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CS Department

Stanford University
chrismre@cs.stanford.edu

Venu Govindaraju
CSE Department
SUNY at Buffalo

govind@buffalo.edu

Abstract

This paper presents a parallel feature selection method for classification that scales
up to very high dimensions and large data sizes. Our original method is inspired
by group testing theory, under which the feature selection procedure consists of a
collection of randomized tests to be performed in parallel. Each test corresponds
to a subset of features, for which a scoring function may be applied to measure
the relevance of the features in a classification task. We develop a general the-
ory providing sufficient conditions under which true features are guaranteed to
be correctly identified. Superior performance of our method is demonstrated on
a challenging relation extraction task from a very large data set that have both
redundant features and sample size in the order of millions. We present compre-
hensive comparisons with state-of-the-art feature selection methods on a range of
data sets, for which our method exhibits competitive performance in terms of run-
ning time and accuracy. Moreover, it also yields substantial speedup when used
as a pre-processing step for most other existing methods.

1 Introduction
Feature selection (FS) is a fundamental and classic problem in machine learning [10, 4, 12]. In
classification, FS is the following problem: Given a universe U of possible features, identify a
subset of features F ⊆ U such that using the features in F one can build a model to best predict
the target class. The set F not only influences the model’s accuracy, its computational cost, but also
the ability of an analyst to understand the resulting model. In applications, such as gene selection
from micro-array data [10, 4], text categorization [3], and finance [22], U may contain hundreds of
thousands of features from which one wants to select only a small handful for F .

While the overall goal is to have an FS method that is both computationally efficient and statistically
sound, natural formulations of the FS problem are known to be NP-hard [2]. For large scale data,
scalability is a crucial criterion, because FS often serves not as an end but a means to other sophis-
ticated subsequent learning. In reality, practitioners often resort to heuristic methods, which can
broadly be categorized into three types: wrapper, embedded, and filter [10, 4, 12]. In the wrapper
method, a classifier is used as a black-box to test on any subset of features. In filter methods no
classifier is used; instead, features are selected based on generic statistical properties of the (labeled)
∗* denotes equal contribution
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data such as mutual information and entropy. Embedded methods have built in mechanisms for FS
as an integral part of the classifier training. Devising a mathematically rigorous framework to ex-
plain and justify FS heuristics is an emerging research area. Recently Brown et al. [4] considered
common FS heuristics using a formulation based on conditional likelihood maximization.

The primary contribution of this paper is a new framework for parallelizable feature selection, which
is inspired by the theory of group testing. By exploiting parallelism in our test design we obtain a
FS method that is easily scalable to millions of features and samples or more, while preserving
useful statistical properties in terms of classification accuracy, stability and robustness. Recall that
group testing is a combinatorial search paradigm [7] in which one wants to identify a small subset of
“positive items” from a large universe of possible items. In the original application, items are blood
samples of WWII draftees and an item is positive if it is infected with syphilis. Testing individual
blood sample is very expensive; the group testing approach is to distribute samples into pools in
a smart way. If a pool is tested negative, then all samples in the pool are negative. On the other
hand, if a pool is tested positive then at least one sample in the pool is positive. We can think of
the FS problem in the group testing framework: there is a presumably small, unknown subset F of
relevant features in a large universe of N features. Both FS and group testing algorithms perform
the same basic operation: apply a “test” to a subset T of the underlying universe; this test produces
a score, s(T ), that is designed to measure the quality of the features T (or return positive/negative
in the group testing case). From the collection of test scores the relevant features are supposed to
be identified. Most existing FS algorithms can be thought of as sequential instantiations in this
framework1: we select the set T to test based on the scores of previous tests. For example, let X =
(X1, . . . , XN ) be a collection of features (variables) and Y be the class label. In the joint mutual
information (JMI) method [25], the feature set T is grown sequentially by adding one feature at each
iteration. The next feature’s score, s(Xk), is defined relative to the set of features already selected in
T : s(Xk) =

∑
Xj∈T I(Xk, Xj ;Y ). As each such scoring operation takes a non-negligible amount

of time, a sequential method may take a long time to complete.

A key insight is that group testing needs not be done sequentially. With a good pooling design, all
the tests can be performed in parallel in which we determine the pooling design without knowing
any pool’s test outcome. From the vector of test outcomes, one can identify exactly the collection
of positive blood samples. Parallel group testing, commonly called non-adaptive group testing
(NAGT) is a natural paradigm and has found numerous applications in many areas of mathematics,
computer Science, and biology [18]. It is natural to wonder whether a “parallel” FS scheme can be
designed for machine learning in the same way NAGT was possible: all feature sets T are specified
in advance, without knowing the scores of any other tests, and from the final collection of scores the
features are identified. This paper initiates a mathematical investigation of this possibility.

At a high level, our parallel feature selection (PFS) scheme has three inter-related components: (1)
the test design indicates the collection of subsets of features to be tested, (2) the scoring function
s : 2[N ] → R that assigns a score to each test, and (3) the feature identification algorithm that
identifies the final selected feature set from the test scores. The design space is thus very large. Every
combination of the three components leads to a new PFS scheme.2 We argue that PFS schemes are
preferred over sequential FS for two reasons:

1. scalability, the tests in a PFS scheme can be performed in parallel, and thus the scheme can
be scaled to large datasets using standard parallel computing techniques, and

2. stability, errors in individual trials do not affect PFS methods as dramatically as sequential
methods. In fact, we will show in this paper that increasing the number of tests improves
the accuracy of our PFS scheme.

We propose and study one such PFS approach. We show that our approach has comparable (and
sometimes better) empirical quality compared to previous heuristic approaches while providing
sound statistical guarantees and substantially improved scalability.

Our technical contributions We propose a simple approach for the first and the third components
of a PFS scheme. For the second component, we prove a sufficient condition on the scoring function
under which the feature identification algorithm we propose is guaranteed to identify exactly the set

1A notable exception is the MIM method, which is easily parallelizable and can be regarded as a special
implementation of our framework

2It is important to emphasize that this PFS framework is applicable to both filter and wrapper approaches.
In the wrapper approach, the score s(T ) might be the training error of some classifier, for instance.
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of original (true) features. In particular, we introduce a notion called C-separability, which roughly
indicates the strength of the scoring function in separating a relevant feature from an irrelevant
feature. We show that when s is C-separable and we can estimate s, we are able to guarantee exact
recovery of the right set of features with high probability. Moreover, when C > 0, the number of
tests can be asymptotically logarithmic in the number of features in U .

In theory, we provide sufficient conditions (a Naı̈ve Bayes assumption) according to which one can
obtain separable scoring functions, including the KL divergence and mutual information (MI). In
practice, we demonstrate that MI is separable even when the sufficient condition does not hold,
and moreover, on generated synthetic data sets, our method is shown recover exactly the relevant
features. We proceed to provide a comprehensive evaluation of our method on a range of real-world
data sets of both large and small sizes. It is the large scale data sets where our method exhibits
superior performance. In particular, for a huge relation extraction data set (TAC-KBP) that has
millions redundant features and samples, we outperform all existing methods in accuracy and time,
in addition to generating plausible features (in fact, many competing methods could not finish the
execution). For the more familiar NIPS 2013 FS Challenge data, our method is also competitive
(best or second-best) on the two largest data sets. Since our method hinges on the accuracy of score
functions, which is difficult achieve for small data, our performance is more modest in this regime
(staying in the middle of the pack in terms of classification accuracy). Nonetheless, we show that our
method can be used as a preprocessing step for other FS methods to eliminate a large portion of the
feature space, thereby providing substantial computational speedups while retaining the accuracy of
those methods.

2 Parallel Feature Selection
The general setting Let N be the total number of input features. For each subset T ⊆ [N ] :=
{1, . . . , N}, there is a score s(T ) normalized to be in [0, 1] that assesses the “quality” of features in
T . We select a collection of t tests, each of which is a subset T ⊆ [N ] such that from the scores
of all tests we can identify the unknown subset F of d relevant variables that are most important
to the classification task. We encode the collection of t tests with a binary matrix A = (aij) of
dimension t×N , where aij = 1 iff feature j belongs to test i. Corresponding to each row i of A is
a “test score” si = s({j | aij = 1}) ∈ [0, 1]. Specifying A is called test design, identifying F from
the score vector (si)i∈[t] is the job of the feature identification algorithm. The scheme is inherently
parallel because all the tests must be specified in advance and executed in parallel; then the features
are selected from all the test outcomes.

Test design and feature identification Our test design and feature identification algorithms are
extremely simple. We construct the test matrix A randomly by putting a feature in the test with
probability p (to be chosen later). Then, from the test scores we rank the features and select d
top-ranked features. The ranking function is defined as follows. Given a t × N test matrix A, let
aj denote its jth column. The dot-product 〈aj , s〉 is the total score of all the tests that feature j
participates in. We define ρ(j) = 〈aj , s〉 to be the rank of feature j with respect to the test matrix
A and the score function s.

The scoring function The crucial piece stiching together the entire scheme is the scoring func-
tion. The following theorem explains why the above test design and feature identification strategy
make sense, as long as one can choose a scoring function s that satisfies a natural separability prop-
erty. Intuitively, separable scoring functions require that adding more hidden features into a test set
increase its score.

Definition 2.1 (Separable scoring function). Let C ≥ 0 be a real number. The score function
s : 2[N ] → [0, 1] is said to be C-separable if the following property holds: for every f ∈ F and
f̃ /∈ F , and for every T ⊆ [N ]− {f, f̃}, we have s(T ∪ {f})− s(T ∪ {f̃}) ≥ C.

In words, with a separable scoring function adding a relevant feature should be better than adding
an irrelevant feature to a given subset T of features. Due to space limination, the proofs of the
following theorem, propositions, and corollaries can be found in the supplementary materials. The
essence of the idea is that, when s can separate relevant features from irrelevant features, with high
probability a relevant feature will be ranked higher than an irrelevant feature. Hoeffding’s inequality
is then used to bound the number of tests.
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Theorem 2.2. Let A be the random t × N test matrix obtained by setting each entry to be 1 with
probability p ∈ [0, 1] and 0 with probability 1− p. If the scoring function s is C-separable, then the
expected rank of a feature in F is at least the expected rank of a feature not in F .

Furthermore, if C > 0, then for any δ ∈ (0, 1), with probability at least 1 − δ every feature in F
has rank higher than every feature not in F , provided that the number of tests t satisfies

t ≥ 2

C2p2(1− p)2
log

(
d(N − d)

δ

)
. (1)

By setting p = 1/2 in the above theorem, we obtain the following. It is quite remarkable that,
assuming we can estimate the scores accurately, we only need about O(logN) tests to identify F .
Corollary 2.3. Let C > 0 be a constant such that there is a C-separable scoring function s. Let
d = |F |, where F is the set of hidden features. Let δ ∈ (0, 1) be an arbitrary constant. Then, there
is a distribution of t × N test matrices A with t = O(log(d(N − d)/δ)) such that, by selecting a
test matrix randomly from the distribution, the d top-ranked features are exactly the hidden features
with probability at least 1− δ.
Of course, in reality estimating the scores accurately is a very difficult problem, both statistically
and computationally, depending on what the scoring function is. We elaborate more on this point
below. But first, we show that separable scoring functions exist, under certain assumption about the
underlying distribution.

Sufficient conditions for separable scoring functions We demonstrate the existence of separable
scoring functions given some sufficient conditions on the data. In practice, loss functions such as
classification error and other surrogate losses may be used as scoring functions. For binary classifi-
cation, information-theoretic quantities such as Kullback-Leibler divergence, Hellinger distance and
the total variation — all of which special cases of f -divergences [5, 1] — may also be considered.
For multi-class classification, mutual information (MI) is a popular choice.

The data pairs (X, Y ) are assumed to be iid samples from a joint distribution P (X, Y ). The fol-
lowing result shows that under the so-called “naive Bayes” condition, i.e., all components of random
vector X are conditionally independent given label variable Y , the Kullback-Leibler distance is a
separable scoring function in a binary classification setting:
Proposition 2.4. Consider the binary classification setting, i.e., Y ∈ {0, 1} and assume that the
naive Bayes condition holds. Define score function to be the Kullback-Leibler divergence:

s(T ) := KL(P (XT |Y = 0)||P (XT |Y = 1)).

Then s is a separable scoring function. Moreover, s is C-separable, where C := minf∈F s(f).
Proposition 2.5. Consider the multi-class classification setting, and assume that the naive Bayes
condition holds. Moreover, for any pair f ∈ F and f̃ /∈ F , the following holds for any T ⊆
[N ]− {f, f̃}

I(Xf ;Y )− I(Xf ;XT ) ≥ I(Xf̃ ;Y )− I(Xf̃ ;XT ).

Then, the MI function s(T ) := I(XT ;Y ) is a separable scoring function.

We note the naturalness of the condition so required, as quantity I(Xf ;Y ) − I(Xf ;XT ) may be
viewed as the relevance of feature f with respect to the label Y , subtracted by the redundancy with
other existing features T . If we assume further that X f̃ is independent of both XT and the label Y ,
and there is a positive constant C such that I(Xf ;Y )− I(Xf ;XT ) ≥ C for any f ∈ F , then s(T )
is obviously a C-separable scoring function. It should be noted that the naive Bayes conditions are
sufficient, but not necessary for a scoring function to be C-separable.

Separable scoring functions for filters and wrappers. In practice, information-based scoring
functions need to be estimated from the data. Consistent estimators of scoring functions such as KL
divergence (more generally f -divergences) and MI are available (e.g., [20]). This provides the theo-
retical support for applying our test technique to filter methods: when the number of training data is
sufficiently large, a consistent estimate of a separable scoring function must also be a separable scor-
ing function. On the other hand, a wrapper method uses a classification algorithm’s performance as
a scoring function for testing. Therefore, the choice of the underlying (surrogate) loss function plays
a critical role. The following result provides the existence of loss functions which induce separable
scoring functions for the wrapper method:
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Proposition 2.6. Consider the binary classification setting, and let PT
0 := P (XT |Y = 0), PT

1 :=
P (XT |Y = 1). Assume that an f -divergence of the form: s(T ) =

∫
φ(dPT

0 /dP
T
1 )dPT

1 is a
separable scoring function for some convex function φ : R+ → R. Then there exists a surrogate
loss function l : R × R → R+ under which the minimum l-risk: Rl(T ) := infg E [l(Y, g(XT ))] is
also a separable scoring function. Here the infimum is taken over all measurable classifier functions
g acting on feature input XT , E denotes expectation with respect to the joint distribution of XT

and Y .
This result follows from Theorem 1 of [19], who established a precise correspondence between f -
divergences defined by convex φ and equivalent classes of surrogate losses l. As a consequence,
if the Hellinger distance between PT

0 and PT
1 is separable, then the wrapper method using the

Adaboost classifier corresponds to a separable scoring function. Similarly, a separable Kullback-
Leibler divergence implies that of a logistic regression based wrapper; while a separable variational
distance implies that of a SVM based wrapper.

3 Experimental results
3.1 Synthetic experiments
In this section, we synthetically illustrate that separable scoring functions exist and our PFS frame-
work is sound beyond the Naı̈ve Bayes assumption (NBA). We first show that MI is C-separable for
large C even when the NBA is violated. The NBA was only needed in Propositions 2.4 and 2.5 in
order for the proofs to go through. Then, we show that our framework recovers exactly the relevant
features for two common classes of input distributions.

Figure 1: Illustration of MI as a separable scor-
ing function for the case of statistically dependent
features. The top left point shows the scores for
the 1st setting; the middle points shows the scores
for the 2nd setting; and the bottom points shows
the scores for the 3rd setting.

We generate 1, 000 data points from two sep-
arated 2-D Gaussians with the same covari-
ance matrix but different means, one centered
at (−2,−2) and the other at (2, 2). We start
with the identity covariance matrix, and gradu-
ally change the off diagonal element to−0.999,
representing highly correlated features. Then,
we add 1,000 dimensional zero mean Gaussian
noise with the same covariance matrix, where
the diagonal is 1 and the off-diagonal elements
increases from 0 gradually to 0.999. We then
calculate the MI between two features and the
class label, and the two features are selected in
three settings: 1) the two genuine dimensions;
2) one of the genuine feature and one from the
noisy dimensions; 3) two random pair from the
noisy dimensions. The MI that we get from
these three conditions is shown in Figure 1. It is clear from this figure MI is a separable scoring
function, despite the fact that the NBA is violated.

We also synthetically evaluated our entire PFS idea, using two multinomials and two Gaussians to
generate two binary classification task data. Our PFS scheme is able to capture exactly the relevant
features in most cases. Details are in the supplementary material section due to lack of space.
3.2 Real-world data experiment results
This section evaluates our approach in terms of accuracy, scalability, and robustness accross a range
of real-world data sets: small, medium, and large. We will show that our PFS scheme works very
well on medium and large data sets; because, as was shown in Section 3.1, with sufficient data to
estimate test scores, we expect our method to work well in terms of accuracy. On the small datasets,
our approach is only competitive and does not dominate existing approaches, due to the lack of data
to estimate scores well. However, we show that we can still use our PFS scheme as a pre-processing
step to filter down the number of dimensions; this step reduces the dimensionality, helps speed up
existing FS methods from 3-5 times while keeps their accuracies.

3.2.1 The data sets and competing methods
Large: TAC-KBP is a large data set with the number of samples and dimensions in the millions3;
its domain is on relation extraction from natural language text. Medium: GISETTE and MADE-

3
http://nlp.cs.qc.cuny.edu/kbp/2010/
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LON are two largest data sets from the NIPS 2003 feature selection challenge4, with the number of
dimensions in the thousands. Small: Colon, Leukemia, Lymph, NCI9, and Lung are chosen from
the small Micro-array datasets [6], along with the UCI datasets5. These sets typically have a few
hundreds to a few thousands variables, with only tens of data samples.

We compared our method with various baseline methods including mutual information
maximization[14] (MIM), maximum relevancy minimum redundancy[21] (MRMR), conditional
mutual information maximization[9] (CMIM), joint mutual information[25] (JMI), double input
symmetrical relevance[16] (DISR), conditional infomax feature extraction[15] (CIFE), interaction
capping[11] (ICAP), fast correlation based filter[26] (FCBF), local learning based feature selection
[23] (LOGO), and feature generating machine [24] (FGM).
3.2.2 Accuracy
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Figure 2: Result from different methods on TAC-KBP dataset. (a) Precision/Recall of different
methods; (b) Top-5 keywords appearing in the Top-20 features selected by our method. Dotted lines
in (a) are FGM (or MIM) with our approach as pre-processing step.
Accuracy results on large data set. As shown in Figure 2(a), our method dominates both MIM
and FGM. Given the same precision, our method achieves 2-14× higher recall than FGM, and 1.2-
2.4× higher recall than MIM. Other competitors do not finish execution in 12 hours. We compare the
top-features produced by our method and MIM, and find that our method is able to extract features
that are strong indicators only when they are combined with other features, while MIM, which tests
features individually, ignores this type of combination. We then validate that the features selected
by our method makes intuitive sense. For each relation, we select the top-20 features and report the
keyword in these features.6 As shown in Figure 2(b), these top-features selected by our method are
good indicators of each relation. We also observe that using our approach as the pre-processing step
improves the quality of FGM significantly. In Figure 2(a) (the broken lines), we run FGM (MIM)
on the top-10K features produced by our approach. We see that running FGM with pre-processing
achieves up to 10× higher recall given the same precision than running FGM on all 1M features.

Accuracy results on medium data sets Since the focus of the evaluation is to analyze the efficacy
of feature selection approaches, we employed the same strategy as Brown et al.[4] i.e. the final
classification is done using k-nearest neighbor classifier with k fixed to three, and applied Euclidean
distance7.

We denote our method by Fk (and Wk), where F denotes filter (and W denotes wrapper method).
k denotes the number of tests (i.e. let N be the dimension of data, then the total number of tests is
kN ). We bin each dimension of the data into five equal distanced bins when the data is real valued,
otherwise the data is not processed8. MI is used as the scoring function for filter method, and log-
likelihood is used for scoring the wrapper method. The wrapper we used is logistic regression9.

For GISETTE we select up to 500 features and for MADELON we select up to 100 features. To get
the test results, we use the features according to the smallest validation error for each method, and
the results on test set are illustrated in table 4.

4
http://www.nipsfsc.ecs.soton.ac.uk/datasets/

5
http://archive.ics.uci.edu/ml/

6Following the syntax used by Mintz et al. [17], if a feature has the form [⇑poss wife ⇓prop of ], we report
the keyword as wife in Figure 2(b).

7The classifier for FGM is linear support vector machine (SVM), since it optimized for the SVM criteria.
8For SVM based method, the real valued data is not processed, and all data is normalized to have unit length.
9The logistic regressor used in wrapper is only to get the testing scores, the final classification scheme is

still k-NN.
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Table 1: Test set balanced error rate (%) from different methods on NIPS datasets

Datasets Best 2nd Best 3rd Best Median Ours Ours Ours Ours
Perf. Perf. Perf. Perf. (F3) (W3) (F10) (W10)

GISETTE 2.15 3.06 3.09 3.86 4.85 2.72 4.69 2.89
MADELON 10.61 11.28 12.33 25.92 22.61 10.17 18.39 10.50

Accuracy results on the small data sets. As expected, due to the lack of data to estimate scores,
our accuracy performance is average for this data set. Numbers can be found in the supplementary
materials. However, as suggested by theorem A.3 (in supplementary materials), our method can also
be used as a preprocessing step for other feature selection method to eliminate a large portion of the
features. In this case, we use the filter methods to filter out e+ 0.1 of the input features, where e is
the desired proportion of the features that one wants to reserve.

(a) (b)
Figure 3: Result from real world datasets: a) curve showing the ratio between the errors of various
methods applied on original data and on filtered data, where a large portion of the dimension is
filtered out (value larger than one indicates performance improvement); b) the speed up we get by
applying our method as a pre-processing method on various methods across different datasets, the
flat dashed line indicates the location where the speed up is one.
Using our method as preprocessing step achieves 3-5 times speedup as compare to the time spend
by original methods that take multiple passes through the datasets, and keeps or improves the per-
formance in most of the cases (see figure 3 a and b). The actual running time can be found in
supplementary materials.
3.2.3 Scalability
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Figure 4: Scalability Experiment of Our Approach
We validate that our method is able to run on large-scale data set efficiently, and the ability to take
advantage of parallelism is the key to its scalability.
Experiment Setup Given the TAC-KBP data set, we report the execution time by varying the
degree of parallelism, number of features, and number of examples. We first produce a series of
data sets by sub-sampling the original data set with different number examples ({104, 105, 106})
and number of features ({104, 105, 106}). We also try different degree of parallelism by running
our approach using a single thread, 4-threads on a 4-core CPU, 32 threads on a single 8-CPU (4-
core/CPU) machine, and multiple machines available in the national Open Science Grid (OSG).
For each combination of number of features, number of examples, and degree of parallelism, we
estimate the throughput as the number of tests that we can run in 1 second, and estimate the total
running time accordingly. We also ran our largest data set (106 rows and 106 columns) on OSG and
report the actual run time.
Degree of Parallelism Figure 4(a) reports the (estimated) run time on the largest data set (106
rows and 106 columns) with different degree of parallelism. We first observe that running our
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approach requires non-trivial amount of computational resources–if we only use a single thread, we
need about 400 hours to finish our approach. However, the running time of our approach decreases
linearly with the number of cores that we used. If we run our approach on a single machine with 32
cores, it finishes in just 11 hours. This linear speed-up behavior allows our approach to scale to very
large data set–when we run our approach on the national Open Science Grid, we observed that our
approach is able to finish in 2.2 hours (0.7 hours for actual execution, and 1.5 hours for scheduling
overhead).

The Impact of Number of Features and Number of Examples Figure 4(b,c) report the run time
with different number of features and number of examples, respectively. In Figure 4(b), we fix the
number of examples to be 105, and vary the number of features, and in Figure 4(c), we fix the number
of features to be 106 and vary the number of examples. We see that as the number of features or the
number of examples increase, our approach uses more time; however, the running time never grows
super-linearly. This behavior implies the potential of our approach to scale to even larger data sets.

3.2.4 Stability and robustness
Our method exhibits several robustness properties. In particular, the proof of Theorem 2.2 suggests
that as the number of tests are increased the performance also improves. Therefore, in this section
we empirically evaluate this observation. We picked four datasets: KRVSKP, Landset, Splice and
Waveform from the UCI datasets and both NIPS datasets.

(a) (b) (c) (d)
Figure 5: Change of performance with respect of number of tests on several UCI datasets with (a)
filter and (b) wrapper methods; and (c) GISETTE and (d) MADELON datasets.

The trend is pretty clear as can be observed from figure 5. The performance of both wrapper and
filter methods improves as we increase the number of tests, which can be attributed to the increase of
robustness against inferior estimates for the test scores as the number of tests increases. In addition,
apart from MADELON dataset, the performance converges fast, normally around k = 10 ∼ 15.

Additional stability experiments can be found in the supplementary materials, where we evaluate
ours and other methods in terms of consistency index.
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Supplementary Material

A Missing proofs from Section 2

A.1 Proof of Theorem 2.2

Proof. Fix a feature f ∈ F and a feature f̃ /∈ F . Recall we used aj to denote the jth column of the test matrix
A. For each row i ∈ [t], define the random variable Xi := aifsi − aif̃si, which is the contribution of the ith
test to the difference ρ(f)− ρ(f̃). In particular,

ρ(f)− ρ(f̃) = 〈af , s〉 − 〈af̃ , s〉 =
t∑

i=1

Xi.

The variables Xi are identically and independently distributed. We first estimate E[Xi]. Let Ti denote the ith
test, i.e. Ti = {j | aij = 1}. Then, it is easy to see that E[Xi | both f, f̃ ∈ Ti] = 0, and E[Xi | both f, f̃ /∈
Ti] = 0. Thus, letting q = 1− p to shorten the notations, we have

E[Xi]

= E[Xi | f ∈ Ti, f̃ /∈ Ti] · P[f ∈ Ti, f̃ /∈ Ti] +

E[Xi | f /∈ Ti, f̃ ∈ Ti] · P[f /∈ Ti, f̃ ∈ Ti]

= pqE[Xi | f ∈ Ti, f̃ /∈ Ti] + pqE[Xi | f /∈ Ti, f̃ ∈ Ti]

= pq

 ∑
T⊆[N ]−{f,f̃}

s(Ti) · P[Ti = T ∪ {f} | f ∈ Ti, f̃ /∈ Ti]


−pq

 ∑
T⊆[N ]−{f,f̃}

s(Ti) · P[Ti = T ∪ {f̃} | f /∈ Ti, f̃ ∈ Ti]


= pq

 ∑
T⊆[N ]−{f,f̃}

s(T ∪ {f}) · p|T |qN−2−|T |


−pq

 ∑
T⊆[N ]−{f,f̃}

s(T ∪ {f̃}) · p|T |qN−2−|T |


= pq

 ∑
T⊆[N ]−{f,f̃}

(
s(T ∪ {f})− s(T ∪ {f̃})

)
· p|T |qN−2−|T |


≥ Cpq

 ∑
T⊆F−{f,f̃}

p|T |qN−2−|T |

 = Cpq.

Consequently, when C ≥ 0 every term in the summation above is non-negative, implying that
E[Xi] ≥ 0, which in turn implies E[ρ(f)] ≥ E[ρ(f̃)]. Since the Xi are i.i.d. in [−1, 1], by Hoeffd-
ing’s inequality [8], when C > 0 we have

P[ρ(f)− ρ(f̃) ≤ 0] ≤ exp

{
−2t2C2p2q2

4t

}
.

The probability that there is some pair f ∈ F, f̃ /∈ F for which ρ(f) − ρ(f̃) ≤ 0 is thus at most
d(N − d) exp

{
−tC2p2q2

2

}
. The last expression is at most δ when t satisfies (1).

A.2 Proof of Proposition 2.4 and Proposition 2.5

A special case of separable scoring function is a scoring function satisfying a monotonicity condition: if a
subset T2 of features has more relevant features than another subset T1, then s(T2) has to be better than s(T1).

Definition A.1 (Monotone scoring function). LetC ≥ 0 be a real number. The score function s : 2[N ] → [0, 1]
is said to be C-monotone if the following property holds: for any two subsets T1, T2 ⊆ [N ] such that T1 ∩F is
a proper subset of T2∩F , we have s(T2)−s(T1) ≥ C. The 0-monotone scoring functions are called monotone
for short.
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Proposition A.2. If s is a C-monotone scoring function, then it is a C-separable scoring function.

Proof. Fix f ∈ F , f̃ /∈ F , and T ⊂ [N ] − {f, f̃}. Let T2 = T ∪ {f} and T1 = T ∪ {f̃}. Then,
T1 ∩ F ⊂ T2 ∩ F . Hence, s(T2)− s(T1) ≥ C, as desired.

From the above proposition, to show that a function is separable it is sufficient to show that it is monotone.

Proof of Proposition 2.4. Due to conditional independence, it can be checked that s(T ) =
∑

f∈T s(f). From
this the claim can be easily verified.

Proof of Proposition 2.5. Due to a basic property of mutual information, s(T ∪ {f}) = I(XT∪{f};Y ) =
H(XT∪{f})−H(XT∪{f}|Y ) = H(XT∪{f})−H(XT |Y )−H(Xf |Y ), where the last identity is due to
the conditional independence assumption. Fix f ∈ F and f̃ /∈ F . Since H(XT∪{f}) = H(XT )+H(Xf )−
I(XT ;Xf ), we have s(T ∪{f}) = I(XT ;Y )+ I(Xf ;Y )− I(XT ;Xf ). Combine with a similar formulae
for s(T ∪ {f̃}), we obtain:

s(T ∪ {f})− s(T ∪ {f̃}) = (I(Xf ;Y )− I(XT ;Xf ))− (I(Xf̃ ;Y )− I(XT ;Xf̃ )) ≥ 0,

which concludes the proof.

A.3 On eliminating irrelevant features

The rank ρ(f) of a feature is proportional to the average score of all tests that the feature f participates in. If f is
“lucky” enough to participate in tests that contain relevant features, its rank might be inflated. This observation
leads to our second idea: we need a way to quickly eliminate features that are likely to be irrelevant.

Theorem A.3. Let F be the set of hidden relevant features. Let d = |F |. Let A be the random t × N test
matrix obtained by setting each entry to be 1 with probability p ∈ [0, 1] and 0 with probability 1 − p. For an
irrelevant feature f̃ /∈ F , let Uf̃ denote the total number of tests that f̃ belongs, and Vf̃ the total number of
tests that f̃ belongs but none of the relevant features belong.

For any δ ∈ (0, 1), and any β such that 0 < β < (1− p)d, the following holds:

P[Vf̃ ≥ βUf̃ for all f̃ /∈ F ] ≥ 1− δ,

provided that the total number of tests is at least

t ≥ 1

2
· (1 + β)2

p2((1− p)d − β)2 log((N − d)/δ). (2)

Proof. Let f̃ be an arbitrary irrelevant feature. For each j ∈ [t], let Xj be the indicator variable for the event
that f̃ is in test j, and Yj be the indicator variable for the event that f̃ belongs to the jth test but none of the
relevant features are in test j. Then, Uf̃ =

∑
j∈[t]Xj and Vf̃ =

∑
j∈[t] Yj . It follows that E[Yj − βXj ] =

p(1 − p)d − βp. Furthermore, we have Yj − βXj ∈ [−β, 1], and for j ∈ [t] the variables Yj − βXj are
independent. Hence, by Hoeffding bound we have

P[Vf̃ < βUf̃ ] = P[
∑
j∈[t]

(Yj − βXj) < 0]

≤ exp

{
−2t2p2((1− p)d − β)2

t(1 + β)2

}
= exp

{
−2tp2((1− p)d − β)2

(1 + β)2

}
.

Hence, due to condition 2,

P[Vf̃ < βUf̃ for some f̃ /∈ F ] ≤ (N − d) exp
{
−2tp2((1− p)d − β)2

(1 + β)2

}
≤ δ.
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(a) (b) (c) (d)
Figure 6: Box plot from synthetic data on a) the identifiability of original features with abundant
data from multinomial distribution, b) the identifiability of original features with reasonable-sized
data from multinomial distribution, c) the identifiability of original features with abundant data from
discretized Gaussian distribution, d) the identifiability of original features with reasonable-sized data
from discretized Gaussian distribution.
The above theorem is useful when we can find a score function such that the tests that contain no relevant have
low scores, say less than some threshold θ. In that case, the natural algorithm is to first eliminate all features
such that at least a β fraction of its tests score lower than θ.

To make use of the above algorithm, we need to set the parameters. For example, suppose we set p = 1/d.
Then (1 − p)d = (1 − 1/d)d is an increasing function in d that tends to 1/e ≈ 0.37 fairly quickly. Hence,
d ≥ 4 we can pick β = 0.25 (or more). But there is a tradeoff between β and the number of tests t, hence we
do not want to pick β to be too close to (1− p)d.

As a second example, suppose we set p = 1/(2d). Then, (1− p)d = (1− 1/
√
d)d → 1/

√
e ≈ 0.61. In this

case we can even pick β = 1/2.

B Additional details on synthetic experiment results

We evaluate the entire PFS idea synthetically. We generate a simple categorical binary class dataset using two
multinomial distributions. Let No be the number of original data dimensions (i.e. where the data is actually
dependent on). The Nn noisy dimensions are generated with uniform probability for all Nn dimensions, so the
synthetic data generated is of dimension N = No + Nn. The number of trials were restricted to five in our
data generation. As theorem 2.2 suggests, by setting p = 0.5 we only need logarithmic number of tests with
respect to the number of feature dimensions, but it will lead to inaccurate score estimation when N is large and
the number of data samples are small. Therefore, we first simulate a case where we have abundant samples
by sampling 10, 000 samples for each class with No ∈ {2, 4, 10} and Nn ∈ {10, 20, 30}. We set p = 0.5
and t = d 2

p2(1−p)2
log(NoNn/δ)e where δ = 0.01. In addition, to attain a more realistic setting, we generate

1, 000 samples for each class, with No ∈ {4, 10, 50, 100} and Nn ∈ {10, 50, 100, 500}. We set p = 3
N

so
that we can get reasonable score estimate and t = 10N . To account for the randomness of the test, we ran
every experiment 100 times; the result is shown in Figure 6(a) and (b) respectively. It is clear that most of the
time all the original dimensions are contained in the top Do ranked features, in particular, when the score can
be estimated reasonably well, the top Do features contains exactly all the original features (see figure 6 (a) and
(c)).

Since not all real world data are categorical valued, we simulated another real-valued binary dataset. The No

original data dimensions are generated from two Gaussian with mean 3 and−3. They share the same variance,
and it is uniformly sampled from the interval (0, 1]. The Nn noisy dimensions are generated from Gaussian
with mean sample uniformly from interval [−1, 1] and variance uniformly sampled from interval (0, 1]. We
then quantize each dimension into five equal distanced bins. We use the exactly same settings as the previous
experiments, and the result is illustrated in figure 6 (c) and (d), it can be observed that the performance are
consistent with the last set of experiments.

C Additional results on the small and medium data sets

C.1 Accuracy and runtime results on Micro-array dataset

The Colon and Leukemia dataset are both binary class dataset that contains 62 samples with 2,000 dimensions
and 72 data points with 7,070 dimensions respectively; the Lymph and NCI9 dataset both have 9 classes and
respectively contain 96 samples with 4,026 dimensions and 60 samples with 9,712 dimensions; The Lung
dataset contains 73 data samples of 325 dimensions and is a 7-class dataset.
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We set the maximum number of selected features to be 50. d Models were trained for each dataset with the
top d features where d varies from 1 to 50, and we report the best overall leave-one-out classification error
among all 50 combinations of features. For the wrapper method we set p = 10/N and for filter method we set
p = 4/N , where N is the dimension of data.

Table 2: Leave one out error on micro-array datasets from various methods

Method/Dataset Colon Leukemia Lung Lymph NCI9

MIM 10 2 14 13 25
MIM (Filtered) 10 2 13 13 25
MRMR 9 2 13 7 23
MRMR (Filtered) 9 2 13 7 23
CMIM 9 1 9 9 26
CMIM (Filtered) 9 1 9 9 26
JMI 9 1 11 9 24
JMI (Filtered) 9 1 11 9 24
DISR 8 1 13 11 24
DISR (Filtered) 8 1 13 11 24
CIFE 9 3 19 26 31
CIFE (Filtered) 9 3 9 10 35
ICAP 8 3 10 8 24
ICAP (Filtered) 7 2 9 9 24
FCBF 9 4 11 6 24
FCBF (Filtered) 1 2 9 14 25
LOGO 10 2 8 12 27
LOGO (Filtered) 7 1 11 11 28
FGM 9 2 8 7 21
FGM (Filtered) 10 1 9 15 25
ours (F3) 6 1 11 13 31
ours (W3) 8 0 9 11 28
ours (F10) 6 1 11 12 28
ours (W10) 9 1 15 13 29

C.2 Accuracy and runtime results on the NIPS Datasets

The results on NIPS dataset from different methods are shown in table 4 below.

Note that the numbers we reported are runtimes without running tests in parallel. Since our tests are totally
independent, the parallel speed up factor will be essentially linear in the partition size.

The NIPS and micro-array datasets experiments were all completed on a machine with I7-3930K 3.20GHZ
6-core CPU and 32GB RAM with 12 threads. The running time of different methods are listed in the following
table 5. and 3.

D Additional results on the large dataset

D.1 Top-features on all relations

As we shown inf Figure 2(b), the top-features extracted by our method makes intuitive sense for relations
Spouse, MemberOf, and TopMember. Figure 8 shows the result for other relations using the same protocol
we described in the body of this paper.

We see that for most relations, the top features selected by our method makes intuitive sense, which implies the
effectiveness of our approach. For relations like per:stateorprovinces of residence, the top keywords are not
direct indicator of the relation (although they strongly imply the relation), this is a known problem of how the
training set is generated [27, 17], and is orthogonal to the feature selection process.

D.2 On varying the number selected features

Figure 2(a) shows the Precision/Recall on TAC-KBP data set with the number of selected features K = 1000.
Figure 7 shows the result for K = 10 and K = 100. We can see that different approaches perform similarly as
K = 1000 case.

13



Table 3: Micro-array dataset runtime performance (in seconds)

Methods/Dataset Colon Leukemia Lung Lymph NCI9

MIM 1.77 7.27 0.36 6.17 9.08
MIM (Filtered) 0.23 0.78 0.09 0.70 0.96
MRMR 10.96 50.36 2.02 41.72 57.27
MRMR (Filtered) 1.26 4.99 0.39 4.41 5.78
JMI 17.46 76.29 4.45 90.43 127.78
JMI (Filtered) 1.99 7.75 0.83 9.15 12.93
ICAP 37.80 167.25 8.73 180.59 248.40
ICAP (Filtered) 4.28 17.24 1.65 18.38 25.01
DISR 28.13 118.22 7.20 144.71 206.25
DISR (Filtered) 3.17 12.07 1.36 15.22 20.75
CMIM 1.19 3.47 1.12 5.49 2.78
CMIM (Filtered) 0.77 1.42 0.75 2.64 1.16
CIFE 37.53 166.53 8.85 185.69 259.42
CIFE (Filtered) 4.25 16.76 1.64 18.25 25.73
FCBF 14.01 87.17 34.70 3991.4 838.07
FCBF (Filtered) 2.10 18.76 5.50 114.24 158.39
LOGO 32.51 180.58 66.99 156.66 86.84
LOGO (Filtered) 14.87 27.53 52.37 102.49 53.34
FGM 1.73 3.30 4.54 86.71 142.44
FGM (Filtered) 1.15 1.15 0.83 5.33 5.61
ours (F3) 1.01 5.35 0.25 5.01 6.61
ours (W3) 19.72 82.87 46.21 1112.22 1599.15
ours (F10) 2.80 14.79 0.74 14.50 19.68
ours (W10) 66.71 274.12 153.23 3699.2 5233.84

Table 4: Accuracy results from different methods on NIPS datasets

Datasets
GISETTE MADELON

Methods BER Features BER Features
(%) (%) (%) (%)

MIM 3.15 9.40 12.33 2.80
MIM (Filtered) 3.08 6.42 12.33 2.80
MRMR 3.69 8.04 47.83 9.40
MRMR (Filtered) 4.58 4.62 46.17 9.20
JMI 4.02 1.94 11.28 2.00
JMI (Filtered) 4.63 5.62 11.28 2.00
ICAP 4.58 6.24 12.33 2.80
ICAP (Filtered) 4.17 4.62 12.33 2.80
DISR 3.06 7.32 10.61 1.80
DISR (Filtered) 2.92 7.02 14.22 2.60
CMIM 4.46 3.16 12.33 2.80
CMIM (Filtered) 4.82 2.22 12.33 2.80
CIFE 7.82 9.74 39.83 10.20
CIFE (Filtered) 7.80 9.62 39.33 3.60
FCBF 16.86 0.02 45.50 0.20
FCBF (Filtered) 16.86 0.02 45.50 0.20
LOGO 3.09 4.00 43.94 17.80
LOGO (Filtered) 3.40 1.38 21.11 11.60
FGM 2.15 0.70 39.50 9.00
FGM (Filtered) 2.54 1.00 39.11 1.40
ours (F3) 4.85 9.34 22.61 4.40
ours (W3) 2.72 6.30 10.17 2.40
ours (F10) 4.69 9.94 18.39 1.40
ours (W10) 2.89 9.18 10.50 2.40
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Table 5: NIPS dataset runtime performance (in seconds)

Methods/Dataset GISETTE MADELON

MIM 0.79 0.04
MIM (Filtered) 0.22 0.01
MRMR 23807.11 5.39
MRMR (Filtered) 3439.96 4.68
JMI 5303.93 7.86
JMI (Filtered) 963.97 2.07
ICAP 30901.43 59.68
ICAP (Filtered) 5866.00 20.08
DISR 5533.05 12.49
DISR (Filtered) 864.76 3.16
CMIM 3162.91 12.88
CMIM (Filtered) 3030.55 11.61
CIFE 30658.80 45.52
CIFE (Filtered) 5715.51 17.72
FCBF 107.57 0.94
FCBF (Filtered) 13.65 0.44
LOGO 19303.79 18.17
LOGO (Filtered) 2441.69 9.73
FGM 36.11 6.48
FGM (Filtered) 27.87 4.09
ours (F3) 3.32 0.23
ours (W3) 11.03 0.32
ours (F10) 10.48 0.72
ours (W10) 36.12 1.05
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Figure 7: Precision/Recall on TAC-KBP with Number of Features K = 10 and K = 100.
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Figure 8: Top Keywords for All 17 Relations We Considered in TAC-KBP
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E Stability Experiments

Given different data samples from the same distribution, the feature selection algorithm should ideally identify
the same set of features assuming there is a unique set of “true” features10. However, due to biases incurred
during data sampling and the redundancy present in the data, the algorithm may end up identifying different
sets of features leading to inconsistency. Kuncheva [13] presented a consistency index which measures the
consistency between two sets, with a positive value indicating similar sets, negative value for anti-correlation
and zero for random relations.

For measuring the consistency index, we take 50 bootstraps from a dataset and select feature on the bootstraps.
The consistency index of the dataset from a particular method is taken as the median value from the 50 boot-
straps. The box plot of consistency index from different methods on the 15 UCI datasets are shown in figure 9.
In general, filter method has relatively higher stability as compared to wrapper method. The stability measure

Figure 9: Consistency index across 15 UCI datasets.

of the filter method is very similar to JMI and MIM method, which is attributed to the similarity in obtaining
the scores. From the stability measure of our method in figure 9, we can also observe that as we increase the
number of tests, the algorithm gets more stable, which confirms the experiments we did in previous section.

10This will not hold in case there are multiple subsets of features that are equally good.
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