
A New Routing Algorithm for Multirate Rearrangeable Clos
Networks

Hung Q. Ngo∗

July 5, 2003

Abstract

In this paper, we study the problem of finding routing algorithms on the multirate rearrangeable
Clos networks which use as few number of middle-stage switches as possible. We propose a new
routing algorithm called the “grouping algorithm”. This is a simple algorithm which uses fewer
middle-stage switches than all known strategies, given that the number of input-stage switches and
output-stage switches are relatively small compared to the size of input and output switches. In
particular, the grouping algorithm implies thatm = 2n + dn−1

2k
e is a sufficient number of middle-

stage switches for the symmetric3-stage Clos networkC(n,m, r) to be multirate rearrangeable,
wherek is any positive integer andr ≤ n/(2k − 1).

1 Introduction

The Clos network has been widely used for data communications and parallel computing systems. Quite
a lot of research efforts [1–8, 10–15] have been put on investigating the non-blocking properties of the
Clos network. The3-stage Clos network was paid special attention to since it can be expanded in a
“straightforward” way to multi-stage Clos network. Let us first formally introduce some related concepts.

The3-state Clos networkC(n1, r1,m, n2, r2) is a 3-stage interconnection network, where the first
stage consists ofr1 crossbars of sizen1×m, the last stage hasr2 crossbars of dimensionm×n2, and the
middle stage hasm crossbars of dimensionr1 × r2 (see Figure 1). Each input switchIi (i = 1, . . . , r1)
is connected to each middle switchMj (j = 1, . . . ,m). Similarly, the middle-stage switchesMj and
third-stage swichesJi are fully connected. Thesymmetric3-stage Clos networkC(n,m, r) is nothing
butC(n, r,m, n, r). A C(2, 3, 4) is shown in Figure 2. Any switch is assumed to be nonblocking, i.e.
any inlet can be connected to any outlet as long as there’s no conflict on the outlet. This can be thought
of as a crossbar of sizep × q with pq cross-points. Having too many cross-points is expensive and we
would like to design a huge switch using smaller switches with fewer number of cross-points than when
a brute-force design is used. The inlets (outlets) of the input (output) switches are theinputs(outputs)
of the network. Inputs and outputs are referred to asexternal links, while links between switches are
referred to asinternal links.

In the multi-rate environment, aconnection requestis a triple (x, y, w) wherex is an inlet,y an
outlet, andw ∈ (0, 1] the weight. Arequest frameis a collection of requests such that the total weight
of all requests in the frame involving a fixed inlet or outlet does not exceed unity. This condition simply
refers to the fact that each external link can carry a set of requests whose total rate is at most1. To
discuss routing it is convenient to assume that all links are directed from left to right. Thus apath from
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Figure 1: The3-stage Clos networkC(n1, r1,m, n2, r2)
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Figure 2: The symmetric3-stage Clos networkC(2, 3, 4)
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an inlet to any outlet always consists of the sequence: an inlet link→ an input switch→ a link→ a center
switch→ a link→ an output switch→ an outlet link. Furthermore, since the crossbars are assumed to
be nonblocking, a request(x, y, w) is routable if and only if there exists a path fromx to y such that
every link on this path has unused capacity at leastw before carrying out this request. A request frame
is routable if there exists a set of paths, one for each request, such that for every link the total weight
of all requests going through it does not exceed unity. The Clos networkC(n1, r1,m, n2, r2) is said
to bemulti-rate rearrangeable(or just rearrangeable as in this paper we only consider the multi-rate
environment) iffeveryrequest frame is routable.

Let m(n, r) denote the minimum value ofm such thatC(n,m, r) is (multi-rate) rearrangeable for
n, r ≥ 2. (The cases where eithern or r are1 are trivial, hence we only considern, r ≥ 2 from here
on.) Our problem is to find routing algorithms which use as few number of middle-stage switchesm as
possible; essentially providing an upper bound for the functionm(n, r). Melen and Turner initiated the
study of multirate networks (1989, [13]). Chung and Ross [3] conjectured thatm(n, r) ≤ 2n− 1 when
the weights are chosen from a discrete set ofK weights. So far no one has been able to prove or disprove
the conjecture. The conjecture seems to hold even in the continuous bandwidth case.

Let us preview some previous works on this problem.
Du et al. (1999, [4]) showed that

d11n/9e ≤ m(n, r) ≤ 41n/16 +O(1). (1)

Lin et al. (1999, [11]) comfirmed Chung-Ross conjecture for a restricted discrete bandwidth case
where each connection has a weight chosen from a set{1 ≥ p1 > · · · > ph > 1/2 ≥ ph+1 > · · · > pk}
which satisfies the condidion thatpi is an integer multiple ofpi+1 for i = h+ 1, . . . , k − 1.

Hu et al. (2001, [7]) studied the monotone routing strategy and showed that under this strategy

m(n, r) ≤ 2n+ 1 for n = 2, 3, 4 (2)

m(n, r) ≤ 2n+ 3 for n = 5, 6. (3)

In this paper we propose a new routing algorithm called thegrouping algorithmwhich route all
requests whose weights are strictly greater than1/2k, for any positive integerk. We then shown that the
grouping algorithm requires ⌊

2n+ r − n+ r

2k−1

⌋
middle-stage switches to route all these requests. Several consequences of this routing algorithm shall
be derived. In particular, a consequence of the algorithm is that the symmetric3-stage Clos network
C(n, 2n + d n

2k
e, r) is multirate rearrangeable ifr ≤ n/(2k − 1), for any positive integerk. This new

bound beats all existing bounds on the minimum number of middle-stage switches, given that the number
r of input or output switches is relatively small compared to the numbern of inlets or outlets. The results
in the paper also hold for the general (asymmetric) Clos networks by lettingn = max{n1, n2} and
r = max{r1, r2}.

2 Main Results

In this section, we first describe the grouping algorithm to route all requests with weights> 1/2k, and
then derive several consequences of the algorithm.

Let F = {(x, y, w)} be a set of connection requests. Recall that for each connection request
(x, y, w), x is an inlet of some input switchI, y is an outlet of some output switchJ , andw ∈ (0, 1] is
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the weight of the request. For the request frameF to be valid, it must satisfy the condition that∑
y:(x,y,w)∈F

w ≤ 1, for any inletx, (4)

∑
x:(x,y,w)∈F

w ≤ 1, for any outlety. (5)

Namely, the total weight of requests involving a fixed inletx or a fixed outlety does not exceed unity.
We useI andJ to denote the set of input switches and output switches, respectively. Note that|I| =
|J | = r, as we are considering the symmetric3-stage Clos networkC(n,m, r). Let (x, y, w) ∈ F be
a connection request. Ifx is an inlet of input switchI ∈ I andy is an outlet of output switchJ ∈ J ,
then we refer to the request(x, y, w) as an(I, J)-request of weightw. Beside the conditions (4) and (5),
the fact that a connection request is from a particular inlet or to a particular outlet is immaterial as far as
routing is concerned. A middle-stage switchM can carry a set of connection requests as long as the total
weight of requests thatM carries which involve a particular input switchI or a particular output switch
J does not exceed unity. It does not matter which inlets ofI the requests are from, nor which outlets of
J the requests are to.

Let k be a fixed positive integer. For eachl = 1, . . . , k, I ∈ I andJ ∈ J , letS(I, J, l) be the set of
(I, J)-requests inF whose weights are in the interval( 1

2l
, 1

2l−1 ]. Clearly the set of requests with weights
> 1/2k is the union ofS(I, J, l) over allI ∈ I, J ∈ J , andl = 1, . . . , k. We are now ready to describe
the grouping algorithm.

Algorithm 2.1 (The Grouping Algorithm). Let S(I, J, l) be the sets of requests initialized as above.

1: for all pairs(I, J) ∈ I × J do
2: for l = k down to2 do
3: while |S(I, J, l)| ≥ 2 do
4: Letw1 andw2 be any two weights inS(I, J, l).
5: Removew1 andw2 from S(I, J, l).
6: Create a new weightw = w1 + w2

7: // note thatw ∈ ( 1
2l−1 ,

1
2l−2 ]

8: Add a new(I, J)-request with weightw into S(I, J, l − 1)
9: end while

10: end for
11: // At this point, each setS(I, J, l), l ≥ 2, has at most one(I, J)-request left
12: if |S(I, J, l)| = 1 for somel ≥ 2 then
13: Create a new(I, J)-request with weightwIJ equal to the total weight of all requests in the

union ofS(I, J, l), l = 2, . . . , k.
14: // We remove the requests in the union ofS(I, J, l) later for convenience
15: end if
16: end for
17: Now, for all I, J , remove all requests inS(I, J, l), l ≥ 2, as thewIJ cover these requests
18: // at this point, for each pair(I, J) there are only requests
19: // in S(I, J, 1) and possibly an extra request with weightwIJ
20: Route all requests in the setsS(I, J, 1) and the extrawIJ as if the network is in the classical envi-

ronment.

Some explanation is in order. Suppose in the request frameF , there are two(I, J)-requests with
weightw1 andw2 wherew = w1 +w2 ≤ 1. Removew1 andw2 fromF , add toF a new(I, J)-request
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with weightw. Then, any valid routing of the new request frameF induces a valid routing of the old
request frameF . (However, the new request frame may not be a valid request frame in the sense of
inequalities (4) and (5).) Basically, if the new(I, J)-request is routed through middle-stage switchM ,
then we route both of thew1-request andw2-request throughM . This is the idea behind lines2-10 of
the algorithm.

Secondly, we need to explain what we mean on line20. The classical environment is the environment
where each middle switch can carry at most one request from each input switchI and at most one request
to each output switchJ . If m is the maximum number of requests involving an input switch or an
output switch, thenm middle-stage switches is necessary and sufficient to route all requests. This is
a consequence of the König’s Line Coloring Theorem [9]. For another proof using P. Hall’s matching
condition, see [1]. For example, when there are at mostn requests out of each input switch or to each
output switch,n middle-stage switches is sufficient. This is the celebrated Slepian-Duguid theorem [1].

Consequently, in order to determine how many middle-stage switches the Grouping Algorithm re-
quires, we only need to determine the maximum number of requests out of an input switchI or to an
output switchJ .

We first formally show the correctness of the Grouping Algorithm

Lemma 2.2. The Grouping Algorithm correctly routes all requests with weights> 1/2k.

Proof. The part from line1 to line10 is clear from the observation made above. The new weightw is at
most1/2l−2, as noted in line7 of the algorithm. Asl ≥ 2, we havew ≤ 1. We only need to show that
wIJ , if created, is also at most1. But, as noted on line11, the new weightwIJ is at most

1
2

+
1
4

+ · · ·+ 1
2k−1

< 1.

Remark 2.3. We are not concerned so much with the running time of our algorithm. The main objective
of this paper is to find a new bound for the number of middle-stage switches forC(m,n, r) to be multirate
rearrangeable. The version given in Algorithm 2.1 can be significantly improved in terms of running time.
However, we gave the simple version so that the proofs are easier to follow.

To see how the running time can be improved, notice that we could have, for eachl ≥ 2, combined
every2p weights inS(I, J, l) to form a new weight inS(I, J, l− p). Thus, this combination can be done
“simultaneously” by writing the size|S(I, J, l)| in binary format. We leave the rest of the procedure to
the reader.

To this end, we seek the maximum number of middle-stage switches used by this algorithm. This is
done by observing several facts, formally put in the following lemmas.

Lemma 2.4. Let the setsS(I, J, l) be defined as before the Grouping Algorithm is run. Then, for each
I ∈ I ∑

J∈J

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
≤ 2n− n

2k−1
. (6)

Similarly, for eachJ ∈ J , we have∑
I∈I

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
≤ 2n− n

2k−1
. (7)
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Proof. We show inequality (6). Inequality (7) is obtained in a completely similar fashion. Consider a
request frameF = {(x, y, w)}. For each inletx of an input-switchI, and eachl = 1, . . . , k, let s(x, l)
be the number of requests(x, y, w) ∈ F wherew ∈ ( 1

2l
, 1

2l−1 ]. Inequality (4) implies

1 ≥
∑

y:(x,y,w)∈F

w

> s(x, 1)
1
2

+ s(x, 2)
1
4

+ · · ·+ s(x, k)
1
2k
.

Hence,
2k > 2k−1s(x, 1) + 2k−2s(x, 2) + · · ·+ 20s(x, k).

Consequently, as all of the numberss(x, l) are integers, we must have

2k − 1 ≥ 2k−1s(x, 1) + 2k−2s(x, 2) + · · ·+ 20s(x, k). (8)

Notice that ∑
J∈J
|S(I, J, l)| =

n∑
x=1

s(x, l).

In words, the total number of requests involvingI with weights in the interval( 1
2l
, 1

2l−1 ] is the sum over
all inletsx of I of the number of requests involvingx with weights in the same interval. Thus, summing
inequality (8) over alln inletsx of I, we obtain

n(2k − 1) ≥
n∑
x=1

(
2k−1s(x, 1) + 2k−2s(x, 2) + · · ·+ 20s(x, k)

)
= 2k−1

n∑
x=1

s(x, 1) + 2k−2
n∑
x=1

s(x, 2) + · · ·+ 20
n∑
x=1

s(x, k)

= 2k−1
∑
J∈J
|S(I, J, 1)|+ 2k−2

∑
J∈J
|S(I, J, 2)|+ · · ·+ 20

∑
J∈J
|S(I, J, k)|.

Dividing both sides of this inequality by2k−1 yields (6).

Lemma 2.5. During the execution from lines1 to lines16 of Algorithm 2.1, for each input-switchI the
following sum is invariant:∑

J∈J

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
.

Similarly, for eachJ ∈ J , the following sum is unchanged:∑
I∈I

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
.

Proof. At any particular value ofl, from line4 to line8 of the algorithm, we increase|S(I, J, l − 1)| by
one and decrease|S(I, J, l)| by two. But,

|S(I, J, l − 1)|
2l−2

+
|S(I, J, l)|

2l−1
=
|S(I, J, l − 1)|+ 1

2l−2
+
|S(I, J, l)| − 2

2l−1
.

Hence, both of the sums are not changed as desired.
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Lemma 2.6. Right before line20 of the Grouping Algorithm, the total number of requests involving a
particular input-switchI or an output-switchJ is at most

2n+ r − n+ r

2k−1
.

Proof. By the previous two lemmas, right before line17 inequalities (6) and (7) still hold. Consider any
input-switchI. Right before line20, the number of requestsr(I) involving I is at most∑

J∈J
(|S(I, J, 1)|+ f(I, J)) ,

where

f(I, J) =

{
1 if wIJ was created

0 otherwise
.

Hence,

r(I) ≤
∑
J∈J

(|S(I, J, 1)|+ f(I, J))

=
∑
J∈J

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
+

∑
J∈J

(
f(I, J)− |S(I, J, 2)|

21
− · · · − |S(I, J, k)|

2k−1

)
.

By the definition off(I, J), it is 1 when at least one of|S(I, J, l)| is 1. Thus,

f(I, J)− |S(I, J, 2)|
21

− · · · − |S(I, J, k)|
2k−1

≤ 1− 1
2k−1

.

This fact and inequality (6) give

r(I) ≤
∑
J∈J

(
|S(I, J, 1)|

20
+
|S(I, J, 2)|

21
+ · · ·+ |S(I, J, k)|

2k−1

)
+

∑
J∈J

(
f(I, J)− |S(I, J, 2)|

21
− · · · − |S(I, J, k)|

2k−1

)
.

≤ 2n− n

2k−1
+
∑
J∈J

(
1− 1

2k−1

)
= 2n+ r − n+ r

2k−1
.

The fact that the number of requests involving an output-switchJ is also at most this number is shown
similarly.

Theorem 2.7. The Grouping Algorithm requires at most⌊
2n+ r − n+ r

2k−1

⌋
middle-stage switches to route all requests with weights> 1/2k, for any positive integerk.
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Proof. Recall the observation made in the paragraphs right before Lemma 2.2. The number of middle-
stage switches required is at most the number of requests involving an input-switch or an output-switch.
Since this number is an integer, this theorem follows immediately from the previous lemma.

Several consequences of this algorithm can now be derived.

Corollary 2.8. The Grouping Algorithm can route all requests (not just the ones> 1/2k) using at most
2n − 1 + r middle-stage switches. In other words, the Clos networkC(n, 2n − 1 + r, r) is multirate
rearrangeable.

Proof. Let k be large enough so that all requests have weights> 1/2k. The Grouping Algorithm then
routes all requests. This follows directly from the Theorem 2.7.

Note that forr relatively small compared ton, Corollary 2.8 is already better than all previously
known results as introduced in the first section. For example, whenr ≤ n/2, the Clos network
C(n,m, r) is multirate rearrangeable with5n/2 + O(1) number of middle-stage switches. Whenr ≤
n/4, we need only9n/4 + O(1), and so on. In fact, combining Theorem 2.7 with a lemma of Du et
al. [4] we are able to do even better, as formally put in the following corollary.

Corollary 2.9. The Clos networkC(n, 2n + d n−1
2k−1 e, r) is multirate rearrangeable, given thatr ≤

n
2k−1−1

, for any positive integerk ≥ 2.

Proof. Lemma 3 in [4] essentially states that ifc ≥ 2n number of middle switches are sufficient to route
all requests with weights> 1/f , wheref is a positive integer, then at most

max{d(c− 2)/f − c+ 2ne, 0}

more middle-stage switches are needed to route all the rest of the requests.
Now assumer ≤ n

2k−1−1
, then Theorem 2.7 says that at most⌊

2n+ r − n+ r

2k−1

⌋
≤ 2n

middle-stage switches are sufficient to route all requests with weights> 1/2k. Add more empty middle-
stage switches so that we have preciselyc = 2n middle-stage switches, then apply Lemma 3 of [4] with
f = 1/2k, we get the total number of middle-stage switches needed is at most

2n+ d(2n− 2)/2ke = 2n+ d(n− 1)/2k−1e,

which is the desired result.

A few special cases of the previous corollary fork = 2, 3, 4 illustrate the fact that this new result is
better than the old bound of41n/16 +O(1) in [4].

Corollary 2.10. We have

(i) C(n, d5n−1
2 e, r) is multirate rearrangeable whenr ≤ n.

(ii) C(n, d9n−1
4 e, r) is multirate rearrangeable whenr ≤ n/3.

(iii) C(n, d17n−1
8 e, r) is multirate rearrangeable whenr ≤ n/7.
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3 Discussions

In this paper, we proposed a routing algorithm for the multirate rearrangeable symmetric3-stage Clos
networkC(n,m, r). Several nice consequences of the routing algorithm were derived. In particular, the
minimum number of middle-stage switches is better than all existing results, given thatr is relatively
small compared ton. Our result, although still restricted, is more general than the improvement made in
[7], for example. Admittedly though, our algorithm is more complicated and is slower than the monotone
routing algorithm introduced in [7].

It should be noted that the results in the paper do not have to be restricted to symmetric Clos network
C(n,m, r). The symmetric case was presented for simplicity. In the generalC(n1, r1,m, n2, r2), if we
let n = max{n1, n2}, andr = max{r1, r2}, then the Grouping Algorithm still works, Theorem 2.7 and
its consequences still hold in a completely similar fashion.
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