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Disjunctive Datalog: Size Bounds

\/ TB AB /\ RF AF)

BeB Fe€
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h(A4]As) — h(A4]|A2A3) R:(;Q(Alia Ag) — R:(Q(A-‘iv As)

h(A2A3) 4+ h(As|A2A3) — h(A2A3A1)  Ros(Az, A3) X RY) (A3, Ay) — Thza(As, Az, As)
h(A1Ag) — h(A; As|As) Ria(A1, Az) — Ris(Ar, As)

h(A1As|A3) + h(As) = h(A1A2A3) Ri2(A1, A2) X Rgh)(A:a) — T23(A1, A2, A3z)
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Submodular Width

def .
fht = *(x(¢
w(Q) mn. mex, p*(x(t))
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Submodular Width

min
(T,x)
min
(T,x)

max
teV(T)

max
teV(T)

p*(x(1))

herélél%%nh(X(t))
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min
(T)x)
min
(T)x)
min
(T,x)

*(x(t
ax (x(t))

B, M)

h(v(t
A )
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Submodular Width

fhw(Q) < (HTHXH) s P (x()
= in max o mex h(x(t)
= min | mex o max h(x(®)
subw(Q) df  nax min  max h(x(t))

h€EDNLn  (Tyx)  teV(T)
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Submodular Width

fhiw(Q) < min - max - p"(x(1))
= o mE om0
= . A MO0
subw(Q) ' max  min  max h(x(t))

heEDNT, (Tx) teV(T)

subw(Q) < fhtw(Q)
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Submodular Width: Example

def . " def .
fhtw(Q) = fnin max p (x(£)), subw(Q) = | max g}gténveg)h(x(t))

Q(A1, Ag, A3, Ay) - Ria(Ar, Az), Raz(Az, As),
R34(As, Ag), Ry (Ag, Ay).
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Submodular Width: Example

def . " def .
fhtw(Q) = fnin max p (x(£)), subw(Q) = | max g})gténv%h(x(t))

Q(A1, Ag, A3, Ay) - Ria(Ar, Az), Raz(Az, As),
R34(As, Ag), Ry (Ag, Ay).

fhtw(Q) = 2
subw(Q) = 3/2

min(max(h(A1 A2 As), h(AsAsAr)),
max(h(A4A1A2), h(A2A3A4))) S 3/2
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Submodular Width: Example

fhiw(Q) &

min max
(T,x) teV(T)

Q(A1, Ay, Az, Ay) i-

(x(®)), subw(Q)

R15(A1, As), Ro3(Asz, A3),

R34(As, Ag), Ry (Ag, Ay).

fhtw(Q) = 2
subw(Q) = 3/2
min(max(h(A1 A2 As), h(AsAsAr)),
max(h(A4A1A2),h(A2A3A4))) S 3/2
mln(h(A1A2A3)7h(A4A1A2)) S 3/2
min(h(A1A2A3)7h(A2A3A4)) S 3/2
min(h(A3A4A1),h(A4A1A2)) S 3/2
min(lL(A3A4A1),h(A2A3A4)) S 3/2

i h(x(t
hGIElg%{Fn (I’}n;l) tg‘lfa(}%) ()
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Submodular Width: Example

def . " def .
fhtw(Q) = fnin max p (x(@)), subw(Q) = | max gg}gtglva(%h(x(t))

Q(A1, Ag, A3, Ay) - Ria(Ar, Az), Raz(Az, As),
R34(As, Ag), Ry (Ag, Ay).

Tho3(Ar, As, Az) V Ty12(As, Ar, Ag) -
R]Q (441 5 AQ)., RQ:}(/lQ. /13). qu (Ag, /1./1), R/]] (/14, /11 )

Ti23(A1, Aa, Az) V Taza( Az, A3, As) :-
Ri2(A1, Az), Ra3(Az, Az), R3a(As, As), Ra1 (A4, Ar).

T341(Asz, Ay, Ar) V Ty12(As, Ay, Ag) -
Ri2(A1, As), Rag(Aa, As), R3a(As, As), Ra1 (A4, Ar).

T341(Asz, Ag, A1) V Taza( Az, Az, As) :-
Ri2(A1, A2), Ros(Az, Az), R3a(As, As), R41 (A4, Ar).
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Summary of Bounds

- HDC
DAEB(@)

CC
. H ED. log N7 VD .|
8y AGM(Q) p*(@) o log N .
2

r,
DAPB -
SA, @ log, AGM(¢p) i — .
P(Q) - log, v log, vp, ¢
| 2 VB(Q) S
- P(Q, (NF)FES) £(Q) “log, v Q’Oé\
()

log, vB (@)
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