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Let m(n) be the minimum positive integer k so that the Shuffle-Exchange network
with k stages, N = 2" inputs and N outputs is rearrangeable. Bene§ conjectured
that m(n) = 2n — 1. The best bounds known so far are 2n — 1 < m(n) < 3n — 4.
In this paper, we verify Bene§ conjecture for n = 4, and use this result to show
that m(n) < 3n — 5.

1 Introduction

Shuffle-Exchange networks (SE networks for short) were initially proposed
by Stone ! (1971) to be an efficient interconnecting architecture for parallel
processors. Various applications benefit from this interconnecting pattern
such as FFT, matrix transposition, polynomial evaluation, ... A k-stage SE
network with parameter n, denoted by (SE,)*, is a network with N = 27
inputs and N outputs, consisting of k& SE stages, where each SE stage includes
a perfect shuffle pattern ! followed by an array of % 2 x 2 crossbars. A typical
drawing of a 7-stage SE network with n = 4 (i.e. (SE4)") is shown in Figure
1.
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Figure 1. The 7-stage SE network for N = 16, i.e. (SE4)”
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A standard question to be addressed on any multistage interconnection
network (MIN) is that if the network is rearrangeable. An N-input N-output
MIN is rearrangeable if and only if any one to one mapping from the inputs to
the outputs is routable by the network. Universality is another term that is
often used synonymously with rearrangeability. In the context of SE networks,
a long standing question was that how many SE stages are sufficient for a SE
network to be rearrangeable. In fact, it is not entirely clear that increasing
the number of stages would increase the rearrangeability of a SE network.
There has been a very slow progress toward answering this question. For
convenience, let us use m(n) to denote the minimum positive integer so that
(SE,)™™ is rearrangeable. The algorithm discussed by Stone ! showed that
m(n) < n?, thus m(n) is well defined. Benes conjectured in 1975 2 that 2n—1
SE stages is necessary and sufficient to route all V! perfect matchings from the
inputs to the outputs, i.e. m(n) = 2n—1. Parker 3 (1980) showed that n+1 <
m(n) < 3n, where the lower bound was obtained by a counting argument, and
the upper bound by group calculations plus the rearrangeability of the Benes
network. * Wu and Feng 5 (1981) gave an explicit algorithm to route all
matchings, proving m(n) < 3n — 1. Huang and Tripathi ¢ (1986) improved
the bound to m(n) < 3n — 3. Raghavendra and Varma 7 (1987) verified the
conjecture for N = 8. They used that result to show m(n) < 3n — 4. 8 They
also specified a permutation which (SE,)* can not route if ¥ < 2n — 2, in
effect showing 2n—1 < m(n). With a different formulation, Linial and Tarsi ?
(1989) also verified the conjecture for N = 8 and showed m(n) < 3n—4. From
their formulation it is easy to see that at least 2n — 1 stages are needed to
route all permutations. Feng and Seo 10 (1994) gave a proof of the conjecture,
which was incomplete as pointed out by Kim, Yoon, and Maeng ! (1997).

In this paper, we give a proof that m(4) = 7 using a new method, and
then adapting Linial and Tarsi’s results to show that m(n) < 3n —5.

2 Preliminaries

This section presents related concepts and previous results on the problem.
Throughout the paper, we shall assume that n € Nand N = 2”. The following
definitions and lemmas are from Linial and Tarsi. ?

Definition 2.1. For k € N, a N x k 0l-matrix A, denoted by Ay« is said
to be balanced if

(i) Either k& < n and every row vector v € F§ occurs exactly 2"~* times as
rows of A.
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(ii) or k > n and every n consecutive column vectors of A form a balanced
matrix.

Definition 2.2. Given a balanced matrix Ay (,_1), a column vector x € FY
is said to agree with A if appending x into A yields an N x n balanced matrix
(the matrix [A, z]).

Lemma 2.3. If A and B are two N x (n — 1) balanced matrices, then there
ezists a vector x € FY that agrees with both A and B.

Lemma 2.4. Let Anx, be a Ol-matriz such that deleting any column of A
yields a balanced N x (n — 1) matriz. Then, either (i) A is balanced, or (ii)
each row of A has an even number of 1’s, or (iii) each row of A has an odd
number of 1’s.

Lemma 2.5. Let Ayxy be a balanced matriz with k < n, and let T be a non-
singular k x k 0l-matriz, then AT is also balanced, where all the arithmetic
s done modulo 2.

Notice that when z agrees with A, we can insert x into any position
between the columns of A to get a balanced matrix. It is also easy to see that
(SE,)™ (m > n) is rearrangeable if and only if for every two given balanced
matrices Anxn and Byxn there exists an N x (m — n) balanced matrix M
such that the matrix [4, M, B] is balanced. Here the rows of A are binary
representations of the inputs and the corresponding rows of B are binary
representations of the matched outputs.

3 Main Results

To illustrate the idea and introduce notations needed for the main theorem,
we first reproduce a known result %7 using the new method.
Lemma 3.1. m(3) = 5, namely the network (SE3)® is rearrangeable.

000 —000
001 —001
010 —010
011 —011
100 —100
101 —101
110 —110
111 —111

Figure 2. The 5-stage SE network for N = 8, i.e. (SE3)®
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Proof. We use the same approach as that of Raghavendra and Varma, *

namely from first principles. However, the method is different and more intu-
itive. Figure 2 shows a typical drawing of a 5-stage SE network for N = 8. For
convenience, the network can be redrawn and the switches can be labeled as
shown in Figure 3. In the figure, the inputs and outputs have been numbered

0 — — 0
Iy My Oo
N !
2 — 2
I My O1
6 — — 3
1 — —4
Iz M2 02
5 —1 — 5
3 — — 6
I3 M3 O3
T — 7

Figure 3. A redrawing of the (SE3)® network

in decimals for convenience. We write 2 € I; (y € O;) if input 2 (output y)
is connected to input switch I; (output switch O;). Given a perfect match-
ing m (or permutation) from the inputs {0,4,2,6,1,5,3,7} to the outputs
{0,1,2,3,4,5,6, 7}, we first construct a 4 x 4, 2-regular multi-bipartite graph
G(m) = (I, 0, E) whose bipartitions are I = O = {0,1,2,3}. I and O corre-
spond to the input and output switches respectively. We shall refer to G()
as G if 7 is clear from the context. (i,7) € E iff n(z) = y for some z € I; and
y € O, introducing multiple edges if necessary. We now need some notations.
Suppose we have colored the edges of G with colors in C = {0,1,2,3}. For
each ¢ € C, let L(c) (R(c)) be the multi-set of the vertices in I (O) which are
incident to an edge colored c. For each subset S C C, let L(S) = U g L(c)
and R(S) = U,cg R(c), where the union is multi-set union. For each e € E,
let I(e) (r(e)) denote the vertex in I (O) incident to e. Similarly, for any
subset A C E, let L(A) = {l(e) | e € A} and R(A) = {r(e) | e € A}.

To this end, we observe from Figure 3 that the realizability of the matching
is equivalent to the existence of a coloring of G with colors in C' such that

(Po) Each color appears exactly twice.
(Py) For each ¢ € C, L(c) has a representative from each of {0,1} and {2, 3}.

(P) L({0,1}) = L({2,3}) = {0,1,2,3}. In other words, L({0,1}) and
L({2,3}) have distinct elements.
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(P]) For each ¢ € C, R(c) has a representative from each of {0,1} and {2, 3}.

(P)) R({0,2}) = R({1,3}) = {0,1,2,3}. In other words, R({0,2}) and
R({1,3}) have distinct elements.

The conditions are chosen so that the two edges colored ¢ € {0,1,2,3}
will be routed through middle switch M.. We will not state and prove the cor-
rectness of any routing algorithm based on the coloring here, as it is straight-
forward.

We now describe a procedure to properly color all such G as follows.
Along the way, we shall also prove that our procedure works.

Phase 1. As G is 2 regular and bipartite, it is the union of even cycles. G
thus can be decomposed into two 4 x 4 perfect matchings by taking alternate
edges on each cycle. Let the matchings be M; and M» (whose vertex sets are
the same as G.)

Phase 2. From each M; (i = 1,2), construct a 2 x 2 2-regular bipartite
graph G; by combining within each bipartition of M; the pairs of vertices {0, 1}
and {2,3}. Figure 4 illustrates the results of our first two phases. Obviously,
L(E(G;)) = R(E(G;)) = {0,1,2,3}, for ¢+ = 1,2. Here and henceforth the L
and R functions are applied in the context of the original graph G.

0 0 0 0
1 1 Phase 1 1 1
E—
2 2 2 2
3 3 3 3
G M, M2
Phase 2
{0,1} {0,1} ~{o,1} {0,1}
{2,3} {2,3} {2,3} {2,3}
G1 G2

Figure 4. An illustration of the first two phases

We call the graphs G; and G5 the basic components of G. Since the basic
components are 2 x 2 2-regular bipartite graphs, they can only be either a
4-cycle or a union of two 2-cycles. A basic component is said to be of type 1
if it is a 4-cycle and of type 2 otherwise. In Figure 4, G is of type 1 and G»
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is of type 2.

Phase 3. As each coloring of G1 and G5 induces uniquely a coloring of G,

we are to color G; and G4 so that the coloring satisfy conditions Py, P; and
P!, 1 <14 <2 We call an edge whose color is ¢ € C a c-edge. Consider two
cases:
Case 1. Both Gy and G2 are of type 1. In this case we color the graphs as
shown in Figure 5a. It is easy to see that the coloring satisfies all prescribed
conditions. The basic idea is that as we have used each color exactly twice, to
enforce P; and P{ we need to make sure that if there is a c-edge going from
{0,1} to {0,1}, then the other c-edge must go from {2,3} to {2, 3} in either
basic components, and similarly if a c-edge going from {0,1} to {2,3} then
the other c-edge must go from {2, 3} to {0,1}. To enforce P, and Py, on the
left side (the I side) we separate each color pair {0,1} and {2,3}, while on
the right (the O side) we separate the pairs {0,2} and {1,3}.

{0,1} {0,1} {0,1} {0,1} {0,1} {0,1} 0,1}
2 3}
{2, 3} {2,3} {2, 3} {2,3} {2, 3} {2,3}
(a) Both graphs are of type 1 (b) One of each type

. 1@{0, 1} {o, 1}@{0, 1}
{2,3B<>az,s} {2,3}<>®{2,3}
G1 2

(c) Both graphs are of type 2

Figure 5. Illustration of the colorings when n = 3

Case 2. There is one graph of type 2. Without loss of generality, assume G4
is of type 2 as illustrated in Figures 5b and 5c. In this case we color Gy with
{0,2} and G, with {1,3}. Notice that Py, Pi, P/, and P; are satisfied even
if we switch colors in one (or both) 2-cycles of G2. To ensure P», we do this
switching if necessary at each 2 cycle of G5.

O

Secondly, we use the idea to derive a more elaborate proof for the case
where N = 16. Firstly, we redraw the network as shown in Figure 6, so that it
is easier to derive the conditions similar to the P; and P;. From the figure, the
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Figure 6. A redrawing of the (SE4)7 network

following proposition is easy to see. We reuse all notations introduced in the
proof of Lemma 3.1. Again, as a valid coloring induces a routing algorithm
in a straightforward way, we shall not describe the algorithm here.
Proposition 3.2. The fact that (SE;)" is rearrangeable is equivalent to the
fact that for any 8 x 8 2-regular multi-bipartite graph G = (I,0) with bipar-
titions I = O ={0,...,7}, there exists an edge coloring of G using colors in
C ={0,...,7} satisfying the following conditions:

(Py) Each c € C appears exactly twice.

(Py) For each ¢ € C, L(c) has a representative from each of {0,1,2,3} and
{4,5,6,7}.

(Py) For each pair {c1,c2} € {{0,1},{2,3},{4,5},{6,7}}, L({c1,c2}) has a
representative from each of {0,1}, {2,3}, {4,5}, and {6,7}.

(Ps) L({0,1,2,3}) = L({4,5,6,7}) = {0,1,...,7}. In other words, the ele-
ments of L({0,1,2,3}) and L({4,5,6,7}) are all distinct.

(P]) For each ¢ € C, R(c) has a representative from each of {0,1,2,3} and
{4,5,6,7}.

(P2I) For each pair {61762} € {{074}7{276}7{175}7{377}}7 R({clacQ}) has a
representative from each of {0,1}, {2,3}, {4,5}, and {6,7}.

(P;) R({0,4,2,6}) = R({1,5,3,7}) = {0,1,...,7}. In other words, the ele-
ments of R({0,4,2,6}) and R({1,5,3,7}) are all distinct.
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Note that the conditions were specifically chosen so that each pair of edges
with the same color ¢ € C shall be routed through middle switch M, without
causing any conflict. From now on, we shall refer to a walid coloring of G as
the coloring satisfying the prescribed conditions in Proposition 3.2.
Theorem 3.3. m(4) = 7, namely the network (SE,)" is rearrangeable.

Proof. Given any perfect matching 7 from the inputs to the outputs, we first
construct the 8 x 8 2-regular multi-bipartite graph G in a similar way as
the G in Lemma 3.1. The bipartitions of G are I = O = {0,...,7}, and
(i,j) € E(QG) if for some z € {0,...,15} we have z € I; and n(z) € O;.
To color G properly, i.e. the coloring satisfies the conditions of Proposition
3.2, we decompose G into 4 basic components. The decomposition is formally
described below. Figure 7 illustrates the decomposition procedure.

Phase 1 Decompose G into two edge disjoint 8 x 8 perfect matchings M,
and MQ.

Phase 2 For each i = 1,2, construct the graph G; by collapsing the pairs
of vertices {0,1}, {2,3}, {4,5}, and {6,7} on each bipartition of M;. It is
clear that the graphs G; are 4 x 4 2-regular bipartite graphs.

Phase 8 For each i = 1,2, decompose G; into two edge disjoint 4 x 4
perfect matchings M;; and M;s.

Phase 4 For each ¢ = 1,2 and j = 1,2, construct the graph G;; by
collapsing the pairs of vertices {01,23} and {45,67} on each bipartition of
M;;. As before, the G;; are called basic components of G, and can only be one
of two types: (a) type 1 corresponds to a 4-cycle and (b) type 2 corresponds
to two 2 cycles. We are now ready to color the basic components so that the
(uniquely) induced coloring on G is valid.

As we have seen in the proof of Lemma 3.1, the number of type-2 basic
components can roughly be thought of as the degree of flexibility in finding a
valid coloring for G. Our basic idea is to give different colorings of G based on
the number of basic components of type-2. Although the idea is simple, the
cases are quite tricky and long. Due to limited space, the reader is referred
to Ngo and Du 2 (2000) for the full proof. O

To this end, we use the formulation of Linial and Tarsi to show an aux-
iliary lemma and then combine the lemma with Theorem 3.3 to improve the
upper bound of m(n). The following lemma has been shown by Varma and
Raghavendra 8, however the proof was rather long. We straightforwardly ex-
tend Theorem 3.1 in Linial and Tarsi work ° to obtain a much shorter proof.
Lemma 3.4. If m(k) = 2k — 1 for a fized k € N, then (SE,)*" %1 is
rearrangeable whenever n > k.
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Figure 7. An illustration of the basic component decomposition
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Proof. The assertion in the lemma is equivalent to the fact that if we know
m(k) = 2k — 1, then for every two N x n balanced matrices A = [a1,...,ay]
and B = [b1,. .., by], there exists an N x (2n — k — 1) balanced matrix M such
that the matrix [A, M, B] is balanced. Here a; and b; are the i** columns of A
and B respectively. We shall construct the (2n — k — 1) column vectors which
form M. The construction takes several steps as follows.

Step 1. Repeatedly apply Lemma 2.3 to constructs vectors {ui,...,un }
such that for i = 1,...,n — k, u; agrees with [a;41,...,0n,U1,-..,u;—1] and
[iz1y- - s U1, bny s big1]. Let U = [ug, ..., up—) and UR = [up_g,...,u1],
then after this step both [4,U] and [U®, B] are balanced.

Step 2. We want to construct vectors z1,...,zr—1 such that if we let X =
[*1,...,2k—1], then [4,U, X] and [X,U*, B] are both balanced. Notice that
as U is an N x (n— k) balanced matrix, each row of U occurs exactly 2¥ times,
and so do the rows of U® in the same positions. Hence, the rows of U and
UR can be partitioned into 2"~ % classes of 2* identical row vectors in each
partition. For v be any column of U or U, let v(!) be the subvector of v with
entries in the i** partition, where 0 <4 < 2"~% — 1. Notice that v() € F% for
each i. Also, for each i = 0,...,2" % — 1, let

AD = [agzk+1v .- .,a%")]
and
AD =, b ]

Then, since Benes conjecture is true for k (i.e. m(k) = 2k — 1), there
exist vectors x@, .. ,:cgz , such that [A®), X @ B@]is balanced. The vectors
Z1,...,Tp_1 are obtained by pasting together the a:g.’) preserving the positions
of the partitions.

After this step, [A4, U, X] is balanced because at the positions where the
rows of U are identical we have [A(®), X (9] being a 2* x k balanced matrix.
The fact that [X,U%, B] is balanced can be shown similarly.

Step 3. Now we define an N X (n — k) matrix W from U such that
[A,W,X,U® B] is balanced. Define W as follows (all arithmetics are done

over Fy).
w; 1<i< sk
Wi = S Ui+ Up_ kg "T’k+1§i§n—k—1
Up—k + an i=n-—=k

We are left to show that [A, W, X, UE, B] is balanced. The balancedness
of [X,U¥®, B] has already been established, so we only need to show that
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[A,W, X, U¥®] is balanced. We do this by considering the following types of
submatrices:

(a) Submatrices of the form [a;,...,an,w1,...,w;—1] where 2 < i <
n — k + 1. We apply Lemma 2.5 and use the fact that
[@iy...,an,u1,...,u;—1] is balanced. [a;,...,an,w1,...,w;_1] can be ob-
tained from [a;,...,an,u1,...,u;—1] by an invertible linear transforma-

tion with the invert map preserves the a; (i < j <n) and
w; 1<j< gt
Uj = Wj + Wn_i—k "T_’“—i-lgjgn—k—l
Wk + an j=n—k

(b) Submatrices of the form [a;,...,0n, W1, Wnk,T1,--- ) Thti—n—1]
where n—k+2 < i < n. Similarly, in this case we use Lemma 2.5 and the
balancedness of the matrix [a;,...,0n, U1,y Un_kyT1,- -y Thtion—1)

(C) Submatrices of the form [wi, ey Wy ks L1y -3 L1, Up Ky - - - ,un,k,Hl]
where 1 < ¢+ < n — k. Here we use the fact that
[@n, U1,y Un—k,T1,-..,Zk—1] is balanced.

O

Theorem 3.5. For n € N and n > 4, a SE network with 3n — 5 stages is
rearrangeable.

Proof. This is immediate from Theorem 3.3 and Lemma, 3.4. O

4 Discussions

In this paper, we have verified that the 7-stage SE network for n = 4 is
rearrangeable. This result and an extension of another formulation were used
to show that 3n — 5 SE stages are sufficient for the rearrangeability of the SE
network with 2" inputs and 2™ outputs.

It was conjectured that 2n—1 SE stages are necessary and sufficient for the
SE network to be rearrangeable. However, there has been very slow progress
on proving the conjecture. We hope that our work, besides improving the
bound, contribute to the effort of attacking this difficult problem.
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