinatorially find multilinear extensions, especially a multilinear extension

of the Kibble-Slepian formula would be very interesting to have. More work needs to be

done to reach this goal. Several multilinear extensions have been found by Karande and

Thakare [12], and Ismail and Stanton [10]. In particular, Karande and Thakare found two

extensions as follows.

G�¹ Ð S Ð �JI1K XTSrj1¹��+%]ªl�[��XT�Jj1¹a� À»ªi�[��XTSrjT�*� Óoª½�[� � S � � � ¹���a��S�� �[���1� �[�W¹ ���%'À	� � � G ��%'À � �
� G���9� G �+%*�9� G ��À��9� G ��%'À	�9� G �+% � � G ��%-Ó � � G ��À1�
� G � ÀhÓ��
� G ÄG��ÑÐ Ç I1K ��%*�9� � � À	�9� Ç ��%'À	�9� � j Ç � � � Ç��%'À	� � � � j Ç � �[� � � �[� Ç � j Ç� ¹DI1K ò � Á �º ó ��% � � � ��À1�
� Ç Ó ¹��%'ÀhÓ � �
��¹ (3.2)

Define the polynomials  ,�1��%þ�9�Âª½�[� by '�T�+%þ���«ª½�[�`� G� ¹!I1K ò � ºhó �+%,�W¹l� ¹ d (3.3)
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Then,

G�S Ð � Ð ¹DI1K XTS_��%Mª½�a�9X1�1� À�ªl�a�9X1¹���Ó|ªi�[��XTS­jT�ij1¹���¬0ªl�a� � S � � � ¹� �[��S�� �[���1� �[�W¹ ��+%'¬ � � � G��Óv¬��9� G �+% � � G � � � G �+%'¬ � � G ��¬ � � G ��¬��9� G � À�¬U�
� G � ¬_�H� G ÄG��ÑÐ ÇWÐ ¹!I1K ��%'¬ � � � j Ç j1¹v� ¬ � � � j Ç j1¹v� ¬Î�9� � j1¹[� À�¬U�
� Ç � ¬U�
� Ç��%'¬ � � � � j Ç j1¹a���a� � � �[� Ç ���a��¹ Ä � � �lÇbÀ�¬U�a� wÀ ªi�[�½� ÀT�
���ÑÓiÇD��� j ÇHd (3.4)

Ismail and Stanton found a different version of (3.4). To describe their result, we need

a definition. Let¹Dj,k( -¹ � ATk\�ididid\�DA�¹Dj,kC½k\�ididid\�DCD¹ «««« ����%-�ý/f� G� �JI1K ��ATk����4dididi��A�¹Dj,k9�����C½k����4dididi��CD¹J��� % ����a��� �
which is the � -analogue of the hypergeometric series ¹Dj,k�©c¹ . Then, we haveG�S Ð �JI1K XTS­jT�*��A ªv�[��XTS����!k�¢
� � ª
�[��XT�1��� � ¢H� � ª
�a� � S � � ��� �[��S�� �[��� ��  � � ��á Ð � ~ Ð ��� Ð ���¦�£ = Ð K Ð K ««« ���!�����A�� G j �Ç I,k ��� Ç � G Á �  � � = ��á Ð = � ~ Ð = ��� Ð = ���= ¦ Ð K Ð K ««« ���!����Ww
¢vAh� G j �Ç I,k ��Aa� Ç � G (3.5)

By specializing variables and applying Gauss’ theorem on �  "k , this equation reduces to the� -Mehler formula (1.26). They actually found a general version of (3.5). Let{��+�!kb�idididl����¹[�!Ah�4/f� ¹J -¹lu*k � ��á Ð
	
	
	 Ð � "¦�£ = Ð K Ð
	
	
	 Ð K ««« ���!� �� Ah� G j ¹Ç I,k �+� Ç � G Á ¹� -¹lu*k � = ��á Ð
	
	
	 Ð = � "= ¦ Ð K Ð
	
	
	 Ð K ««« ���!� ��Ww
¢vAh� G j ¹Ç I,k � Aa� Ç � G (3.6)

Then, G�S`á Ð
	
	
	 Ð S " I1K XTS�á�j��
�
� jTS " ��Aëª
�[��XTS`á½���!k9¢H� � ªH�a�)d½did!XTS " �+� � ¹lu*k9¢H� � ¹�ª
�[� ¹âÇ I,k � S æ��Ç� �[��S æ��{��+�!k\�ididid\��� � ¹[�!Ah�b� (3.7)
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and G�S`á Ð
	
	
	 Ð S " Ð �iI1K XTS á j��
�
� jTS " jT�T��AëªH�[��XTS á ���!k9¢H� � ªH�a�)d½did!XTS " �+� � ¹lu*k9¢H� � ¹�ª
�[� � � � ¹Dj,k� �[��� ¹âÇ I,k � S æ��Ç���a��S æ�y{����!kb�½didid½�9� � ¹[�DA��\d (3.8)

However, equations (3.7) and (3.8) hold for A �Yx and ª � � ª1��
�� õ ��wa�in®w
¢[A�� , not as formal

power series as the � -Mehler formula does.

It should be noted that there is no known “vector space proof” of the equations (3.2),

(3.4), and (3.5). Equation (3.2) looks closest to the �ë�Y¿ case of the Mehler formula as in

Example 1.3:G�S Ð � Ð ¹DI1K  {�SrjT�*�+%,�  {�Srj1¹�� ÀT�  {��ij1¹a� Ó��H� S � � � ¹LM���c�¡º,� �w� w«n � � nt� � n§� � Á � � �½� Äµ\¶h·�ò � � �½�l��% �cÁ À �cÁ Ó � �rn§% � � � �cÁ � � �­n§À � � � �cÁ � � �rn§Ó � ��� �rÁ � � ��T�WwÂn � � nt� � n§� � Á � � �½�9� Á�H%'À)� � nt�i�9� Á �H%-Ó*����n � �9� Á �vÀhÓ*���8n � �H��1�Ww«n � � nt� � n�� � Á � � �½�9� ó (3.9)

However, if we wish that every � -analogue of an exponential formula is an infinite product,

then (3.2) is far from expectation.
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