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Abstract

In this paper, we study the problem of finding routing algorithms on the multirate rearrangeable
Clos networks which use as few number of middle-stage switches as possible. We propose a new
routing algorithm called the “grouping algorithm”. This is a simple algorithm which uses fewer
middle-stage switches than all known strategies, given that the number of input-stage switches and
output-stage switches are relatively small compared to the size of input and output switches. In
particular, the grouping algorithm implies that = 2n + (”2—;1] is a sufficient number of middle-
stage switches for the symmetidestage Clos network’(n, m,r) to be multirate rearrangeable,
wherek is any positive integer and< n/(2F — 1).

1 Introduction

The Clos network has been widely used for data communications and parallel computing systems. Quite
a lot of research efforts [1-8, 10—15] have been put on investigating the non-blocking properties of the
Clos network. The3-stage Clos network was paid special attention to since it can be expanded in a
“straightforward” way to multi-stage Clos network. Let us first formally introduce some related concepts.

The 3-state Clos network’(n1, 71, m, no, r2) is a 3-stage interconnection network, where the first
stage consists of;, crossbars of size; x m, the last stage has crossbars of dimension x n,, and the
middle stage has: crossbars of dimension x ry (see Figure 1). Each input switdh(i = 1,...,r1)
is connected to each middle switdld; (j = 1,...,m). Similarly, the middle-stage switchéd; and
third-stage swiched; are fully connected. Theymmetric3-stage Clos network’(n, m, r) is nothing
but C'(n,r,m,n,r). A C(2,3,4) is shown in Figure 2. Any switch is assumed to be nonblocking, i.e.
any inlet can be connected to any outlet as long as there’s no conflict on the outlet. This can be thought
of as a crossbar of sizex ¢ with pg cross-points. Having too many cross-points is expensive and we
would like to design a huge switch using smaller switches with fewer number of cross-points than when
a brute-force design is used. The inlets (outlets) of the input (output) switches anptt&(outputs
of the network. Inputs and outputs are referred t@&rnal links while links between switches are
referred to asnternal links

In the multi-rate environment, @onnection requess a triple (z, y, w) wherex is an inlet,y an
outlet, andw € (0, 1] the weight. Arequest framés a collection of requests such that the total weight
of all requests in the frame involving a fixed inlet or outlet does not exceed unity. This condition simply
refers to the fact that each external link can carry a set of requests whose total rate is &t Mmost
discuss routing it is convenient to assume that all links are directed from left to right. Tgatkfiom
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an inlet to any outlet always consists of the sequence: an inletdiak input switch— a link — a center
switch — a link — an output switch— an outlet link. Furthermore, since the crossbars are assumed to
be nonblocking, a request, y, w) is routableif and only if there exists a path from to y such that
every link on this path has unused capacity at leabefore carrying out this request. A request frame
is routable if there exists a set of paths, one for each request, such that for every link the total weight
of all requests going through it does not exceed unity. The Clos net®oérk, 1, m, na,r9) is said
to be multi-rate rearrangeabldor just rearrangeable as in this paper we only consider the multi-rate
environment) iffeveryrequest frame is routable.

Let m(n,r) denote the minimum value of such thatC'(n, m,r) is (multi-rate) rearrangeable for
n,r > 2. (The cases where eitheror r arel are trivial, hence we only considet r > 2 from here
on.) Our problem is to find routing algorithms which use as few number of middle-stage switches
possible; essentially providing an upper bound for the functidn, ). Melen and Turner initiated the
study of multirate networks (1989, [13]). Chung and Ross [3] conjecturedithatr) < 2n — 1 when
the weights are chosen from a discrete satofieights. So far no one has been able to prove or disprove
the conjecture. The conjecture seems to hold even in the continuous bandwidth case.

Let us preview some previous works on this problem.

Du et al. (1999, [4]) showed that

[11n/9] < m(n,r) < 41n/16 + O(1). (1)

Lin et al. (1999, [11]) comfirmed Chung-Ross conjecture for a restricted discrete bandwidth case
where each connection has a weight chosen from éisetp; > --- > py, > 1/2 > ppy1 > -+ > pi}
which satisfies the condidion thatis an integer multiple op;; fori =h +1,..., k — 1.

Hu et al. (2001, [7]) studied the monotone routing strategy and showed that under this strategy

2n+1 forn =2,3,4 (2)
2n+ 3 forn =5,6. 3)

m(n,r) <
m(n,r) <

In this paper we propose a new routing algorithm calleddgfmiping algorithmwhich route all
requests whose weights are strictly greater thé¥, for any positive integek. We then shown that the
grouping algorithm requires

n—+r
27’L+7“—W

middle-stage switches to route all these requests. Several consequences of this routing algorithm shall
be derived. In particular, a consequence of the algorithm is that the symattdage Clos network
C(n,2n + [55],7) is multirate rearrangeable if < n/(2F — 1), for any positive integek. This new

bound beats all existing bounds on the minimum number of middle-stage switches, given that the number
r of input or output switches is relatively small compared to the numbmdiinlets or outlets. The results

in the paper also hold for the general (asymmetric) Clos networks by leitirg max{n,n,} and

r = max{ry,ra}.

2 Main Results

In this section, we first describe the grouping algorithm to route all requests with weightg*, and
then derive several consequences of the algorithm.

Let # = {(x,y,w)} be a set of connection requests. Recall that for each connection request
(z,y,w), x is an inlet of some input switch, y is an outlet of some output switch andw € (0,1] is



the weight of the request. For the request frafm be valid, it must satisfy the condition that

Z w < 1, foranyinletz, 4
y:(z,y,w)€F

Y w < 1, foranyoutlety. (5)
z:(z,y,w)EF

Namely, the total weight of requests involving a fixed intedr a fixed outlety does not exceed unity.
We useZ and 7 to denote the set of input switches and output switches, respectively. Not& tkat
|J| = r, as we are considering the symmeistage Clos network'(n, m,r). Let (z,y,w) € F be
a connection request. if is an inlet of input switchi € Z andy is an outlet of output switcli € 7,
then we refer to the reque@t, y, w) as an(1, J)-request of weightv. Beside the conditions (4) and (5),
the fact that a connection request is from a particular inlet or to a particular outlet is immaterial as far as
routing is concerned. A middle-stage switkhcan carry a set of connection requests as long as the total
weight of requests thal/ carries which involve a particular input switdhor a particular output switch
J does not exceed unity. It does not matter which inlet§ thfe requests are from, nor which outlets of
J the requests are to.

Let k be a fixed positive integer. Foreatk-1,...,k, I € ZandJ € J, letS(I, J,1) be the set of
(I, J)-requests inF whose weights are in the interv(ag%, 2%1]- Clearly the set of requests with weights
> 1/2F is the union ofS(I, J,1) overalll € Z,.J € J,andl = 1,..., k. We are now ready to describe
the grouping algorithm.

Algorithm 2.1 (The Grouping Algorithm). Let S(1,J,[) be the sets of requests initialized as above.

1: for all pairs(I,J) € T x J do

2. for [ =k downto2do

3 while [S(I, J,1)| > 2do

4: Let w; andwy be any two weights ith (7, J, 1).

5: Removew; andws from S(I, J,1).

6 Create a new weight = wy + wo

7 I note thatw € (5, 5]

8 Add a new(I, J)-request with weightv into S(I, J,1 — 1)
9: end while

10: end for

11: /I At this point, each se$ (1, J,1), > 2, has at most ong/, J)-request left
12: i |S(I, J,1)| = 1 for somel > 2 then

13: Create a newl, J)-request with weightv;; equal to the total weight of all requests in the
union of S(I, J,1),l =2,...,k.

14: /I We remove the requests in the union%tf/, J, [) later for convenience

15:  endif

16: end for

17: Now, for all I, J, remove all requests ifi(/, J,1), I > 2, as thew;; cover these requests

18: // at this point, for each paifZ, J) there are only requests

19: //in S(I, J,1) and possibly an extra request with weight;

20: Route all requests in the sef$/, J, 1) and the extrav;; as if the network is in the classical envi-
ronment.

Some explanation is in order. Suppose in the request frathere are twq 1, J)-requests with
weightw; andws wherew = wy + wy < 1. Removew; andw, from F, add toF a new(!, J)-request



with weightw. Then, any valid routing of the new request frartRenduces a valid routing of the old
request frameF. (However, the new request frame may not be a valid request frame in the sense of
inequalities (4) and (5).) Basically, if the nel, J)-request is routed through middle-stage swildh
then we route both of they;-request andv,-request througld/. This is the idea behind lines10 of
the algorithm.

Secondly, we need to explain what we mean on2inieThe classical environment is the environment
where each middle switch can carry at most one request from each input swaitchat most one request
to each output switcly. If m is the maximum number of requests involving an input switch or an
output switch, thenn middle-stage switches is necessary and sufficient to route all requests. This is
a consequence of thedkig’'s Line Coloring Theorem [9]. For another proof using P. Hall's matching
condition, see [1]. For example, when there are at mastquests out of each input switch or to each
output switchy» middle-stage switches is sufficient. This is the celebrated Slepian-Duguid theorem [1].

Consequently, in order to determine how many middle-stage switches the Grouping Algorithm re-
quires, we only need to determine the maximum number of requests out of an input swit¢h an
output switchJ.

We first formally show the correctness of the Grouping Algorithm

Lemma 2.2. The Grouping Algorithm correctly routes all requests with weights/2".

Proof. The part from linel to line 10 is clear from the observation made above. The new weigistat
most1/21—2, as noted in ling of the algorithm. Ad > 2, we havew < 1. We only need to show that
wry, if created, is also at most But, as noted on linél, the new weightv; ; is at most

O

Remark 2.3. We are not concerned so much with the running time of our algorithm. The main objective
of this paper is to find a new bound for the number of middle-stage switché§forn, r) to be multirate
rearrangeable. The version given in Algorithm 2.1 can be significantly improved in terms of running time.
However, we gave the simple version so that the proofs are easier to follow.

To see how the running time can be improved, notice that we could have, fof ea@hcombined
every2P weights inS(I, J, 1) to form a new weight irt (I, J,1 — p). Thus, this combination can be done
“simultaneously” by writing the siz&S(1, J,1)| in binary format. We leave the rest of the procedure to
the reader.

To this end, we seek the maximum number of middle-stage switches used by this algorithm. This is
done by observing several facts, formally put in the following lemmas.

Lemma 2.4. Let the setsS(1, J,1) be defined as before the Grouping Algorithm is run. Then, for each
IeT

|IS(L, L) [S(L,J,2)] IS(I, J, k)| n
Z( 20 + o1 +.”+2k—71 SQTL—F. (6)
JeJ
Similarly, for eachJ € 7, we have
|S(L,J,1)| | |S(L,J,2)] IS(I, J, k)| n
Z( 20 + 21 ++2]€7_1 SQTL—W (7)
IeT



Proof. We show inequality (6). Inequality (7) is obtained in a completely similar fashion. Consider a

request framer = {(x,y,w)}. For each inlet: of an input-switch/, and eachh = 1,... k, lets(z,[)

be the number of requests, y, w) € F wherew € (g7, z7]. Inequality (4) implies

1 > Z w
y:(zy,w)eFr
> s(z 1)1 + s(x 2)1 + -+ s(z k)i
T2 T4 T ok
Hence,
2k > oFg(x, 1) + 287 25(,2) 4 - - - + 20s(x, k).

Consequently, as all of the numbei(s:, /) are integers, we must have
oF 1> 2 ls(x, 1) 4+ 28 2s(2,2) + - + 2%5(x, k). (8)

Notice that

n

SIS LD =) s(a,0).

JeJ =1

In words, the total number of requests involvihgiith weights in the interval;, 51| is the sum over
all inletsz of I of the number of requests involvingwith weights in the same interval. Thus, summing
inequality (8) over alh inletsz of I, we obtain

n2k—-1) > En: (2k_1s(:n, 1)+ 28 25(2,2) + - - + 20s(x, k))

r=1
= ok-1 Z s(x, 1) + 2~2 Z s(z,2) 4+ +2° Z s(z, k)
x=1 r=1 =1
JeJg JeJg JeJ
Dividing both sides of this inequality b3#~! yields (6). O

Lemma 2.5. During the execution from linekto lines16 of Algorithm 2.1, for each input-switchthe
following sum is invariant:

1S, LD 1S J,2)] 1S, J, k)|
Z( U A Vs R

JeJ

Similarly, for eachJ € 7, the following sum is unchanged:

Z<|S(LJ71>’_|_’S(I>J72)‘+H._|_|S(Ia‘]7k)|>‘

20 21 2k—1

IeT

Proof. At any particular value of, from line4 to line 8 of the algorithm, we increagé (1, J,1 — 1)| by
one and decreas# (!, J,1)| by two. But,

9l—2 9l-1 - 91—2 9l—-1

Hence, both of the sums are not changed as desired. O




Lemma 2.6. Right before line20 of the Grouping Algorithm, the total number of requests involving a
particular input-switch/ or an output-switch/ is at most

n+r
Qkfl'

Proof. By the previous two lemmas, right before lih@ inequalities (6) and (7) still hold. Consider any
input-switch/. Right before line20, the number of requests7) involving I is at most

> (ST L) + £(1,.0),

2n+1r —

JeJg
where
F(LJ) = 1 |fwuwascreated
0 otherwise
Hence,
r(I) < Y (SUL L)+ f(U,0))
JeJ
_ S, 1), 1S, J,2)] |S(I,J, k)|
= 2 0 T ol ot o) T
JeJg
1S(1,J,2)| 1S(I,J, k)|
Z(f(I’J)_T_'”_T
JeJ

By the definition off (I, J), itis 1 when at least one d(7, J,1)| is 1. Thus,

1S(Z,7,2)] 1S, J, k)| 1
f(I,J)_T—”'—Tﬁl—F-
This fact and inequality (6) give
|SU,J, 1), 15U, J,2)] |S(L, J, k)|
JeJg
1S, J,2)]| 1S, J, k)|
Z (f(l’t]>21'”2kl
JeJg
S 2n_2k1+2( 2k1)
JeJg
= 2n+4+r— w
2k—1
The fact that the number of requests involving an output-switéhalso at most this number is shown
similarly. O

Theorem 2.7. The Grouping Algorithm requires at most
n—+r
{Qn +7r— oF T J

middle-stage switches to route all requests with weights/2¥, for any positive integek.




Proof. Recall the observation made in the paragraphs right before Lemma 2.2. The number of middle-
stage switches required is at most the number of requests involving an input-switch or an output-switch.
Since this number is an integer, this theorem follows immediately from the previous lemma. O

Several consequences of this algorithm can now be derived.

Corollary 2.8. The Grouping Algorithm can route all requests (not just the ands/2*) using at most
2n — 1 + r middle-stage switches. In other words, the Clos netwofk, 2n — 1 + r,r) is multirate
rearrangeable.

Proof. Let k be large enough so that all requests have weights'2*. The Grouping Algorithm then
routes all requests. This follows directly from the Theorem 2.7. O

Note that forr relatively small compared te, Corollary 2.8 is already better than all previously
known results as introduced in the first section. For example, wheq n/2, the Clos network
C(n,m,r) is multirate rearrangeable witin/2 + O(1) number of middle-stage switches. Wher<
n/4, we need only¥dn/4 + O(1), and so on. In fact, combining Theorem 2.7 with a lemma of Du et
al. [4] we are able to do even better, as formally put in the following corollary.

Corollary 2.9. The Clos networlC(n,2n + [;,;H,r) is multirate rearrangeable, given that <
sr=1—7, for any positive integek > 2.

Proof. Lemma 3 in [4] essentially states thatif> 2n number of middle switches are sufficient to route
all requests with weights- 1/ f, wheref is a positive integer, then at most

max{[(c —2)/f —c+ 2n],0}

more middle-stage switches are needed to route all the rest of the requests.
Now assume: < 51—, then Theorem 2.7 says that at most

PTH‘T’—Z,C——:TJ <2n

middle-stage switches are sufficient to route all requests with weight&*. Add more empty middle-
stage switches so that we have precigely 2n middle-stage switches, then apply Lemma 3 of [4] with
f = 1/2%, we get the total number of middle-stage switches needed is at most

on + [(2n —2)/2F] = 2n + [(n — 1) /2817,
which is the desired result. O

A few special cases of the previous corollary ko 2, 3, 4 illustrate the fact that this new result is
better than the old bound dfin/16 + O(1) in [4].

Corollary 2.10. We have

(i) C(n,[2%1],r)is multirate rearrangeable when< n.

(i) C(n,[2%1],r) is multirate rearrangeable when< n/3.

(i) C(n, [12=1],r) is multirate rearrangeable when< /7.



3 Discussions

In this paper, we proposed a routing algorithm for the multirate rearrangeable symsrstizige Clos
networkC'(n, m,r). Several nice consequences of the routing algorithm were derived. In particular, the
minimum number of middle-stage switches is better than all existing results, given ihatlatively
small compared ta. Our result, although still restricted, is more general than the improvement made in
[7], for example. Admittedly though, our algorithm is more complicated and is slower than the monotone
routing algorithm introduced in [7].

It should be noted that the results in the paper do not have to be restricted to symmetric Clos network
C(n,m,r). The symmetric case was presented for simplicity. In the gexdgna, r1, m, na, r2), if we
let n = max{ni,ny}, andr = max{ry, 2}, then the Grouping Algorithm still works, Theorem 2.7 and
its consequences still hold in a completely similar fashion.
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