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Abstract

Many interconnection networks can be constructed with line digraph iterations. A digraph has
super link-connectivity d if it has link-connectivity d and every link-cut of cardinality d consists
of either all out-links coming from a node, or all in-links ending at a node, excluding loop. In
this paper, we show that the link-digraph iteration preserves super link-connectivity.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a digraph. A link-cut is natural if it consists of either all out-links other
than loop at a node or all in-links other than loop at a node. A digraph has super
link-connectivity d if it has link-connectivity d and every link-cut of cardinality d is
natural.
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Consider a digraph G =(V,E). The line digraph of G is defined by
L(G) = (E,{(u,v), (v, w) [ (u,0),(v,w) € E}),

that is, L(G) takes the link set £ of G as its node set and there exists a link from a
node x to another node y in L(G) if x ends at the starting node of y in G.

The line digraph iteration preserves the link-connectivity, that is, the line digraph of
a d-link-connected digraph is still d-link-connected. Can the line digraph iteration also
preserve the super link-connectivity? In this paper, we will give a positive answer that
the line digraph of a super d-link-connected digraph must be super d-link-connected.

This result has many applications in interconnection networks since many intercon-
nection networks are constructed with line digraph iterations [3,16,7,19,10,20,9,11].

The result also yields a corollary on super connectivity defined as follows: Clearly,
all ending nodes of out-links at any node form a node-cut. All starting nodes of in-
edges at any node also form a node-cut. Those node-cuts are called natural node-cuts.
A digraph has super connectivity d if it has connectivity d and every node-cut of
cardinality d is natural.

The super connectivity is an important issue studied in interconnection networks
[6,22,2,18].

Suppose G has super connectivity d. Could this imply that L(G) has super connec-
tivity d? The answer is NO. A counterexample is as shown in Fig. 1. However, as a
corollary, we will show that if G has super link-connectivity d, then L¥(G) for k>1
also have super connectivity d where L¥(G) = L(L*~1(G)).

2. Main result

Note that a natural node-cut of L(G) may not be a natural link-cut of G. However,
we have the following result.

Lemma 1. G has super link-connectivity d if and only if L(G) has super connectiv-
ity d.

G L(G)

Fig. 1. A counterexample.
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Proof. First, assume G has super link-connectivity d. Then L(G) has connectivity d.
Thus, every node has out-degree and in-degree at least d. Consider a node-cut C of
L(G), with cardinality d. C is a link-cut of G and hence is natural. Without loss of
generality, assume that C consists of all out-links other than loop at a node v. If v has
a loop (v,v), then the loop (v,v) has out-degree d and C is exactly the set of ending
nodes of those d out-links. Hence, C is a natural node-cut of L(G). If v has no loop,
then every in-link at v as a node in L(G) has out-degree d and C is exactly the set
of ending nodes of those d out-links. Hence, C is a natural node-cut of L(G).

Conversely, assume L(G) has super connectivity d. Then G has link-connectivity d.
Consider a link-cut C of G, with cardinality d. C is a node-cut of L(G) and hence is
natural in L(G). Without loss of generality, assume that C is the set of ending nodes
of all out-links at a node (u,v) in L(G). Note that C does not contain loop in G since
C is a minimum link-cut of G. Therefore, C consists of all out-links at v in G, that
1s, C is natural. [

It is quite interesting that the super link-connectivity is preserved by line digraph
operations while the super connectivity is not.

Theorem 1. If G has super link-connectivity d, then L(G) has super link-con-
nectivity d.

Proof. Consider a minimum link-cut C of L(G). Suppose C breaks the node set of
L(G) into two parts 4 and B such that no link other than those in C is from 4 to B.
Let

U = {(u,0) | ((,0). (v.w)) € C},
W = {(0.w)|((,0), (0, )) € C},
V = {o]((u,0), (v.w)) € C}.

We next show several claims.
Claim 1. |C|=d.

Proof. By Lemma 1, L(G) has super connectivity d and hence link-connectivity at
least d. This means |C|>d. On the other hand, since G has super link-connectivity
d, there exists a node v of G such that either all out-links at v other than loop or
all in-link at v other than loop form a minimum link-cut D of G, with cardinality d.
Without loss of generality, assume the former occurs. If v has a loop, then this loop
has out-degree d in L(G). If v has no loop, then every in-link of v has out-degree d
in L(G). This means that in any case, L(G) has link-connectivity at most d. Hence,
|C|=d. O

Claim2. A=U or B=W.
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Proof. For contradiction, suppose 4 — U # () and B — W # (). Define

X ={x|(x,w) € B},
Y = V(6)- X,

where V(G) is the node set of G. Note that {y|(u,y)€A4— U} CY. Thus, X #() and
Y # 0. Moreover, every link (y,x) from a node y in Y to a node x in X must belong to
A (since (y,x) € B implies y € X') and hence belongs to U. Therefore, U is a link-cut
of G.

Similarly, we can show that W is a link-cut of G. Note that |U|<|C|=d and
|W|<|C|=d. Since G has super link-connectivity d, both U and W are natural link-
cuts of cardinality d. In particular, U and W do not contain any loop. Hence, we have
|C|=|U|=|W]|. 1t follows that any two links U cannot share the same ending node.
Therefore, U must consist of out-links at a node x and W must consist of in-links at
a node y (Fig. 2). It also follows that |V'|=|C].

Choose v € V. Note that U and W do not contain any loop. Then every out-link at v,
not in W, must belong to 4 — U. Thus, any path from v to y not passing link (v, y)
must pass some link in U — {(x,v)}. (Otherwise, the path will go from a link in 4 — U
to a link in B. This produces a link from 4 to B in L(G), not in C, a contradiction.)
This means that (U — {(x,v)})U{(v, y)} is also a link-cut of G, with cardinality d,
which is not natural, contradicting the super link-connectivity of G. [

Claim 3. C is natural.
Proof. First, we show |V/| = 1. For contradiction, suppose |V'|>2. Note that each node
in G has at least d out-links other than loop and at least d in-links other than loop.

Moreover, |U|<|C|=d and |W|<|C|=d. Thus, each node in ¥ must have an in-link
not in U and an out-link not in . Such an in-link must belong to B— W and such an

y

Fig. 2. |C|=|U|=|W|=|V].
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out-link must belong to 4 — U. This means that 4 — U # () and B— W # (), contradicting
to Claim 2.

Now, assume V' ={v}. Without loss of generality, assume also 4 = U. Note that if
v has an out-link, other than loop, not in W, then it must belong to 4 — U. Therefore,
all out-links at v, other than loop, belong to . Since v has at least d out-links other
than loop and |W|<d, we have |W|=d and that I is exactly the set of all out-links,
other than loop, at v. It follows that |U|= 1. Hence, if v has no loop, then C is natural.
If v has a loop, then this loop must belong to U. In fact, the loop being in 4 — U
would introduces a link from 4 to B, but not in C, and the loop being in B— W would
introduce a link from 4 to B, but not in C, a contradiction. Thus, the loop (v,v) not
being in W implies it being in U. Since |U| =1, v can have only one loop. Hence, C
is exactly the set of all out-links, other than loop, at the node (v,v) in L(G), that is,
C is natural. [

By Claims 1 and 3, every minimum link-cut of L(G) is a natural link-cut of cardi-
nality d. Therefore, L(G) has super link-connectivity d.

Corollary 1. If G has super link-connectivity d, then L*(G) for k=1 has super con-
nectivity d.

The counterexample in Fig. 1 tells us that in general, a digraph having super con-
nectivity d may not have super link-connectivity d. However, Theorem 1 tells us that
this is true for a special family of digraphs—Iline digraphs.

3. Applications

When an interconnection network contains possible node-faults there are two fault-
tolerance measures in the literature [1,13—15].

The first one is the connectivity. The second one is the probability of the remaining
network being connected when nodes fail with certain probabilistic distribution. Let F'
be the family of all node-cuts of a digraph G. By the exclusion—inclusion principal,

Prob(G connected) =1 — Prob(G disconnected )
=1-=3 Prob(c)+ > Prob(ci Ucy) — -+

cEF c1,c2€F c1F#e

where Prob(c) is the probability of all nodes in ¢ fail. When all nodes are independent,
Prob(c) is a product of failure probabilities of nodes in c. Therefore, if every node
has the same fault probability of a small number, then Prob(G connected) depends
mainly on the number of the minimum node-cuts. The number of the minimum natural
node-cuts is certainly a lower bound of the number of minimum node-cuts. Therefore,
the super-connected digraph reaches maximum fault-tolerance in certain sense.

Given a degree bound d, many constructions have been found in the literature to
achieve the maximum connectivity d and near-minimum diameter [21,8], including
Kautz digraphs [16], cyclically modified de Bruijn digraphs [8,17], generalized cycles
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[10], etc. Do they also have super connectivity? In this section, we study some of
them.

Example 1. Kautz digraph K(d,1) is the complete digraph on d + 1 nodes without
loop and in general K(d,D)=LP~'(K(d,1)) [16]. We claim that K(d,1) has super
link-connectivity d. Consider a link-cut C of size d in K(d, 1), which breaks the node
set of K(d,1) into two parts 4 and B such that every link from A to B belongs to
C. Note that there are |4|(|4] — 1) links from 4 to 4 and each node has d out-links.
Therefore, |A|d — |4|(JA| — 1)=d. That is, (|[4] — 1)(d — |4])=0. Thus, |4]=1 or
|A|=d. Since |A|=d implies |B| =1. Therefore, C is a natural link-cut.

Corollary 2. Kautz digraph K(d,D) has super connectivity d for D>=2.

Example 2. Ferrero and Padré [10] studied a family of digraphs BGC( p,d,d") where
BGC(p,d,d*)=L(BGC(p,d,d*"")) for k=2 and BGC(p,d,d) is a p-partite digraph
(", Va,..., Vp,E) that |Vi|=|Va2|=--- =|V,| =d and that a link (u,v) exists if and
only if u€ V; and v € Vi, for some 1<i< p (V41 =V1). We claim that for >3 and
p=2, BGC(p,d,d) has super link-connectivity d. To show it, consider a link-cut C
of cardinality at most d, which breaks the node set into two parts 4 and B such that
every link from 4 to B belongs to C. Denote a; =|ANV;| and b; = |BNV;|. Then we
must have

arby + axbs +--+aph < d.

First, we show that there exists i such that a; =0 or b; =0. For contradiction, suppose
such an i does not exist. Then for every i, ;>0 and b; >0. Note that a; + b; =d >=3.
Therefore,

d >a1b2+a2b3+-~-—|—apb1 >b2+a2b3—|—-~-—|—ap > by+a =d,

a contradiction.

Now, suppose, without loss of generality, that a; =0 for some i. Since a; + --- +
a,=1|A|>0, there exists i such that g;_; #0 and a;=0 (denote ap=a,). Without
loss of generality, assume a,—; # 0 and a, =0. Then b, =d. This implies a,_; =1 and
ayby+axbs+---+ap,b,_; =0. This in turn implies a,_» =a,_3 = --- =a; =0. Hence,
|A|=1. Since BGC(p,d,d) contains no loop, C consists of d out-links at the node in
A. This means that C is natural.

Corollary 3. For d >3, p>2, and k=2, BGC(p,d,d*) has super connectivity d.

Example 3. Ferrero and Padrd [10] also studied a family of digraphs KGC(p,d,n)=
C, ® GK(d,n) where C, is a directed cycle of length p, GK(d,n) is the generalized
Kautz digraph with node set Z, ={0,1,...,n—1} and link set {(i, —id+k)|i€ Z,, 1<k
<d}, and operation ® is defined as follows: Let G=(V,E) and G’ =(V',E’). Then
G ® G’ has node set V x V' and link set {((u,u'), (v,0")) |(u,v) EE,(/,0')EE'}. Tt is
not hard to prove that KGC(p,d,d*(d? + 1)) = L(KGC(p,d,d*~'(d? 4 1))) for k>1
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and KGC(p,d,d”+1) is a p-partite digraph (Vy,V>,...,V,,E) with |[V1|=|V3|= - =
|V,|=d?+1 and that each node in ¥; has d out-links which reach d consecutive nodes
in V.., the d? out-links of those d consecutive nodes in ¥, reach d> consecutive
nodes in V;y,,..., that is, take each node in ¥; as a root, we can find a complete
d-nary tree such the second level consists of d consecutive nodes in V., the third
level consists of d?> consecutive nodes in Vio,..., the ( p + 1)-level consists of d”
consecutive nodes in ¥y, =V; which are exactly those d” nodes in V; other than the
root.

Now, we claim that KGC(p,d,d? + 1) has super link-connectivity d. To show it,
consider a link-cut C with cardinality at most d, which breaks the node set into two
nonempty parts 4 and B such that every link from 4 to B belongs to C. First, we note
that there must exist an i such that ANV;#( and BNV; # (. In fact, if such an i does
not exist, then there must exist ¥;CA4 and V;{ CB (note: V,.; = V7). It follows that
C contains all d(d” + 1) links from V; to V;;, contradicting |C|<d.

Without loss of generality, we may assume ANV #® and BNV, # (). Construct a
digraph H =(V,E;) as follows: (u,v) € E| if and only if there exists a path of length
p from u to v in KGC(p,d,d? +1). From the property of KGC(p,d,d?+ 1) described
as above, it is easy to see that H is isomorphic to K(d?,1). Note that if there exists
a path of length p from u to v in KGC(p,d,d? + 1), then such a path is unique. This
means that each link of A uniquely corresponds to a path of length p between two
nodes in V. Let C’ be the set of links corresponding to those paths containing a link
in C. Then C’ is a link-cut of H. Since each link in C can be contained by exactly
dP~! such paths (Fig. 3), we have |C’'| <d”. Note that H has super link-connectivity
d?. Therefore, [ANV;|=1 or |BNV;|=1. First, assume |4 N ¥;|=1. This means that
C must break all d? paths which form a complete d-nary tree rooted at a node in V.
This can be done only if C consists of d out-links at the root. Hence, C is natural.
Similarly, |[BN V| =1 also implies that C is natural.

Corollary 4. For d >3 and k>1, KGC(p,d,d?** + d*) has super connectivity d.

1 dp-k-l

Fig. 3. dP~! paths pass through the same link.
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4. Discussion

The line digraph iteration preserves the degree, that is, the line digraph of a d-regular
digraph is still d-regular. This is a very important property different from line graph
iteration. This property enables the line digraph iteration to become a very useful tool
to construct interconnection networks. In this paper, we showed that the line digraph
iteration preserves the super connectivity under certain condition. We also established
that two families of generalized cycles are super connected. Recently, generalized cycles
have been studied extensively [10,4,5,12]. They contain many important interconnection
networks as special cases.
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