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Contributions

I A Join Algorithm

I first to meet the Submodular Width bound!
I works for and relies on Disjunctive Datalog.
I fully utilizes Functional DEPs and Degree Bounds.

I A Unified Framework for Join Bounds

I subsumes most known bounds.
I extends them to Functional DEPs and Degree Bounds.

I Results on Shannon-type Inequalities
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Size Bounds for Full Conjunctive Queries

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).
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a 1 d 4
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b 1 d 4

1/4

b 2 c 3

1/4

h(A1A2A3A4) = log |Q|
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d 5

0

A4 A1

3 b
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4 a

1/4

4 b

1/4

h(A1A2) ≤ log |R12|, h(A2A3) ≤ log |R23|, h(A3A4) ≤ log |R34|, . . .

h(A2|A1 = ‘a’) ≤ log
∣∣σA1=‘a’R12

∣∣, h(A2|A1 = ‘b’) ≤ log
∣∣σA1=‘b’R12

∣∣, . . .

h(A2|A1) ≤ log max
x

∣∣σA1=xR12

∣∣︸ ︷︷ ︸

degR12
(A2|A1)
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Size Bounds: Input

I A full conjunctive query

Q(A[n]) :-
∧
F∈E

RF (AF )

I A[n] = {A1, . . . , An} is the full set of attributes
I AF = {Af | f ∈ F ⊆ [n]} is a subset

I Degree Constraints (DC):

degF (AY |AX) ≤ NY |X , X ⊂ Y ⊆ F ∈ E

I Cardinality Constraints (CC): |RF | ≤ NF |∅
I Functional Dependencies (FD): AX → AY

Bound Idea
log |Q| ≤ maximum h(A1, . . . , An)

over all entropies h
such that h satisfies degree constraints of Q
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Size Bounds: Preliminaries
I HDC is the set of functions h : 2[n] → R+ satisfying the

degree constraints

HDC
def
=
{
h | h(Y |X) ≤ logNY |X , ∀(X,Y,NY |X)

}

I Γ∗n is the set of entropic functions
I Γ

∗
n is the topological closure of Γ∗n

I Γn is the set of polymatroids, i.e. functions h : 2[n] → R+

satisfying

h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ), X, Y ⊆ [n] (submodularity)

h(X) ≤ h(Y ), X ⊆ Y ⊆ [n] (monotonicity)

h(∅) = 0 (strictness)

Γ∗n︸︷︷︸
entropic functions

⊂ Γ
∗
n︸︷︷︸

topological closure of Γ∗n

⊂ Γn︸︷︷︸
polymatroids
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Size Bounds for Full Conjunctive Queries

Γ∗n︸︷︷︸
entropic functions

⊂ Γ
∗
n︸︷︷︸

topological closure of Γ∗n

⊂ Γn︸︷︷︸
polymatroids

Bound Entropic Bound Polymatroid Bound

Definition log |Q| ≤ max
h∈Γ

∗
n∩HDC

h([n]) log |Q| ≤ max
h∈Γn∩HDC

h([n])

CC only
AGM bound (Tight) AGM bound (Tight)

[Atserias et al. FOCS’08] [Atserias et al. FOCS’08]

CC + FD only
Entropic Bound for FD Polymatroid Bound for FD

[Gottlob et al. JACM’12] [Gottlob et al. JACM’12]

(Tight [Gogacz et al. ICDT’17]) (Not tight [Our work] )

DC
Entropic Bound for DC Polymatroid Bound for DC

(Tight [Our work] ) (Not tight [Our work] )
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Disjunctive Datalog

P :
∨
B∈B

TB(AB) :-
∧
F∈E

RF (AF )

A1 A3

A2

A4

R12 R23

R34R41

P : T123(A1, A2, A3) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

A1 A2

a 1
b 1
b 2

A2 A3

1 c
1 d
2 c

A3 A4

c 3
d 4
d 5

A4 A1

3 b
4 a
4 b

A1 A2 A3 A4

a 1 d 4
b 1 c 3
b 1 d 4
b 2 c 3

A1 A2 A3

b 1 c
b 2 c

A2 A3 A4

1 d 4
2 c 3
2 d 4
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Disjunctive Datalog: Output Size

P :
∨
B∈B

TB(AB) :-
∧
F∈E

RF (AF )

|P (D)| def
= min

T:T|=P
max
B∈B
|TB|

A1 A3

A2

A4

R12 R23

R34R41

D : |R12| ≤ N, |R23| ≤ N, |R34| ≤ N, |R41| ≤ N.

I P : T123(A1, A2, A3) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

|P (D)| ≤ N3/2 , for all D

I P ′ : T123(A1, A2, A3) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

|P ′(D)| = N2 , for some D
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P :
∨
B∈B

TB(AB) :-
∧
F∈E

RF (AF )
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Recall that:

I HDC is the set of functions h : 2[n] → R+ satisfying the degree
constraints

I Γ∗n︸︷︷︸
entropic functions

⊂ Γ
∗
n︸︷︷︸

topological closure of Γ∗
n

⊂ Γn︸︷︷︸
polymatroids

Theorem

log |P (D)| ≤ max
h∈Γ

∗
n∩HDC

min
B∈B

h(B)︸ ︷︷ ︸
entropic bound

(asymptotically tight!)

≤ max
h∈Γn∩HDC

min
B∈B

h(B)︸ ︷︷ ︸
polymatroid bound
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PANDA (Proof-Assisted eNtropic Degree-Aware)

I An algorithm for disjunctive datalog

I computes a model
I within the polymatroid bound:

I the worst-case size of the minimum model.

I Outline

I Construct a Proof Sequence for the bound.
I Interpret each proof step as an algorithmic step.
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PANDA
I Polymatroid bound: max

h∈Γn∩HDC
min
B∈B

h(B)

I max
h∈Γn∩HDC

min
B∈B

h(B) = max
h∈Γn∩HDC

∑
B∈B

λBh(B)

I
∑
B∈B

λB · h(B) ≤
∑

(X,Y,NY |X)

δY |X · h(Y |X)︸ ︷︷ ︸≤

logNY |XI Proof Sequence
Given X ⊆ Y :

h(X) + h(Y |X)→ h(Y )

(join)

h(Y )→ h(X) + h(Y |X)

(data partition)

h(Y )→ h(X)

(projection)

h(Y |X)→ h(Y ∪ Z|X ∪ Z)

(nothing)

I Algorithmic Sequence

Theorem
PANDA solves any disjunctive datalog rule P in time within the
polymatroid bound of P .
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PANDA: Example

P : T123(A1, A2, A3) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

A1 A3

A2

A4

R12 R23

R34R41

|R12|, |R23|, |R34|, |R41| ≤ N ⇒ |P | ≤ N3/2

log |P | ≤ min(h(A1A2A3), h(A2A3A4)) ≤ 1

2

(
h(A1A2A3) + h(A2A3A4)

)
≤ 1

2

(
h(A1A2) + h(A2A3) + h(A3A4)

)
≤ 3

2
logN

h(A1A2) + h(A2A3) + h(A3A4) →
(
h(A3A4)→ h(A4|A3) + h(A3)

)
h(A1A2) + h(A2A3) + h(A4|A3) + h(A3) →

(
h(A4|A3)→ h(A4|A2A3)

)
h(A1A2) + h(A2A3) + h(A4|A2A3) + h(A3) →

(
h(A2A3) + h(A4|A2A3)→ h(A2A3A4)

)
h(A1A2) + h(A2A3A4) + h(A3) →

(
h(A1A2)→ h(A1A2|A3)

)
h(A1A2|A3) + h(A2A3A4) + h(A3) →

(
h(A1A2|A3) + h(A3)→ h(A1A2A3)

)
h(A1A2A3) + h(A2A3A4)
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(
N

da- subw(Q) ×1
+ |output|

)



19/22

Beyond Worst-case Optimality

I Output-sensitive algorithms

Õ
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(
N

subw(Q) ×c )
I Our goals

Any Q ⇒ Õ
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Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

fhtw(Q) = 2

subw(Q) = 3/2

min(max(h(A1A2A3), h(A3A4A1)),

max(h(A4A1A2), h(A2A3A4))) ≤ 3/2

min(h(A1A2A3), h(A4A1A2)) ≤ 3/2

min(h(A1A2A3), h(A2A3A4)) ≤ 3/2

min(h(A3A4A1), h(A4A1A2)) ≤ 3/2

min(h(A3A4A1), h(A2A3A4)) ≤ 3/2

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



21/22

Submodular Width: Example

fhtw(Q)
def
= min

(T,χ)
max
t∈V (T )

ρ∗(χ(t)), subw(Q)
def
= max

h∈ED∩Γn

min
(T,χ)

max
t∈V (T )

h(χ(t))

Q(A1, A2, A3, A4) :- R12(A1, A2), R23(A2, A3),

R34(A3, A4), R41(A4, A1).

T123(A1, A2, A3) ∨ T412(A4, A1, A2) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

T123(A1, A2, A3) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

T341(A3, A4, A1) ∨ T412(A4, A1, A2) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

T341(A3, A4, A1) ∨ T234(A2, A3, A4) :-

R12(A1, A2), R23(A2, A3), R34(A3, A4), R41(A4, A1).

A1 A3

A2

A4

R12 R23

R34R41

A1
A2

A3

A1
A4

A3

A2

A3

A4

A2

A1

A4



22/22

Summary of Bounds
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