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Abstract— Inspired by the Flash worm paper [1], we formulate
and investigate the problem of finding a fast and resilient
propagation topology and propagation schedule for Flash worms
and similar malcodes. Resiliency means a very large proportion
of infectable targets are still infected no matter which fraction
of targets are not infectable.

There is an intrinsic tradeoff between speed and resiliency,
since resiliency requires transmission redundancy which slows
down the malcode. To investigate this problem formally, we need
an analytical model. We first show that, under a moderately
general analytical model, the problem of optimizing propagation
time is NP-hard. This fact justifies the need for a simpler model,
which we present next. In this simplified model, we present an
optimal propagation topology and schedule, which is then shown
by simulation to be even faster than the Flash worm introduced
in [1]. Our worm is faster even when the source has much less
bandwidth availability. We also show that for every preemptive
schedule there exists a non-preemptive schedule which is just as
effective. This fact greatly simplifies the optimization problem.

In terms of the aforementioned tradeoff, we give a propagation
topology based on extractor graphs which can reduce the
infection time linearly while keeping the expected number of
infected nodes exponentially close to optimal.

I. INTRODUCTION

Recent Internet worms are very speedy and destructive,
posing a major problem to the security community [2]-[6].
Consequently, researchers have spent a considerable amount
of effort studying worms’ mechanics and dynamics, such as
modeling the dynamics of worms [7], [8], monitoring and
detecting worms [9], developing automated worm containment
mechanisms [10]-[12], simulating worm traffic [13], routing
worms [14], etc.

Most of the aforementioned works focused on random-
scanning worms. To the best of our knowledge, very few
studies have investigated hypothetical yet potentially super-
fast worm scenarios. Staniford et al. [15] were the first to
investigate this kind of hypothetical scenario. They later elab-
orated on a specific worm instance called “Flash worm” [1],
so named since these worms can span the entire susceptible
population within an extremely short time frame.

Studying potentially super-fast worms/malcodes is fruitful
for a variety of reasons. Firstly, a sense of the doomsday
scenario helps us prepare for the worst. Secondly, they can
be used to assess the worst case performance of containment
defenses. Last but not least, efficient broadcasting is a fun-
damental communication primitive of many modern network
applications (both good and malicious ones), including bot-
nets’ control, P2P, and overlay networks. For example, since

the control of a botnet is gained through efficient broadcasting
[16], both the attacker and the system analysts strive to have
the most efficient and resilient strategy. Thus, studying worm
propagation helps discover improved solutions to security
threats in network environments, for both defense and counter-
attack purposes.

There are several major challenges to designing and devel-
oping super-fast worms.

Firstly, the victim scanning time must be minimized or even
eliminated because heavy scanning traffic makes worms more
susceptible to being detected, and scanning traffic potentially
self-contend with propagation traffic, resulting in slower prop-
agation speed. Various stealthy scanning techniques can be
used as an alternative to amass information for the attacking
hour.

Secondly, the collection of victim addresses is quite large.
For a population of one million hosts, for example, the IP
address list requires roughly 4MB (for IPv4). This much data
integrated within each worm instance and transmitted without
an efficient distribution scheme will severely impact the speed
of propagation.

Thirdly, making the worm resilient to infection failures
while maintaining its swift effect is challenging. The list of
vulnerable addresses may not be perfect. Some of the nodes in
the list might be down or no longer vulnerable. At and during
the time of propagation, some intermediate nodes might be
patched and the worm instance is removed. Moreover, packets
carrying the worm code may be lost, leaving the targets
uninfected. If an uninfected target is close to the initial source
in the propagation tree, all sub branches in the propagation
tree will not be infected. In the absence of more sophisticated
and probably time-consuming mechanisms (such as timeouts
and retransmissions), one might have to reduce the number of
levels in the tree and let the source (usually guaranteed to be
infected) infect many targets directly. This burdens the initial
source node, slows the worm down, and thus makes it more
prone to being detected.

Last but not least, computational and communication re-
sources at the source and targets also greatly affect the worm’s
speed. The Flash worm described in [1] requires an initial node
that can deliver 750Mbs. Compromising a host with that much
bandwidth capacity may not always be an option. A natural
question that follows is whether the attacker can create the
same or similar effects as this Flash worm with more limited
communication resources. This paper will answer this question



in the affirmative.

Consequently, designing a worm propagation topology and
schedule that provides both infection failure resiliency and
time efficiency is an important and challenging problem. This
paper aims to investigate this problem. Specifically, we will
address the following questions:

o Suppose the worm writer has some estimates of a few pa-
rameters affecting the worm’s speed, such as the average
end-to-end delay and the average bandwidth, how would
he design the worm transmission topology and schedule
to accomplish the task as fast as possible?

o Furthermore, many real-life “glitches” may make some
targets uninfectable. For instance, some nodes may be
down or have their security holes patched, or worm
packets may simply be lost. How can one design a worm
which is resilient to these glitches?

o There is an inherent tradeoff between the expected prop-
agation time (efficiency) and the expected number of
infected targets (resiliency). To be more resilient, some
redundancy must be introduced. For instance, because
node v might fail to infect another node w, we may
need to have several “infection paths” from v to w
on the propagation topology. Unfortunately, redundancy
increases propagation time, hence necessitating the trade-
off. Two related questions we will formally define are:
(a) how to design an efficient worm given a resiliency
threshold, and (b) how to design a resilient worm given
an efficiency threshold.

We will not be able to answer all the questions satisfactorily.
However, we believe that our formulation and initial analyses
unravel some layers of complexity of the problem and open a
door for further exploration.

Perhaps more importantly, the aforementioned tradeoff is
not an incidental by-product of the worm propagation problem.
Efficient and error-resilient broadcast is fundamental in most
network applications [17]-[19]. Hence, results regarding this
tradeoff should have applications in other networking areas.
On the other hand, while the objectives are similar, the
operating constraints are very different between the malcode
propagation problem and application-layer broadcast prob-
lems.

Our main contributions are as follows:

o We first show that, under a moderately general analytical
model, the problem of optimizing propagation time is
NP-hard. This fact justifies the need for a refined model,
which we present next. Later simulation results further
validate the refined model.

+ We show that, for every preemptive propagation schedule
(i.e. the infection processes from one node to its chil-
dren can interleave in time) there is a non-preemptive
schedule (i.e. each transmission is not interrupted until
it is finished) which is just as fast. This fact greatly
simplifies the optimization problem. It should be noted
that this result does not apply to transmission processes
with interactive communication between two ends such

as the 3-way handshake in TCP.

o In the refined analytical model we present an optimal
propagation topology and schedule. We shall show that
it is possible to devise a worm propagation topology
and schedule with infection time even shorter than the
Flash worm described in [1]. Our worm’s infection time
also seems to scale very well with the number of nodes.
Moreover, it is possible to retain the swift effect of the
Flash worm of [1] when starting from a root node with
much less bandwidth capacity.

o Under uncertainty, i.e. nodes may fail to be infected with
some given probabilities, we investigate the tradeoff be-
tween the expected infection time and the expected num-
ber of infected targets. We derive the optimal expected
number of infected nodes along with the correspond-
ing propagation topology. We then give a propagation
topology which can reduce the infection time linearly
while keeping the expected number of infected nodes
exponentially close to optimal.

The rest of this paper is organized as follows. Section
formulates the problem rigorously, and presents preliminary
complexity results. Section presents the design of a new
super-fast Flash worm based on a refined analytical model.
Section [[V] addresses the aforementioned tradeoff. Section [V]
discusses some future research problems.

II. ANALYTICAL MODEL AND COMPLEXITY RESULTS
A. Parameters of our analytical model

Because we want to investigate the tradeoff between speed
and resiliency, our analytical model needs several key param-
eters affecting propagation time (approximate delays, band-
widths), and affecting fault-tolerance (infection failure proba-
bilities).

Consider the situation where there are n hosts, or nodes, and
node vy is initially infected with the worm. For each node v,
let m(,“) and m()d) denote v’s up-link and down-link bandwidths,
respectively. When rq(,“) = rf,d), let r, denote this common
value. The maximum effective bandwidth from node v to node
w is then min{m(,u), n(ud)}.

The capacity of the network core is assumed to be suf-
ficiently large so that nodes can communicate with each
other simultaneously up to their available bandwidths. This
assumption is justified by several facts: (1) our worm does not
generate scanning traffic, which significantly reduces the traffic
intensity as a later simulation shows, (2) the total amount
of traffic sent by the worm is relatively small compared to
the Internet core’s capacity, whereas the Internet backbone is
often lightly loaded (around 15% to 25% on average) due to
over-provisioning [20], (3) one aim of this paper is to design
effective worms operating on a vulnerability population with
moderate bandwidths (e.g., 1Mbps), and last but not least (4)
when some of the worm’s packets are lost due to congestion,
our resilient propagation topology helps alleviate the problem.

Let L,,, denote the propagation delay from node v to node
w. Let L denote the average delay. The worm size is denoted



by W. This can roughly be understood as the number of
bytes of the worm’s machine code. A somewhat subtle point
to notice is that sophisticated propagation mechanisms might
increase W. Most often, though, W should be a constant
independent of n. Beside the actual code of size W, the worm
must also transmit a fixed number of a bytes per target. Each
of these “blocks” of a bytes contains the IP address of the
target, and perhaps additional information about the target such
as bandwidth.

Lastly, let p be the probability that a randomly chosen target
is not infectable due to wrong IP-address, software patched,
target down, or firewalled, etc.

B. Infection topology

Consider a typical worm infection scenario. Starting from
v, wWhich keeps a list of addresses and perhaps other informa-
tion about the targets (bandwidths, delays), the worm selects
a subset S of targets to infect. Each node v in S is also
delegated set S, of targets for v to infect on its own. Upon
receiving .S, node v can start infecting nodes in S, using
the same algorithm. In the mean time, vy and other nodes in
S which were infected before v can also start their infection
simultaneously.

We can use a directed acyclic graph (DAG) G = (V, E)
to model this process. The vertex set V' consists of all nodes,
including vg, which is called the root or the source. There is
an edge from v to w if v (after infected) is supposed to infect
w. Since we do not need to infect nodes circularly, a DAG
is sufficient to model the infection choices. We refer to this
DAG as the infection topology.

For each node v in G, the set S, given to v by a parent
w is precisely the set of all nodes reachable from v via a
directed path in G. (Note that, for distinct nodes v and v, S,
and S, might be overlapping if we introduce redundancy to
cope with infection failures.) In order to give v its list, the
parent w must know how to effectively compute (in the piece
of code W) the subgraph of G which consists of all nodes that
can be reached from w. In principle, the root can presumably
pre-compute the entire infection topology for all nodes in the
topology. However, giving this pre-computed information to
each target requires a large amount of data (of order £(n?))
to be transmitted, which considerably slows down the worm.
Hence, we will focus on worms whose code W is capable of
computing its own infection sub-topology given only the list
of targets.

C. A remark on topology overlay

In order to increase resiliency, a sensible strategy is to use
multiple, say m independent DAGs, for which nodes closer to
the source in one DAG is farther from the source in the other
DAGs. This way, if a part of a DAG got “pruned” by failures to
infect some nodes close to the source, then with high probabil-
ity the pruned nodes will be infected via infection paths in the
other DAGs. Indeed, [1] used this strategy with m independent
m-ary trees. Basically, this strategy sends out m instances of
the worm based on the same DAG topology with different

rearrangements of vertices. The resiliency is increased at the
cost of a (roughly) linear increase in transmission time.

In this paper, we will focus on constructing one DAG which
is both time-efficient and resilient. The DAG can then be used
as a component in the “overlay” of m DAGs as described
above.

D. Infection schedule

It is not sufficient for nodes to make infection decisions
based on the infection topology alone. The second crucial
decision for a node v to make is to come up with an infection
schedule to infect its children in the topology, i.e. the order
in which the children are to be infected. A schedule is non-
preemptive if the children are to be infected sequentially,
one after another, using the maximum possible bandwidth. A
schedule is preemptive if transmissions to different children
are overlapping in time.

Preemptive schedules make estimating the total infection
time quite difficult. Fortunately, in the case of uniform band-
widths and UDP worms, we do not need to consider preemp-
tive schedules as the following Theorem [T| shows. The theorem
helps simplify some later analyses.

Theorem 1: Suppose all bandwidths are equal to r. With
UDP worms, for every preemptive schedule from a node to a
set of children nodes, there is a non-preemptive schedule in
which every target is infected at time no later than that in the
preemptive schedule.

Proof: Consider any node w that starts to infect m
targets, say vi,...,Upn, at time O following any preemptive
schedule. For each target v;, let T; be the time w finishes the
transmission to v; in the preemptive schedule. Also, let W; be
the amount of data transmitted to v;. Without loss of generality,
suppose 11 < Ty < --- < T,,. The time at which v; is infected
is T; + L. Let f;(t) be the amount of bandwidth used for the
transmission to v; at time t. We then have W; = fOTi fi(t)dt,
and Y, f(1) < 1.

Consider the non-preemptive schedule following the same
order 1,2,--- ,m, in which w infects one node at a time using
the whole bandwidth capacity. For 1 < ¢ < m, let Ti’ be the
amount of time until w completes the transmission to v;. The

total amount of time until v; is infected is 7] + L.
To finish the proof, we want to show that T/ + L < T; + L,
or simply 7} < T;. Setting Ty = 0, we have
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E. Optimization problems

Total infection time is the total amount of time during which
some worm traffic is still present in the network. The worm
aims to infect the largest number of nodes in the fastest
possible time. There is an intrinsic tradeoff between these



two objectives. The two problems defined below correspond
to optimizing one objective while keeping the other as a
threshold constraint. For example, we may want to minimize
the infection time given that at least 90% of infectable targets
are infected; or we may want to maximize the expected
number of infected targets within 5 seconds.

Problem 1: (Minimum Time Malicious Propagation —
MTMP) Given a lowerbound on the expected number of in-
fected nodes, find an infection topology and the corresponding
schedules minimizing the expected infection time.

Problem 2: (Maximum Expansion Malicious Propaga-
tion — MEMP) Given an upperbound on the expected infec-
tion time, find an infection topology and the corresponding
schedules maximizing the expected number of infected nodes.

This paper focuses on the first problem, leaving the second
problem for future research. The analytical model is quite
simple, yet MTMP is already NP-hard.

Theorem 2: When the latencies L., are not uniform, MTMP
is NP-hard even for p = 0.

Proof: We reduce SET COVER to MTMP. Consider an
instance of the decision version of SET COVER where we are
given a collection § of m subsets of a finite universe U of
n elements, and a positive integer £ < m. It is NP-hard to

decide if there is a set cover of size at most k.

An instance of MTMP is constructed as follows. Set a =
W = ¢, where c is an arbitrary integer as long as lgc is
a polynomial in m and n, so that ¢ can be computed in
polynomial time. The set of targets is V = {vo} USUU,
where vy is the initially infected node. The up- and down-link
bandwidths are as follows.

Tog = T(Sd) =r1:=c¢, VS€ES
rgu) = Te=T2:= 2TLC, VS e S,Ve eU.
(Recall that, for any node v € V, , = r means rw) = D)
r.) The latencies are:
ngS = L;:=1, VS esS
Lse = Lo:=m—k, VSeS8SVeeS

Lyw = L:=m+n+2. forall other pairs of nodes (v, w).

To complete the proof, we will show that the SET COVER
instance has a set cover of size at most k if and only if the
MTMP instance constructed above has a propagation topology
and schedule with total infection time at most (m +n+3/2).

For the forward direction, suppose there is a sub-collection
C C S of at most k members such that Ugce = U. Since C is
a set cover, we can choose arbitrarily for each member S € C
a subset Ts C S such that Usec Ts = U and the T are
all disjoint. (This can be done with a straightforward greedy
procedure.)

Consider the propagation topology G = (V, E) defined as
follows. The root vy will infect all nodes in S, i.e. (vg, S) € E,
for all S € S. Each node S in the cover C infects the nodes
e € Tg, namely (S,e) € E, for all S € C and e € Ts. Now,
the transmission schedule for the root vy is such that vy infects
all nodes in C first in any order, and then all other nodes in
S — C. Then, for each S € C, S infects nodes in Ts in any
order. The time it takes for the last node in S to be infected
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Fig. 1. Infection topology of a Flash worm in [1]

is Ty = (na+mW)/ry + L1 = n+ m + 1. The last node
S in C will receive the worm W and its data (for nodes in
Ts) at time at most (na + kW)/r1 +Ly =n+k+ 1. Up on
receiving the worm, each node S € C will infect nodes in T,
which takes time at most |Ts|W/ry + Lo < nW/ry + Lo =
1/2 + m — k. Because these infections happen as soon as
each node S receives its worm, the last node in U receiving
the worm at time at most 7o = (n+ k+ 1) + (1/2 +m —
k) = m + n + 3/2. Thus, the total infection time is at most
max{Ty,To} = m +n+ 3/2, as desired.

Conversely, suppose there is a propagation topology G =
(V,E) and some transmission scheduling such that the total
infection time is at most m + n + 3/2. Note that (vg,e) ¢ E
for all e € U, because the latency L, . is m +n + 2 >
m + n + 3/2. For the same reason, (S1,52) ¢ E for any
S1,52 € S; (e,S) ¢ E for any e € U and S € S; and if
e ¢ S, then (S, e) ¢ E. Consequently, the only possible edges
of G are of the form (v, S) for S € S, and (5, ¢) fore € S.
Now, let Ts = {e | (S,e) € E} be the set of out-neighbors of
Sin G. Let C = {S | Ts # 0} be the set of S with non-zero
out-degrees. It is clear that C is a set cover of the original SET
COVER instance, otherwise not all nodes in U are infected. We
show that C has at most £ members. Suppose C has at least
k + 1 members, then the last member S of C receiving the
worm at time at least 77 = (na + (K + 1)W)/r + L1 =
n + k + 2. This last member will have to infect nodes in T'g
(there is at least one node in this set), which takes time at least
Ty =W/ra+ Ly = 1/(2n) +m — k > m — k. Consequently,
the total infection time is at least Ty + 75 > n+m+3/2. B

F. An example

Next, let us next revisit the infection scheme of the non-
resilient UDP Flash Worm presented in Section 2 of [1]
to illustrate the model discussed above. Fig. [I] depicts the
infection topology of this scheme, which is a tree whose root
is the source vy. The source first infects m intermediate nodes
(from v; to v,,), each of which continues to infect K other
nodes. The infection schedule was not provided in the original
paper. For simplicity, we assume all nodes have the same up-
and down-link bandwidths of 7. Thanks to Theorem [, we
can assume a parent node infects its children in any sequential
order. Finally, as in [1], the pairwise latencies are all the same,
denoted by L. Noting that n = m (K + 1) + 1, the propagation
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Fig. 2. The Recursive Tree topology, p = O case.

time for this topology is

K K
t = M+L+—W+L (1)

;
-1 w WwWw — -1

(n=Da o\ W VW —a)n 1)
T r r

III. AN EVEN FASTER FLASH WORM

When the latencies are not uniform, the general MTMP
problem is NP-hard by Theorem [2] This result justifies a
further refinement of the model where we use the average
bandwidth r as up- and down-link bandwidth, and the average
latency L as the pair-wise latency. This section demonstrates
that this simpler model already allows us to design a faster
Flash worm which requires much less bandwidth at the source.

We focus on minimizing the infection time assuming no
infection failure, deferring the failure-prone case to Section[[V}
In this case, any topology in which all targets are reachable
from the root would infect the entire population. Moreover,
each node needs to be infected only once, implying that a tree
is sufficient. Thanks to Theorem [I] we only need to consider

non-preemptive schedules.

Suppose the source first infects the root of a sub-tree of size
n1 (see Figure [2). The tree on n nodes can be viewed as a
combination of two sub-trees of size n; and ny = n—n;. Let
T'(n) be the minimum infection time for n nodes. Then T'(n)
can be recursively computed:

T(n)= min {w + max{T(n1) + L,T(nQ)}}
= min {WFAm D T N
_msLn/zj{ r +max{T'(n1) + L, T( 2)}} 2)

T(n) can be computed in O(n?)-time. A newly infected node
v does not need to recompute the value n; for its sub-tree (of
size |S,|). The optimal choices of n for different values of n
can be pre-computed and then be transmitted along with the
address list. This strategy adds a fixed number of bytes (< 4)
to be transmitted per target, and thus can be included in the
block of a bytes per target.

Figures [3(a) and [3[b) compare the infection times of this
recursive tree topology with the Flash Worm topology as
the population size varies. Two values for W are observed
— 404 and 1200 bytes — corresponding to actual sizes of
Slammer and Witty [21], [22]. As seen in the figure, our
worm infection time scales very well with the population
size. We also simulated the worm traffic generated during the
propagation process. Figure [3(c) summarizes the total traffic

for the recursive topology with 4 average values of L. For
this simulation, we set n = 1 million nodes. As can be seen
from the figure, the total traffic has a peak value of 400Mbps,
independent of the latencies. This number is much smaller than
the traffic generated by some actual worms such as Slammer
(165 Gbs), and also smaller than that of the Flash Worm in
[1]. For this amount of total traffic the worm is less likely to
cause any significant instability in the network core, validating
our assumption for the analytical model.

The time difference between the two topologies is reduced
as L increases. When L is large, the optimal tree based on
becomes shallower, thus performs more like the Flash Worm
topology. Intuitively, when the propagation time is too large
the source can actually send all worm packets to all targets
within the propagation delay of the first packet. The trend can
be explained with a simple analysis. At one extreme, when
L > w equation sets n; = 1 for any n, yielding a
star topology. At the other extreme, when L = 0 or very close
to zero, the optimal topology is a highly unbalanced tree, as
shown by the following proposition, whose inductive proof is
omitted.

Proposition 3: When L — 0, we have

W —a

T(n) = [logn] ( ) +(n— 1)% 3)

r

which is attained at n; = | 3.

To cope with the obstacle of NNP-hardness, we refined
our analytical model by assuming uniform bandwidths and
latencies. Does the above analytical comparison result holds
in practice? In the bandwidth case, if the uniform bandwidth
is taken to a lowerbound of all actual bandwidths, then the
analytical infection time computed from the model is a worst-
case infection time bound. The uniform latency assumption,
however, might be too strong.

To address this doubt, we simulated the propagation of the
worms in a network with varied latencies. These latencies were
generated in accordance with the empirical latency distribution
in the Skitter data set [23]. We generated 100 sets of laten-
cies, corresponding to 100 network configurations. For each
network configuration, we computed the recursive topology
based on (2)), setting L equal to the average Internet latency,
which is about 201ms. Due to enormous time consumption,
we were only able to run the simulation with n = 100, 000
nodes instead of 1 million nodes. We kept » = 1 Mbps as
before. We then simulated and compare the Flash Worm and
the Recursive Tree topologies on the same network. Figure
M(a) plots the ratio of the simulated infection time of the
Flash Worm topology over that of the Recursive Tree topology
over 100 simulations with several values of latency variances.
Firstly, it can be seen that the time-improvement ratio is
roughly close to that of the same analytical data point (at
n = 100,000) shown in Figure [3] Secondly, as expected the
smaller the latency variance, the better the time-improvement
ratio. This means that our worm will work well if the target
population does not have many clusters of near-by nodes.
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Furthermore, to see the effect of the latency variance,
Figure ffb) shows the difference between the analytical time-
improvement ratio and the simulation time-improvement ratio.
The analytical time-improvement ratio is a slight overestimate
for small variances, and gets worse as the variance increases.
However, it is still well within a small constant time the real
time-improvement ratio.

Another advantage of the recursive topology is that it can
retain a similar time efficiency as the Flash Worm of [1] even
when starting from a root node with much less bandwidth
capacity. Figures [f(a) and (b) show the minimum bandwidth
at the root of the Flash Worm in [1] required in order for
the Flash worm to propagate as fast as our worm, whose
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Fig. 5. Minimum source bandwidth for the Flash Worm topology to achieve
the same effect as our worm

starting node has only 1Mbps capacity. The figures plot this
required root’s bandwidth as a function of the total number
of nodes n for two empirical values of W. We also varied
L to see the effect of latencies on the efficiency of the Flash
worm and our worm. As can be seen, the result is consistent
with our previous analysis. The required root’s bandwidth
for Flash worms stays at peak for small values of L and
reduces gradually as L increases. In particular, at L = 0.1s,
the Flash worm needs a significantly larger bandwidth of 60
Mbps (compared to the uniform bandwidth 1 Mbps using our
recursive topology). This number even grows to more than 100
Mbps when W increases, as shown in Figure 5(b).

IV. THE TRADEOFF BETWEEN SPEED AND RESILIENCY

For each infection topology G on n nodes, let N(G) and
T(G) be the expected number of infected nodes and the



The G; are all copies of the same graph H

Fig. 6. The Resilient Topology R

expected total infection time, respectively. For any particular
G, increasing N (G) forces T'(G) to increase also. This is the
tradeoff we investigate. Define

N(n)
T(n) =

max{N(G) | G is an infection topology on n nodes},

min{7T(G) | G is an infection topology on n nodes}.

The following proposition follows straightforwardly.

Lemma 4: Let S be a star on n nodes rooted at vg. Then, S

is the topology which maximizes N (G). In particular, N (S) =
Nn)=14+(n—-1)(1-p).
Knowing the maximum expectation N(n), we can use it as
a benchmark to characterize the tradeoff between N(G) and
T(G) for any infection topology G. Note that, while N(.5) is
optimal T'(S) = (n — 1)W/r + L is not. A natural problem
is to find a topology G for which N(G) is very close to the
optimal N(S) = N(n), say more than a factor f of N(S),
while T'(G) is much smaller than 7'(S). An obvious strategy
is to choose any subset of n’ < n nodes and apply topology S
on n’ nodes, where n’ ~ fn. This way, the sacrifice in N (n) is
linear and the payoff in T'(n) is also linear. Fortunately, there
is a much better strategy than this simple-minded approach.
We will show that, to achieve a linear payoff in T'(n), we can
still keep N (n) exponentially close to optimal! The result, in
a sense, is the best one can hope for. (The converse is also
desirable, where a linear sacrifice in N (n) gives an exponential
payoff in 7'(n). This problem is open!)

Our infection topology named the resilient topology R is
illustrated in Figure@ Fori=1,...,¢ let G; = (X;UY;; E;)
be copies of the same bipartite graphs H. (H to be specified.)
To construct R, we “glue” together the X;-side of G1, ..., G,
i.e. identify vertices in the X; in any one-to-one manner, as
shown in Figure [f] Let X denote the glued X;, and ¥ =
Y1 U ... UY.. The source vy has an edge to each vertex in
X. In total, the vertex set of R is {vo} U X U Y. Different
choices of the “seed component” H lead to different degrees
of resiliency, as explained in the following theorems.

In the following theorem, we consider a very simple case to
illustrate the idea and the complexity of analyzing the expected
infection time. The proof is quite tedious and thus omitted due
to space limit.

Theorem 5: Let H (i.e. the GG;) be any k-regular simple

kce+Lr/W

bipartite graph. Let [ = [m

1 , we have

NuomnamQ

Wtk
T(R) = =2 [ — gt + )] + Lo+
L
W + kca |:lpl g 1)} (1= p) 4 (1 —ply? (@ +2L) )
r 1-p r
‘ @7 o . 1 kca/W
A gy =P )<1+c 1+C>' ©

In particular, for sufficiently large n, topology R has the
expected number of infected nodes exponentially close to

optimality, yet reduces the expected infection time by a linear

14+c(ka/W)
factor of e

The limit (6) tells us roughly how far away from 7'(S) our
infection time is. The limit ratio is simpler to work with than
the actual ratio, which is dependent on n. Moreover, when n
is in the order of tens of thousands, the limit ratio accurately
depicts the actual ratio. (We omit the plot due to space limit.)

We next illustrate how this theorem can be applied. To
reduce the infection time for this topology, we want the
limit () to be as small as possible, subject to some desired
threshold in terms of the expected number of infected nodes.
For instance, to guarantee that N(R) > fN(n), then we
choose k and ¢ to minimize the limit (6)), subject to the
condition that

(n= D= p)(1 = =) + 12 f(n = 1)1 —p) + 1,

which is equivalent to

~ [ - g)(c+ V)/e(Gna + V)]
In(1/p)

This can be done in a variety of ways, one of which is to
choose a relatively large c (thus reducing the infection time),
then choose k to satisfy constraint (7). This lower bound for
k is relatively small. For most values of ¢ the lower bound for
k is at most 4, even when f is large (90% or more).

A stronger notion of resiliency

While N(R) within a fraction f of the optimal is a good
notion of resiliency (the same notion as that in [1]), it is still
a weak guarantee in the following sense. The ratio between
N(R)/N(n) is large when the expectation N(R) is large.
This expectation is a weighted-average in accordance with the
failure distribution of the targets imposed by p. This means that
many node failure combinations still yield a smaller number
of infected nodes than N(R). It would be nice to have a
stronger guarantee than that.

In what follows, we will show that, with the right choice
of H, for any given € > 0 the number of infected nodes is
within a fraction (1 — €) of the number of infectable nodes
with probability exponentially close to 1.

A (w,€)-extractor is a bipartite graph H = (L U R, E)
with left part |L| = 2 > w and right part |R| = y, such that
every subset of at least w left vertices has at least (1 — €)y

k> (M



neighbors on the right. It is known that, for any ¢ and any
w < z, there exist (w, €)-extractors in which all left vertices
have degree d = O(logz), y = O(wd), and the distribution
of right degrees are close to uniform, i.e. of degree zd/y =
O(z/w) [24].

Theorem 6: Fix any constant € > 0. Let x = n/(c+ 1) for
any chosen constant c as before. Let & > 0 be any constant
such that & < 1 — p. Set w = ax, and let H be the (w,¢€)-
extractor as described above. Then, with probability at least
1 — exp(—O(n)) (i.e. exponentially close to 1), topology R
will be able to infect a (1 — ¢)-fraction of all nodes that are
infectable.

Proof: [Sketch] The probability that at least azx vertices is
X are infected is exponentially close to 1. This can be obtained
with a typical Hoeffding-Chernoff inequality to bound the tail
of the binomial distribution. From these ax vertices, at least
(1 — €)-fraction of vertices in Y will be reached. |
Note that, the degree of vertices in YV is ©(z/w) = O(1/a),
which is a constant. Hence, the linear time improvement factor
over topology S' still holds!

V. DISCUSSIONS AND FUTURE WORKS

We have not specified how to estimate bandwidths and
delays. Recent works on end-to-end Internet measurements
point to several answers to this question [25], [26].

As a solution to our problem, propagation topology R is
a decent topology in the sense that it sacrifices the expected
number of infected targets a little bit, while it improves the
expected infection time relatively well. However, there is more
room for improvement. The main reason we chose a shallow
topology to analyze is the feasibility of its analysis. Taking
the lesson from the new design in Section we should
look at more unbalanced design using the same kind of seed
component composition, where the topology is deeper in one
branch than the other.

The key idea behind a resilient propagation topology is
that the graph should be “expanding” to allow for concurrent
propagation. The obvious choice would seem to be some sort
of expanders [27], which are graphs with very high connec-
tivity and relatively low diameters, thus reducing propagation
time while keeping a high level of resiliency. The bipartite
extractors are one kind of expanding graphs. The extension of

this idea to use general expanders is open for further research.

We have shown that the problem MTMP is NP-hard. An-
other open problem is thus to devise a good approximation
algorithm for this problem. If the approximation ratio is
sufficiently good, the difference between the optimal solution
(say, a few milliseconds), and the approximated solution (say,
a few more milliseconds) is practically insignificant. It is
important to also study how current containment policies such
as that in [11] can thwart these infection schemes. Last but
not least, the second problem we formulated — MEMP — has
not been addressed at all.
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