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Abstract

Chung and Ross (SIAM J. Comput.,20, 1991) conjectured
that the minimum numberm(n, r) of middle-state switches
for the symmetric3-stage Clos networkC(n,m(n, r), r)
to be rearrangeable in the multirate enviroment is at most
2n − 1. This problem is equivalent to a generalized version
of the bipartite graph edge coloring problem. The best
bounds known so far on the functionm(n, r) is 11n/9 ≤
m(n, r) ≤ 41n/16 + O(1), for n, r ≥ 2, derived by
Du-Gao-Hwang-Kim (SIAM J. Comput.,28, 1999). In
this paper, we make several contributions. Firstly, we give
evidence to show that even a stronger result might hold.
In particular, we give a coloring algorithm to show that
m(n, r) ≤ d(r + 1)n/2e, which impliesm(n, 2) ≤ d3n/2e
- stronger than the conjectured value of2n − 1. Secondly,
we derive thatm(2, r) = 3 by an elegant argument. Lastly,
we improve both the best upper and lower bounds given
above:d5n/4e ≤ m(n, r) ≤ 2n − 1 + d(r − 1)/2e, where
the upper bound is an improvement over41n/16 when r
is relatively small compared ton. We also conjecture that
m(n, r) ≤ b2n(1− 1/2r)c.

1 Introduction

The Clos network has been widely used for data communi-
cations and parallel computing systems. Quite a lot of re-
search efforts [1–3, 5, 6, 9–11, 13–17, 21] have been put on
investigating the non-blocking properties and rearrangeabil-
ity of the Clos network. The3-stage Clos network was paid
special attention to since it can be expanded in a “straight-
forward” way to multistage Clos network. Recently, Ngo
[18] observed that the3-stage Clos network is “equivalent”
to the wavelength division multiplexed (WDM) split cross-
connects [19,20], giving new applications to the classic Clos
networks. Let us first formally introduce some related con-
cepts.

The Clos networkC(n1, r1,m, n2, r2) is a 3-stage in-
terconnection network, where the first stage consists ofr1
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crossbars of sizen1 × m, the last stage hasr2 crossbars
of dimensionm × n2, and the middle stage hasm cross-
bars of dimensionr1 × r2 (see Figure 1). Each input switch
Ii (i = 1, . . . , r1) is connected to each middle switchMj

(j = 1, . . . ,m). Similarly, the middle stage and the last stage
are fully connected. Whenn1 = n2 = n andr1 = r2 = r,
the network is called thesymmetric3-stage Clos network,
denoted byC(n,m, r). Any switch is assumed to be non-
blocking, i.e. any inlet can be connected to any outlet as
long as there’s no conflict on the outlet. A switch of di-
mensionp × q could be thought of as a crossbar of size
p × q with pq cross-points. Having too many cross-points
is expensive and we would like to design a huge switch us-
ing smaller switches with fewer number of cross-points than
when a brute-force design is used. The inlets (outlets) of the
input (output) switches are theinputs (outputs) of the net-
work. Inputs and outputs are referred to asexternal links,
while links between switches are referred to asinternal links.

In the multirate environment, aconnection requestis a
triple (i, j, w) where i is an inlet, j an outlet, andw the
weight. A request frameis a collection of requests such
that the total weight of all requests in the frame involving a
fixed inlet or outlet does not exceed unity. To discuss routing
it is convenient to assume that all links are directed from
left to right. Thus apath from an inlet to any outlet always
consists of the sequence: an inlet link→ an input switch→
a link→ a center switch→ a link→ an output switch→ an
outlet link. Furthermore, since the crossbars are assumed to
be nonblocking, a request(i, j, w) is routable if and only if
there exists a path fromi to j such that every link on this path
has unused capacity at least1 − w before carrying out this
request. A request frame is routable if there exists a set of
paths, one for each request, such that for every link the sum
of weights of all requests going through it does not exceed
unity. The Clos networkC(n,m, r) is said to bemultirate
rearrangeable(or just rearrangeable as in this paper we only
consider the multirate environment) ifeveryrequest frame is
routable.

Let m(n, r) denote the minimum value ofm such that
C(n,m, r) is multirate rearrangeable forn, r ≥ 2. (The
cases where eithern or r are 1 are trivial, hence we only
considern, r ≥ 2 from here on.) Our problem is to find
m(n, r), or at least some good bounds for this function.
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Figure 1: The3-stage Clos networkC(n1, r1,m, n2, r2)

The problem appears to be difficult. Let us first review
some previous works on this problem. Melen and Turner
(1989, [16]) initiated the research on multirate switching
networks. In 1991, Chung and Ross [3] conjectured that
m(n, r) ≤ 2n − 1 and untill now no one has been able to
prove or disprove the conjecture. The best bounds known
so far on the functionm(n, r) was obtained by Du-Gao-
Hwang-Kim (1999, [5]):

11n/9 ≤ m(n, r) ≤ 41n/16 +O(1).

Lin et al. (1999, [14]) comfirmed Chung-Ross conjecture for
a restricted discrete bandwidth case where each connection
has a weight chosen from a set{1 ≥ w1 > · · · > wh >
1/2 ≥ wh+1 > · · · > wk} which satisfies the condidion that
wi is an integer multiple ofwi+1 for i = h + 1, . . . , k − 1.
Hu et al. (2001, [10]) studied the monotone routing strategy
and showed that under this strategy

m(n, r) ≤ 2n+ 1 for n = 2, 3, 4(1.1)

m(n, r) ≤ 2n+ 3 for n = 5, 6.(1.2)

Ngo (2002, [17]) proposed the grouping algorithm which
shows thatm(n, r) ≤ 2n − 1 + r, and thatm(n, r) ≤
2n+ n−1

2k
wheneverr ≤ n

2k−1
.

In this paper, we give evidence to show that a stronger
version of Chung-Ross conjecture might hold. In partic-

ular, we show thatm(n, r) ≤
⌈

(r+1)n
2

⌉
, which implies

m(n, 2) ≤
⌈

3n
2

⌉
. This is stronger than the conjectured value

of 2n− 1. We conjecture that

m(n, r) ≤
⌊

2n
(

1− 1
2r

)⌋
, n, r ≥ 2.

We believe that the new conjectured upper bound is also the
correct value form(n, r). Secondly, we verify that Chung

and Ross were right on target whenn = 2, i.e.m(2, r) = 3,
by a new elegant argument. Lastly, we give better upper and
lower bounds for the general case:⌈

5n
4

⌉
≤ m(n, r) ≤ 2n− 1 +

⌈
r − 1

2

⌉
.

All these is done in the context of a generalized version of
the edge-coloring problem on weighted bipartite graphs, to
be introduced in the next section. These weighted graphs
have maximum degreen in the weighted sense.

As a side note: Ngo [18] showed that the3-stage
Clos network is equivalent to the WDM split cross-connects
[19, 20] under this multirate environment, hence the results
in this paper also apply to the split cross-connects. Each rate
can be thought of as the bandwidth fraction of a wavelength
obtained from time division multiplexing.

2 A Generalized Bipartite Graph Edge Coloring
Problem

Given a request frameF , define a weighted bipartite multi-
graphGF = (I,O;E) whereI (respectivelyO) contains all
the input (respectively output) switches. There is an edge
with weightw between verticesX, Y of G for each request
(x, y, w) wherex (respectivelyy) is an inlet (respectively
outlet) ofX (respectivelyY ). C(n,m, r) is rearrangeable iff
for allF the edges ofGF can bem-colored such that at every
vertex, the total weight of edges of the same color incident
to this vertex is at most unity. To see this, just associate each
color with a center switch.

We now formally define the equivalent bipartite graph
edge-coloring problem. Throughout this paper we assume
n, r ≥ 2 are integers. LetBnr be the collection of edge-
weightedr× r bipartite multi-graphsG = (A,B;E) (|A| =
|B| = r) with weight functionw : E → (0, 1] satisfying the
condition that for everyv ∈ V (G) = A ∪B, the setI(v) of



edges incident tov can be partitioned inton groupsg(v, i),
1 ≤ i ≤ n, such that

(2.3)
∑

e∈g(v,i)

w(e) ≤ 1,∀i = 1, . . . , n.

We shall refer to condition (2.3) as thegrouping condition.
The grouping condition simply refers to the fact that the total
weight of all requests from an inletor to an outlet is at most
unity.

A k-edge-coloring ofG ∈ Bnr is a coloringl : E(G)→
C, whereC is a set ofk colors, such that for everyv ∈ V (G)
and every colorc ∈ C

(2.4)
∑
e∈I(v)
l(e)=c

w(e) ≤ 1.

Let m(n, r) be the minimum integerk such that every
G ∈ Bnr is k-edge-colorable. Our job is to find good bounds
for m(n, r), or the exact value if possible. Notice that
when all the weights are1, this problem reduces to the edge
coloring of a bipartite graph with maximum degree at most
n. Thus,m(n, r) = n when the weights are all unity. This
can be shown as a trivial consequence of P. Hall’s matching
condition, or of K̈onig’s Line Coloring Theorem [12].

3 A new lower bound

THEOREM 3.1. For integersn, r ≥ 2, we havem(n, r) ≥
m(n, 2). Furthermore,

m(n, 2) ≥
⌈

5n
4

⌉
,whenn is even,

and

m(n, 2) ≥
⌈

5n− 1
4

⌉
,whenn is odd.

Proof. The natural approach to find a lower boundk for
m(n, r) is to find a particular graphG ∈ Bnr which requires
at leastk colors. The fact thatm(n, r) ≥ m(n, 2) is trivial.
To show the inequality for evenn, consider the following
graphG ∈ B2

r :

• G = ({1, 2}, {1′, 2′};E).

• There aren edges from1 to 1′ with weight0.6.

• There aren edges from1 to 2′ with weight0.4.

• There aren/2 edges from2 to 2′ with weight1.

The grouping condition is easily seen to be satisfiable. The
0.6-edges inI(1) requiren colors. Letk be the number of
colors shared by the0.6-edges and0.4-edges ofI(1). Then,
looking from vertex1 we need at leastn + n−k

2 colors.

While, looking from vertex2′ we need at leastn2 + k+ n−k
2

colors. Consequently, the total number of colors needed is at
least

max{n+
n− k

2
,
n

2
+ k +

n− k
2
}

≥
n+ n−k

2 + n
2 + k + n−k

2

2

=
5n
4
.

The case whenn is odd can be shown similarly.2

4 The exact value ofm(2, r)
The main result of this section is an algorithm to color all
graphs inB2

r using at most3 colors.

THEOREM 4.1. Whenr ≥ 2, we have

m(2, r) = 3.

Proof. Theorem 3.1 impliesm(2, r) ≥ 3. We are left to
show that every graphG ∈ B2

r is 3-colorable. ForG =
(A,B;E) ∈ B2

r , letA = B = {1, 2, . . . , r}. The grouping
condition indicates that edges incident to each vertexv could
be partitioned into two groupsg(v, 1) andg(v, 2) with total
weight at each group at most1. For i, j ∈ {1, 2} and
a ∈ A, b ∈ B, let

(4.5) wij(a, b) =
∑

e=(a,b)∈E
e∈g(a,i)∩g(b,j)

w(e).

In words,wij(a, b) is the total weight of all edgese from
a ∈ A to b ∈ B wheree belongs to groupi of vertexa and
groupj of vertexb. The grouping condition implies that for
a fixedi0 ∈ {1, 2} anda0 ∈ A, we have

(4.6)
∑
b∈B

(wi01(a0, b) + wi02(a0, b)) ≤ 1.

Similarly, for a fixedj0 ∈ {1, 2} andb0 ∈ B, we get

(4.7)
∑
a∈A

(w1j0(a, b0) + w2j0(a, b0)) ≤ 1.

Clearly, the number of colors needed to colorG does not
change if at any vertexv ∈ V , we re-label the groupsg(v, 1)
and g(v, 2). (Namely, group1 becomes group2 and vice
versa.) This re-labelling does change the valueswij(v, b) or
wij(a, v), though. Now, re-label the groups at all vertices of
G to maximize the following sum

(4.8)
∑
a∈A,
b∈B

(w11(a, b) + w22(a, b)) .

To this end, we use3 colors to color all edges ofG as follows.



• One color for all edges in

(4.9)
⋃
a∈A,
b∈B

(g(a, 1) ∩ g(b, 1))

• Another color for all edges in

(4.10)
⋃
a∈A,
b∈B

(g(a, 2) ∩ g(b, 2))

• The last color for all edges in
(4.11)⋃
a∈A,
b∈B

(g(a, 1) ∩ g(b, 2))
⋃ ⋃

a∈A,
b∈B

(g(a, 2) ∩ g(b, 1))

It’s straightforward to verify that all edges belong to
one of the three color classes. To show that this is a valid
coloring, we shall verify that the total weight of edges at
each color class which are incident to the same vertex is at
most1. The total weight of edges of color class (4.9) which
are incident to vertexa ∈ A is∑

b∈B

w11(a, b) ≤
∑
b∈B

(w11(a, b) + w12(a, b)) ≤ 1.

The cases of color class (4.9) with a vertexb ∈ B, and of
color class (4.10) are done similarly.

Lastly, the total weight of edges of color class (4.11)
which are incident to vertexa ∈ A is

(4.12)
∑
b∈B

(w12(a, b) + w21(a, b)) .

If this sum is> 1, then

(4.13)
∑
b∈B

(w11(a, b) + w22(a, b)) < 1,

since ∑
b∈B

(w12(a, b) + w21(a, b))

+
∑
b∈B

(w11(a, b) + w22(a, b))

=
∑
b∈B

(w11(a, b) + w12(a, b))

+
∑
b∈B

(w21(a, b) + w22(a, b))

≤ 2.

However, (4.13) and the fact that the sum (4.12) is> 1 imply
that re-labelling the two groupsg(a, 1) and g(a, 2) would
increase the sum (4.8), contradicting the maximality of (4.8).
2

The above result can be extended in a “straightforward”
way to show that

COROLLARY 4.1. (i) m(2k, r) ≤ 3k, for any positive
integerk ≥ 1.

(ii) m(n, r) ≤ 3dlog2 ne.

Basically, for part(i) we can induct onk, and part(ii)
follows from (i). This extended result gives good bounds
when n is small. In fact, we can also show results such
as m(3, r) ≤ 6 by the same idea, with more tedious
analysis. Since these results are not generally good, and
the arguments, though intuitively simple, are too tedious to
present, we omit their proofs here.

5 The new upper bounds

Next, we give a coloring algorithm yielding a general upper
bound which is good for small values ofr. The new upper
bound implies a stronger value than the conjectured value of
2n− 1 whenr = 2.

THEOREM 5.1. Whenn, r ≥ 2, we have

m(n, r) ≤
⌈(

r + 1
2

)
n

⌉
.

Proof. ConsiderG = (A,B;E) ∈ Bnr . Recall that for each
v ∈ V = A ∪ B, we useI(v) to denote the set of edges
incident tov, andg(v, i) the set of edges in groupi of v.
Now, for each vertexu ∈ A (respectivelyB) and each vertex
v ∈ B (respectivelyA), definen sets of edgesSu(v, i) as
follows.

(5.14) Su(v, i) = g(u, i) ∩ I(v), i = 1, . . . , n.

In other words,Su(v, i) is the set of edges in groupi of u
which are incident tov. Let wu(v, i) be the total weight of
edges inSu(v, i). (We setwu(v, i) = 0 if Su(v, i) = ∅.)
Then, the grouping condition onG implies that∑

b∈B

wa(b, i) ≤ 1, ∀a ∈ A, i = 1, . . . , n(5.15) ∑
a∈A

wb(a, i) ≤ 1, ∀b ∈ B, i = 1, . . . , n.(5.16)

To this end, for eachu ∈ A (respectivelyB) and each
v ∈ B (repsectivelyA), letLu(v) be the set of group names
i, 1 ≤ i ≤ n, for whichwu(v, i) > 1/2, andL̄u(v) be the
set of the rest of the indices. More formally,

Lu(v) = {i | wu(v, i) > 1/2, i = 1, . . . , n}(5.17)

L̄u(v) = {1, . . . , n} − Lu(v).(5.18)



Due to (5.15), for each indexi and a particular vertex
a ∈ A, there can be at most oneb ∈ B wherewa(b, i) > 1/2.
Hence, for eacha ∈ A we must have

(5.19)
∑
b∈B

|La(b)| ≤ n.

Similarly, due to (5.16), for eachb ∈ B the following holds:

(5.20)
∑
a∈A
|Lb(a)| ≤ n.

Now, define a weighted bipartite multi-graphG′ =
(A,B;E′) as follows.

• For eacha ∈ A andb ∈ B, there aren edges between
a andb in G′, denoted bye(a, b, i), 1 ≤ i ≤ n. The
weight of e(a, b, i), denoted byw′(a, b, i), is defined
below. Note thatG′ is rn-regular.

• For eacha ∈ A andb ∈ B, if |La(b)| ≤ |Lb(a)| then

w′(a, b, i) = wa(b, i), i = 1, . . . , n.

Otherwise, when|La(b)| > |Lb(a)| define

w′(a, b, i) = wb(a, i), i = 1, . . . , n.

Firstly, we claim that any valid coloring ofG′ induces a
valid coloring ofG. The term “valid coloring” here means
that the total weight of same color edges which are incident
to a particular vertex ofG′ is at most1. To see this, given
a valid coloring ofG′ where the edgee(a, b, i) is colored
c(a, b, i), say. Then when|La(b)| ≤ |Lb(a)| we color all
edges in the setSa(b, i) with color c(a, b, i). On the other
hand, when|La(b)| > |Lb(a)| the setSb(a, i) gets the color
instead.

To this end, letH be the spanning bipartite subgraph of
G′ obtained fromG′ by taking only edges whose weights are
> 1/2. We claim thatH has maximum degree at mostn. To
see this, consider any vertexa ∈ A of H. We have

degH(a) =
∑
b∈B

min{|La(b)|, |Lb(a)|}

≤
∑
b∈B

La(b)

≤ n,

by (5.19). Similarly,degH(b) ≤ n for all b ∈ B. Add
more edges ofG′ into H so thatH is n-regular. This is
possible sinceG′ has n parallel edges between any pair
(a, b) ∈ A×B. König’s Line Coloring Theorem [12] implies
thatH is n-edge-colorable. (The actual coloring algorithms
can be found in [4,7,8], for instance.) The graphG′−E(H)
is (r − 1)n-regular, hence it is(r − 1)n-edge-colorable.
However, each edge ofG′ − E(H) has weight at most1/2,

hence every two colors can be combined into one without
violating the condition that the total weight of same color
edges at each vertex is at most1. Consequently, we can color
edges ofG′ with

n+
⌈(

r − 1
2

)
n

⌉
=
⌈(

r + 1
2

)
n

⌉
colors.2

Note that this theorem gives the best upper bounds so far
for m(n, r) whenr is small, as formally put in the following
corollary:

COROLLARY 5.1. Whenn ≥ 2, we have

(i) m(n, 2) ≤ d 3n
2 e

(ii) m(n, 3) ≤ 2n

(iii) m(n, 4) ≤ d 5n
2 e

The argument given in Theorem 5.1 can be extended easily
to show the following corollary, whose proof we omit.

COROLLARY 5.2. The general 3-stage Clos network
C(n1, r1,m, n2, r2) is multirate rearrangeable when

m ≥ (r + 1)n
2

,

wheren = max{n1, n2}, andr = max{r1, r2}.

Theorem 3.1 and part(i) of corollary 5.1 implies5n/4 ≤
m(n, 2) ≤ 6n/4. Given that the number5/4 is somewhat
“ugly”, we conjecture that

CONJECTURE5.1.

m(n, 2) =
⌊

3n
2

⌋
, n ≥ 2.

In fact, recallingm(2, r) = 3, it is very tempting to
conjecture also that

CONJECTURE5.2. The symmetric3 stage Clos network
C(n,m, r) is multirate rearrangeable if there are at least⌊(

1 +
1
2

+ · · ·+ 1
2r−1

)
n

⌋
=
⌊

2n
(

1− 1
2r

)⌋
middle stage switches. In other words,

m(n, r) ≤
⌊

2n
(

1− 1
2r

)⌋
.

We believe that the upper bound is also the exact value
for m(n, r). However, as there is no rigorous evidence
yet, we have conjectured a weaker result. Next, we give
another upper bound which beats all existing bounds when
r is relatively small compared ton.



THEOREM 5.2. Whenn, r ≥ 2, we have

(5.21) m(n, r) ≤ 2n− 1 +
⌈
r − 1

2

⌉
.

Proof. ConsiderG = (A,B;E) ∈ Bnr . Supposee ande′

are two edges connecting two verticesa ∈ A andb ∈ B,
with w(e) + w(e′) ≤ 1. Create a new graphG′ from G by
collapsinge ande′ into one edge with weightw(e) + w(e′).
Then, a valid coloring ofG′ induces a valid coloring ofG.

Now, for every pair(a, b) ∈ A × B, as long as there
are two edgese ande′ betweena andb for which w(e) +
w(e′) ≤ 1, collapsee ande′ into one as described. After
this procedure is finished, between any paira andb there is
at most one edge with weight≤ 1/2, the rest have weights
> 1/2. LetH be the resulting graph. Call the edges ofH
with weight> 1/2 heavy, and the rest of the edgeslight.
Since the total weight of edges incident to each vertex ofG
is at mostn, every vertex ofH is incident to at most2n− 1
heavy edges. In other words, the heavy degree of any vertex
of H is at most2n− 1.

We claim that the light degree of any vertex ofH is at
mostr − 1. To see this, considera ∈ A. If the heavy degree
of A is 2n − 1, then no light edge incident toa can share
the same neighbor as a heavy edge ofa. Suppose for the
contrary, that there is a heavy edgee and a light edgee′

both of which connecta and b. Then, the total weight of
the other2n− 2 heavy edges ofa excepte is> n− 1, hence
w(e) +w(e′) < 1, as the total weight associated witha is at
mostn. Consequently,e ande′ must have been collapsed by
our procedure. Thus, the light degree ofa is at mostr − 1.
Now, if the heavy degree ofa is at most2n− 2, then there is
also a vertexb ∈ B with heavy degree at most2n−2. If there
was no light edge betweena andb, then the light degree ofa
is at mostr− 1. If there was one light edge betweena andb,
re-label this light edge “heavy”, which does not change the
fact that the maximum heavy degree ofH is at most2n− 1.
Again, the light degree ofa is now at mostr − 1.

König’s Line Coloring Theorem [12] implies that we
can use at most2n − 1 colors to color the heavy edges of
H, and at mostr − 1 colors to color the light edges ofH.
As the light edges have weights≤ 1/2, every two colors of
r − 1 colors can be combined into one, for a total of at most
2n − 1 + d(r − 1)/2e colors as desired. (Again, the actual
coloring algorithms can be found in [4,7,8].)2

As we have mentioned, the new bound is good when
r is relatively small. This is formally put in the following
corollary:

COROLLARY 5.3. Whenr ≤ n
2k−1 + 1, we have

m(n, r) ≤ 2n− 1 +
⌈ n

2k
⌉
.

For example, ifr ≤ n + 1, the Clos networkC(n,m, r) is
multirate rearrangeable with at mostd5n/2e−1 middle-stage
switches; Whenr ≤ n/4+1, we only need about17n/8−1
middle-stage switches; and so on ... The argument given
in Theorem 5.2 generalizes straightforwardly to the general
Clos network case. Hence, we get the following result:

COROLLARY 5.4. The general 3-stage Clos network
C(n1, r1,m, n2, r2) is multirate rearrangeable when

m ≥ 2n− 1 +
⌈
r − 1

2

⌉
,

wheren = max{n1, n2}, andr = max{r1, r2}.
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