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Abstract crossbars of sizee; x m, the last stage has, crossbars

Chung and Ross (SIAM J. Compug0, 1991) conjectured Of dimensionm x n,, and the middie stage has cross-
that the minimum number(n, r) of middle-state switchesPars of dimensiom, x r, (see Figure 1). Each input switch
for the symmetric3-stage Clos networlC(n, m(n,r),r) 1i (i = 1,...,71) is connected to each middle switdi;
to be rearrangeable in the multirate enviroment is at mést= 1, - .,m). Similarly, the middle stage and the last stage
2n — 1. This problem is equivalent to a generalized versighe fully connected. When, = ny = nandr; =ry = r,
of the bipartite graph edge coloring problem. The bééte network is called theymmetric3-stage Clos network
bounds known so far on the function(n,r) is 11n/9 < denoted byC'(n,m,r). Any switch is assumed to be non-
m(n,r) < 41n/16 + O(1), for n,r > 2, derived by blocking, i.e. any inlet can be connected to any outlet as
Du-Gao-Hwang-Kim (SIAM J. Comput.28, 1999). In long as there’s no conflict on the outlet. A switch of di-
this paper, we make several contributions. Firstly, we gi&€nsionp x ¢ could be thought of as a crossbar of size
evidence to show that even a stronger result might holi ¢ With pg cross-points. Having too many cross-points
In particular, we give a coloring algorithm to show thaf €xpensive and we would like to design a huge switch us-
m(n,r) < [(r + 1)n/2], which impliesm(n,2) < [3n/2] N9 smaller switches WI'Fh fe_wer number _of cross-points than
- stronger than the conjectured value2f — 1. Secondly, yvhen a brute-forc_e designis u_sed. The inlets (outlets) of the
we derive thatn(2,r) = 3 by an elegant argument. Lastlyinput (output) switches are thaputs (outputg of the.net—
we improve both the best upper and lower bounds givé9rk. Inputs and outputs are referred toedernal links
above:[5n/4] < m(n,r) < 2n — 1+ [(r — 1)/2], where while links betvyeen swﬁphes are referred tloraernal Ilnks
the upper bound is an improvement oveln/16 whenr 1N the multirate environment, @onnection requess a
is relatively small compared ta. We also conjecture thattriPle (i,j,w) wherei is an inlet,j an outlet, andw the
m(n,r) < [2n(1 —1/27)]. weight. A request frames a collection of requests such
that the total weight of all requests in the frame involving a
1 Introduction fixed inlet or outlet does not exceed unity. To discuss routing

. it.is convenient to assume that all links are directed from
The Clos network has been widely used for data commu[u- . .
eft to right. Thus gpathfrom an inlet to any outlet always

cations and parallel computing systems. Quite a lot of re- o ; . .
search efforts [1-3, 5, 6, 9-11, 13-17, 21] have been IOutconS|sts of the sequence: an inlet linkan input switch—

o[, ) : .
; . . . a nnk — a center switch— a link — an output switch— an
investigating the non-blocking properties and rearrangeabil-, . . .
. - outlet link. Furthermore, since the crossbars are assumed to
ity of the Clos network. Th&-stage Clos network was pai

. i X : AR nonblocking, a requeét, j, w) is routableif and only if
special attention to since it can be expanded in a “straigpt- . l . :
” ; ere exists a path frorto j such that every link on this path
forward” way to multistage Clos network. Recently, Ng

[18] observed that th8-stage Clos network is “equivalent” as unused capacity at Iee_is% v befor_e carrying out this
request. A request frame is routable if there exists a set of

to the wavelength division multiplexed (WDM) split cross aths, one for each request, such that for every link the sum

connects [19, 20], giving hew appl|cat|ons to the classic Cl@?weights of all requests going through it does not exceed
networks. Let us first formally introduce some related con- . . : )
cepts unity. The Clos networlC(n, m,r) is said to bemultirate

The Clos networkC(n1, 71, m, s, ) is a3-stage in- rearrangeabldor just rearrangeable as in this paper we only

terconnection network, where the first stage consists; Of;:g;tzgi r the multirate environmentjaveryrequest frame is

Let m(n,r) denote the minimum value of such that
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Figure 1: The3-stage Clos network'(ny, 1, m, na, )

The problem appears to be difficult. Let us first revieand Ross were right on target when= 2, i.e. m(2,r) = 3,
some previous works on this problem. Melen and Turnly a new elegant argument. Lastly, we give better upper and
(1989, [16]) initiated the research on multirate switchingwer bounds for the general case:
networks. In 1991, Chung and Ross [3] conjectured that
m(n,r) < 2n — 1 and untill now no one has been able to F’"w <m(n,r)<2n—1+ W _ 1} .
prove or disprove the conjecture. The best bounds known B B 2

so far on the functionn(n,r) was obtained by Du-Gao-p|| these is done in the context of a generalized version of
Hwang-Kim (1999, [5]): the edge-coloring problem on weighted bipartite graphs, to
be introduced in the next section. These weighted graphs
have maximum degreein the weighted sense.

Lin etal. (1999, [14]) comfirmed Chung-Ross conjecture for AS @ side note: Ngo [18] showed that tiiestage

a restricted discrete bandwidth case where each connecfiffs Network is equivalent to the WDM split cross-connects
has a weight chosen from a st > wy > -+ > wy, > [19, 20] under this multirate environment, hence the results

1/2 > w4y > -+ > wy,} which satisfies the condidion thaih this paper also apply to the split cross-connects. Each rate
w; is an integer multiple ofv; 1 fori = h+1,...,k— 1. can be thought of as the bandwidth fraction of a wavelength

Hu et al. (2001, [10]) studied the monotone routing strategptained from time division multiplexing.
and showed that under this strategy

11n/9 < m(n,r) < 41n/16 + O(1).

2 A Generalized Bipartite Graph Edge Coloring
(1.1) m(n,7) < 2n+1 forn=2,3,4 Problem
(1.2) m(n,7) < 2n+3 forn=5,6. Given a request framg’, define a weighted bipartite multi-
graphGx = (I, O; E) wherel (respectivelyO) contains all
Ngo (2002, [17]) proposed the grouping algorithm whicime input (respectively output) switches. There is an edge
shows thatm(n,r) < 2n — 1 + r, and thatm(n,r) < with weightw between verticeX, Y of G for each request
2n + ”2—;1 whenever < . (z,y,w) wherez (respectivelyy) is an inlet (respectively
In this paper, we give evidence to show that a strongsiitlet) of X (respectivelyt’). C(n, m, r) is rearrangeable iff
version of Chung-Ross conjecture might hold. In parti¢er all F the edges ofy » can bem-colored such that at every
ular, we show thatn(n,r) < {(”_21)"} which implies vertex, the total weight of edges of the same color incident
uté) this vertex is at most unity. To see this, just associate each
color with a center switch.
We now formally define the equivalent bipartite graph
edge-coloring problem. Throughout this paper we assume
)J ;M 22 n,r > 2 are integers. LeB3 be the collection of edge-
weightedr x r bipartite multi-graphss = (A, B; E) (J4| =
We believe that the new conjectured upper bound is also tf = ) with weight functionw : E — (0, 1] satisfying the
correct value forn(n,r). Secondly, we verify that Chungcondition that for every € V(G) = AU B, the setl(v) of

m(n,2) < [22]. This is stronger than the conjectured val
of 2n — 1. We conjecture that

m(n,r) < {271 <1 - —



edges incident te can be partitioned inta. groupsg(v,i), While, looking from vertex’ we need at leas} + & + "T’k

1 < i < mn, such that colors. Consequently, the total number of colors needed is at
. least
(2.3) Z w(e) <1,Vi=1,...,n. s fk:n+k+nfk}
3 v, maxqn —_—, =
ecg(v,i) ) ) 9 9
We shall refer to condition (2.3) as tlggouping condition S nt ook 4 oy g4 ook
The grouping condition simply refers to the fact that the total = 2
weight of all requests from an inler to an outlet is at most . on
unity. -4

A k-edge-coloring of5 € B! is a coloringl : E(G) —
C, whereC'is a set oft colors, such that for eveny € V (G)
and every color € C

The case when is odd can be shown similarl{Z

4 The exact value ofm(2, )

(2.4) Z wle) < 1. The main result of this section is an algorithm to color all
c€1(0) B graphs inB? using at mos8 colors.

l(e)=c

«© THEOREM4.1. Whenr > 2, we have

Let m(n,r) be the minimum integek such that every
G € B} is k-edge-colorable. Our job is to find good bounds
for m(n,r), or the exact value if possible. Notice that
when all the weights arg, this problem reduces to the edge o
coloring of a bipartite graph with maximum degree at mokf0Of. Theorem 3.1 |mpI|e3ng2l,r) > 3. We are left to
n. Thus,m(n,r) = n when the weights are all unity. ThisSOW that every graplis € By is 3-colorable. ForG: =

. 2 _ _ H
can be shown as a trivial consequence of P. Hall's matchiriy 5 £) € By, letA = B = {1,2,...,r}. The grouping
condition, or of K3nig's Line Coloring Theorem [12]. condition indicates that edges incident to each vertesuld

be partitioned into two groupg(v, 1) andg(v, 2) with total
weight at each group at modt Fori,j € {1,2} and
a€ Abe B,let

m(2,r) = 3.

3 A new lower bound

THEOREM3.1. For integersn, r > 2, we havem(n,r) >
m(n, 2). Furthermore, (4.5) w;j(a,b) = Z w(e).
om . eeja(i’)%(fj)
m(n,2) > [Z-‘ ,whenn is even ’ ’
In words, w;;(a, b) is the total weight of all edges from
and a € Atob € B wheree belongs to group of vertexa and
5n —1 . roup; of vertexb. The grouping condition implies that for
m(n,?2) > { w ,whenn is odd egxfixepc{io € {1,2} andaoge A[,)Wg have P

(46) Z (wiol(ao, b) + wiog(ao, b)) <1.
Proof. The natural approach to find a lower bouhdor beB
m(n,r) is to find a particular grapty € B which requires
at leastk colors. The fact thatn(n,r) > m(n,2) is trivial.

Similarly, for a fixedjy € {1,2} andby € B, we get

To show the inequality for even, consider the following (4.7) Z (w1, (@, bo) + way, (a, b)) < 1.
graphG € B2: aeA
o G =({1,2},{l',2'}; E). Clearly, the number of colors needed to calbdoes not
o _ change if at any vertex € V, we re-label the groupgv, 1)

versa.) This re-labelling does change the valuggv, b) or

There aren edges froml to 2’ with weight0.4. :
* g g w;j(a,v), though. Now, re-label the groups at all vertices of

e There arer/2 edges fron® to 2’ with weight1. G to maximize the following sum
The grouping condition is easily seen to be satisfiable. T{e8) Z (w11(a,b) 4+ waz(a,b)).
0.6-edges in/(1) requiren colors. Letk be the number of acA,

colors shared by the.6-edges and.4-edges off (1). Then, beB

looking from vertexl we need at least + "T‘" colors. Tothis end, we usgcolors to color all edges @F as follows.



e One color for all edges in The above result can be extended in a “straightforward”
way to show that

(4.9) U (9(a.1)ng(b,1) _ y
acA, COROLLARY 4.1. (i) m(2*,r) < 3F, for any positive
beB integerk > 1.
¢ Another color for all edges in (i) m(n,r) < 3Moeznl,
(4.10) U (9(a,2) N g(b,2)) Basically, for part(i) we can induct onk, and part(ii)
ac4, follows from (¢). This extended result gives good bounds
S

whenn is small. In fact, we can also show results such
as m(3,r) < 6 by the same idea, with more tedious

e The last color for all edges in . ,
analysis. Since these results are not generally good, and

(4.11) Lo . )
the arguments, though intuitively simple, are too tedious to
94 (9(a,1) N g(b,2)) | g‘ (9(a,2) N g(b,1)) present, we omit their proofs here.
ben beB

5 The new upper bounds

It's straightforward to verify that all edges belong tQext we give a coloring algorithm yielding a general upper
one of the three color classes. To show that this is a va§g,nd which is good for small values of The new upper

coloring, we shall verify that the total weight of edges @ound implies a stronger value than the conjectured value of
each color class which are incident to the same vertex iSat_ | \whenr = 2.

most1. The total weight of edges of color class (4.9) which

are incident to vertex € A is THEOREM5.1. Whemn,r > 2, we have
Zwll(a,b) < Z(wll(a,b)+w12(a,b)) <1. r+1
beB beB m(n,r) < {( 5 )n—‘ ~

The cases of color class (4.9) with a vertexc B, and of
color class (4.10) are done similarly.
Lastly, the total weight of edges of color class (4.1Broof. ConsiderG = (A, B; E) € B". Recall that for each

which are incident to vertex € A is v € V = AU B, we usel (v) to denote the set of edges
incident tov, andg(v, i) the set of edges in groupof v.
(4.12) Z (w12(a,b) +w21(a, b)) Now, for each vertex, € A (respectivelyB) and each vertex
beb v € B (respectivelyA), definen sets of edges, (v,4) as
If this sum is> 1, then follows.
(4.13) > (win(a,b) +was(a, b)) < 1, (5.14)  S,(v,i)=g(u,i)NI(), i=1,...,n.
beB

In other words,S,, (v, %) is the set of edges in groupof u
which are incident ta. Letw,(v,?) be the total weight of

edges inS, (v,i). (We setw, (v,i) = 0if S,(v,i) = 0.)
Z (wi2(a,b) +wz(a, b)) Then, the grouping condition afl implies that

since

beB
+ Y (wi(a,b) +wa(a,b)) (5.15) > wa(bi) < 1, VaeAi=1,...n

beB beB
= > (wii(a,b) + wia(a,b)) (5.16) Y wy(a,i) < 1, WbeBji=1,...,n.

beB acA

b b

+ bEZB (w21(a,b) + waz(a,b)) To this end, for each € A (respectivelyB) and each
< 9 v € B (repsectivelyA), let L, (v) be the set of group names

i, 1 < i < n, for whichw,(v,i) > 1/2, and L, (v) be the
However, (4.13) and the fact that the sum (4.12} isimply ~ Set of the rest of the indices. More formally,

that re-labelling the two groupg(a, 1) and g(a,2) would

increase the sum (4.8), contradicting the maximality of (4.49-17)Lu(v) = {i[wu(v,i) >1/2,i=1,...,n}

O (5.18)L,(v) = {1,...,n}— L,(v).



Due to (5.15), for each indekand a particular vertex hence every two colors can be combined into one without
a € A, there can be at most ohes B wherew, (b,:) > 1/2. violating the condition that the total weight of same color
Hence, for each € A we must have edges at each vertex is at méstConsequently, we can color

edges of7’ with
(5.19) > |La(b)] < n.

=)

Similarly, due to (5.16), for eache B the following holds:

colors.O
(5.20) > |Ly(a)| < n. . _
ea Note that this theorem gives the best upper bounds so far
for m(n, r) whenr is small, as formally put in the following
Now, define a weighted bipartite multi-grapii’ = corollary:

(A, B; E’) as follows.
COROLLARY 5.1. Whenn > 2, we have
e Foreachn € A andb € B, there aren edges between an
a andb in &', denoted by(a,b,i), 1 < i < n. The () m(n.2) < 2]
weight of e(a, b,4), denoted byw’(a,b, ), is defined (i) 1 (n,3) < 2n
below. Note thaty’ is rn-regular. B
(i) m(n,4) < [22]
e Foreachn € Aandb € B, if |L,(b)| < |Ly(a)| then
' N N The argument given in Theorem 5.1 can be extended easily
w'(a,b,1) = we(b,i), i=1,...,n. ) .
to show the following corollary, whose proof we omit.
Otherwise, whefL, (b)[ > |Ly(a)| define COROLLARY 5.2. The general 3-stage Clos network

; e C(ny, 71, m,ng, r9) is multirate rearrangeable when
w/(a7bvz):wb(a7l)7 Z=1,...,n. ( PR ’ ) g

(r+1)n

Firstly, we claim that any valid coloring @’ induces a mz 9
valid coloring of G. The term “valid coloring” here means B dr —
that the total weight of same color edges which are inciddpere” = max{ni,n2}, andr = max{ry,r2}.

to a particular vertex ofi’ is at mostl. To see this, given Theorem 3.1 and paft) of corollary 5.1 impliessn/4 <
a valid coloring ofG" where the edge(a, b, i) is colored m(n,2) < 6n/4. Given that the numbes/4 is somewhat
c(a,b,1), say. Then whenL,(b)| < |Ly(a)| we color all “ugly”, we conjecture that

edges in the se$, (b, ) with color ¢(a,b,7). On the other

hand, wher L, (b)| > |Ly(a)| the setSy(a, i) gets the color CONJECTURES. 1.

instead. 3n
To this end, let be the spanning bipartite subgraph of m(n,2) = |5, n=2
G’ obtained fromG’ by taking only edges whose weights are _ o _
> 1/2. We claim thatf7 has maximum degree atmostTo In fact, recallingm(2,7) = 3, it is very tempting to
see this, consider any vertexc A of H. We have conjecture also that
B . CONJECTURES.2. The symmetric3 stage Clos network
degr(a) = Z)GZB min{|La (b)], | Lo(a)l} C(n, m,r) is multirate rearrangeable if there are at least
< Y La(b) L. _ L
bEZB {(1 + > + + 9r 1 n 2n 1 o
< n,

middle stage switches. In other words,

by (5.19). Similarly,degy(b) < n forall b € B. Add 1

more edges ofy’ into H so thatH is n-regular. This is m(n,r) < {Qn (1 - 27)J .

possible since’ hasn parallel edges between any pair

(a,b) € Ax B. Konig's Line Coloring Theorem [12] impliesWe believe that the upper bound is also the exact value
that H is n-edge-colorable. (The actual coloring algorithmf®r m(n,r). However, as there is no rigorous evidence

can be found in [4,7,8], for instance.) The gragh— E(H) yet, we have conjectured a weaker result. Next, we give
is (r — 1)n-regular, hence it ifr — 1)n-edge-colorable. another upper bound which beats all existing bounds when
However, each edge @’ — E(H) has weight at most/2, r is relatively small compared to.



THEOREM5.2. Whenn,r > 2, we have For example, ifr < n + 1, the Clos networlC'(n, m,r) is
multirate rearrangeable with at mdst. /2] —1 middle-stage
(5.21) m(n,r) <2n—1+ F’ _ 1} . switches; Whem < n/4+ 1, we only need about7n /8 — 1
2 middle-stage switches; and so on ... The argument given
in Theorem 5.2 generalizes straightforwardly to the general
Clos network case. Hence, we get the following result:

Proof. ConsiderG = (A, B; E) € B. Suppose: ande’

are two edges connecting two verticess A andb € B, COROLLARY 5.4. The general 3-stage Clos network

with w(e) + w(e’) < 1. Create a new grapli’ from G by  C(ny, 7y, m, na, r2) is multirate rearrangeable when

collapsinge ande’ into one edge with weighb(e) + w(e’).

Then, a valid coloring of?’ induces a valid coloring ofy. r—1
Now, for every pair(a,b) € A x B, as long as there m22n—1+ [ 2 w ’

are two edges ande’ betweena andb for which w(e) +

w(e’) < 1, collapsee ande’ into one as described. Afterwheren = max{ni,ns}, andr = max{ry,r2}.

this procedure is finished, between any paandb there is

at most one edge with weight 1/2, the rest have weights

> 1/2. Let H be the resulting graph. Call the edges®f References
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