A Practical Approach for Integrating Vision-Based Methaus
Interactive 2D/3D Applications

Darius Burschka, Guangqi Ye, Jason J. Corso, Gregory D.Hage

Technical Report CIRL-TR-05-01
Computational Interaction and Robotics Laboratory
The Johns Hopkins University

Abstract

In this paper, we present a practical approach for integngtcomputer vision techniques into human-computer interac
systems. Our techniques are applicable in conventional Ridewing environments and advanced 3D scenarios. The metho
is transparent in the sense that no modification (e.g. noomygilation) of the underlying application software is rémeal.
To realize this functionality, we propose arterface scannahat analyzes the input event requirements of a given rgnnin
application and translates them into event descriptionailable from our vision-based HCI framework. We include a
description of our vision system that extends the basicfaatemts like ButtonPressEvent, MotionEvent, ButtonRelegent
by more abstract events like TurnDialEvent, DeleteEvent.

We describe our framework for 2D interfaces based on the Maik API and for 3D interfaces which use OpenGL. We
provide an analysis of the stability and accuracy of the fearark for our current implementation.

1. Introduction

Present applications are designed to use conventional dgwices, like keyboard or computer mouse. The limited et o
the available input events has required applications tmdeficomplex set ahode-buttonsand often, a difficultnteraction
languagefor the user to learn. Vision-based interfaces have thenpiatd¢o provide a richer set of events that extends the
basic set of typical events provided by the current grapkigstems, like our target Unix X11-graphical environmdritese
additional events would allow the user to perform more campasks in a direct way through natural hand gestures and
functional motions to which they are accustomed in everyifiay

The approach we present in this paper allows an easy tramsitivision-based interfaces by translating the richesastr
of visual events into existing event streams of typical giegl interfaces. For example, the action of pressing eohut
translated into a mouse click on the button to effect the saigger in the system. The structure of an event stream in the
typical graphical Unix application relies on communicattetween the server program (XServer) and the client cdjic
(Figure. 1).

Application

XI11 API

i
@ - |

A 1
VICon-based
Conventional Devices Gestures ‘—i:lj

Figure 1:Extension of the common graphical 2D API.

The XServer provides a transparent layer allowing the pgssf events between input devices and applications. Ad-
ditional input devices can be added to generate events thaeat to the applications. This modular feature allowsous t

1Wwe define anode-buttoras an application element that effects a change in the aipicmode. An example where mode-buttons are needed is in
switching among the various modes of a line-drawing to@dffrand, straight-line, poly-line, etc) in a drawing progra

supplement traditional devices with our framework withany modifications to the existing client software.

Typically, human-computer interaction (HCI) systems amndusly track the user in order to model his or her actions [5
20]. However, an alternative approach has recently beegestgd by two independent groups [8, 24]. Instead of glgball
tracking and modeling the user, these papers suggest magiw@ local volume around each interface component. The
authors suggest using a hierarchical processing modelthatlzoarse, inexpensive operations like image differenare
used to trigger more expensive operations like templatetmag. They use state machines to define a network of opagtio
which recognize certain actions per volume above eachfateielement. We adopt this approach in this paper because it
provides a concrete methodology for applying vision teghas to both conventional and experimental interfaces.

The rest of the paper is organized as follows. We provide at Sluovey of related research in Section 1.1. Section 2
discusses our framework of combining vision into 2D/3D ifagees. In Section 3, we explain the details of our current 2D
and 3D implementation of the proposed framework. Sectione4égnts some experimental results of our implementation.
Finally, we provide the conclusions and a short discussion.

1.1. Related Work

Generally, vision-based interaction is based on recoggiziman body motion and facial expression with the generall g
of supporting HCI [2, 4, 11, 12, 22]. Many interaction sysg&®, 10, 15, 16, 14, 18, 25] have been implemented to show the
promise of vision-based HCI.

Hand gestures have been a popular choice in vision-basedklzuse of their convenience and naturalness. Most
gesture systems employ a tracking-based approach to rieeagismall set of gestures. Wilson and Oliver [20] presented
the “GWindows” system that combines vision and speech toraung traditional “WIMP” (windows, icons, mouse, pointer)
interfaces. Both motion tracking and depth computationuse to recognize pointing and moving gestures. One of the
drawbacks of the system is the limited gesture set which doesontain a selecting gesture.

A bare-hand HCI framework is proposed in [5]. The hands agensmted from the background via image differencing.
The fingertips of the user’s hands are detected and groupestufés are defined as different finger configurations. Zhang
et al. [25] present a “visual panel” system that uses a sifinggertip as the sole interaction medium. The lack of a terabpor
model for dynamic gestures is compensated by a simple tireera certain gesture command is issued when the user stays
in the same configuration for a predefined period of time. Toei&@Desk system [9] uses a “shadow infrared scheme” to
segment the user’s hand from the background, which is agsgjelesktop. They model gesture commands as a transition
between two postures. One limitation is the 2D nature of yiséesn, which can not handle 3D gestures.

Vision-based HCI has also been incorporated into virtualrenments and augmented reality systems [11, 17, 18, 23].
Both manipulative [1, 21] and communicative gestures [18]wsed to interact with virtual or real objects. The Perigept
Workbench [18] system uses multiple infrared light soursed a gray-scale camera with an infrared filter to detect e 3
shape of the hand and the objects in the system. Gesturescagnized based on tracked hand position and pointing-direc
tion. Several applications, such as terrain navigationvaridal game playing, have been built using the system. Hewe
the gesture vocabulary is limited compared to the compl@fithe system and the capability of 3D construction.

2. Localization of | nterface Elements

As discussed in Section 1.1, extensive research has beenrdthe area of human tracking for HCI. Many approaches track
the user and focus on the analysis of the human posture andmadthe sequence of gestures is generated relative to the
event source, in this case the user. This requires the systegnognize all possible gestures at all locations in therface.
However, since most interface components occupy a smalldarthe interface and respond to only a subset of the gestures
this will result in unnecessary processing. Recently, terr@étive approach was suggested by [8, 24] to addressrtititem.

D=

Figure 2: Each element of the interface defines its own volume of stt@respace. The volumes can contain each other in
case of hierarchical element structure.

In this approach, each interface element observes a volarsgace and defines a set of gestures to which it responds.

Any user activity detected in this volume is forwarded tsthiement (Figure. 2). These volumes can contain each ather i
case that a graphical interface element consists of a blerarf regions with a parent region and embedded sub-regivas
developed parsers that use existing interface definition2® and 3D applications to define the positions of the voleime
in space. In both, the 2D and 3D cases, the vision componealization is derived from the graphical language used to
generate the visual output on the screen. Therefore, tlenvised gesture recognition is tailored to the requirdmef the
application.

2.1. 2D Case

Conventional programs. The basic calculator application on X11-based systemsdalke (Figure. 3), is an example that
demonstrates the hierarchical structure depicted in EiguiThe entire calculator area can be used for detectioredidhd
in the volume above it, and the single keys of the calculaaoresub-volumes in this regions monitoring for KeyPresséew.
To avoid the modification (i.e. re-compilation) of existiolient software, the event requirements for a given apfitineare
parsed directly from the XServer screen structure.

Figure 3: The X11 calculator application opens separate subwindawgdch of the keys specifying the type of event that
activates it.

The XServer defines a nested hierarchy of windows (Figur&#application windows are children of the RootWindow
which represents the entire screen. UsingXigueryTree()a complete window hierarchy can be retrieved based on the

application name.
Root Window

XGetWMName —> *xcalc| XGetWMName —> ’xterm’
Trea_: . XQueryTree—>n_children
XQueryTree=>n_children XGetWindowAtwributes | |
XGetWindowAttributes —> attributes
—> attributes

XGetWindowAttributes
—> attributes

XGetWindow/Attrjbutes |
X GetWindowAftributes |
XGetWindowAttributes |~
—> attributes A

Figure 4: Application windows and requested events can be identifiédd screen hierarchy starting at the RootWindow
that represents the entire screen.

Once the corresponding window structure is found, the HGtesy identifies the requested event types for this window
using thexGetWindowAttributes@all. The events are mapped onto the user gestures in our td@ldwork (Section 3.1.1).
Typical X11 application gestures are: ButtonPressed dBi&keleased, MotionNotify accompanied by the x,y coordisaf
the current position of the screen. In Section 3.1.1, wearphe specific implementation we have used for this mapping

The vision-based system passes these events to the ajpplscasing the identified window structures using X&endE-
vent()call.

Extensions As we have mentioned in the introduction, human gesturegigiea more powerful set of input events than
conventional input devices. Additional event types can &eegated by different gestures presented to the systemsibiRos
examples are DestroyEvent, TurnDialEvent, etc. Thesetewam be added to the current XServer definition or masqgadrad
as ClientEvents, which are part of the default XServer ddimi

2.2. 3D Case

In analogy to Section 2.1, we need to define the position ofadte volume for the gesture recognition in front of the
surface of an interface element in 3D space. The simplifirchson of a planar interface geometry in 2D with its well-
defined graphical definitions for interfaces in applicasigsmnot given in 3D. However, 3D interfaces are still not comnm
and they are not standardized. In our framework, we use Opam@d models to define surfaces that accept user interactio
In our implementation, we use GQUADS to model the surfaces (vertices) of our virtual olgdotspace. The rendered
scene is overlayed with the regular stereo camera view.

The actual processing of gestures and creation of the \bdsed events proceeds similarly to the 2D case with the only
difference that the surface orientation is now arbitrarypace. Itis completely defined by the quad definitions in ther@GL
model that is used for rendering.

3. Vision-Based Events

In Section 2, we proposed an approach for the localizationsidn-based interface components based on a given gaphic
interface. Here, we present our implementation of the nidiased event generation.

3.1. 2D Interfaces

The control of most conventional 2D interfaces has beertditnio the keyboard and mouse for practical purposes. Tkis ha
led to a fairly small set of interface elements and assatietents: e.g. button, scrollbar, menu (which is a buttaic), ke

this section, we describe our techniques for 2D interfadg@siwmap gestures to both these existing events and to newseve
Our experimental platform is a copy of the touchpad systessgmted in [3], but we have enhanced their setup by liftieg th
homographic calibration to full 3D calibration and also edgcolor calibration between the display and the cameras.

3.1.1 Mapping Events

In this section, we describe the specific translations frigiok-based gesture events to conventional events fohgralp
applications. As discussed earlier, for each interactigment of a program, we automatically (and dynamicallyjpteea
vision interactive element which looks for the expected hargesture input. For conventional input, the possibleaative
elements are limited to clickable items and draggable itérhsis, we must only define two distinct mappings to encompass
all conventional application control; this is expectedsithe mouse is very simple controlling device.

For clickable items, we define a natural pressing gestutdshmerformed by the user extending one outstretched finger
near the interactive element, touching the element andrvaoving the finger. A ButtonPress event is generated when th
visual parser observes the finger touching the element amkiButtonRelease event when the fingers moves away.

For draggable items a natural gesture is again used: theappeoaches the item with two opposing fingers open, and
upon reaching the item, he or she closes the fingers as ifigoage item (there is no haptic feedback). Then, the user is
permitted to drag the item around the workspace, and wheihever she wishes to drop the item, the two grasping fingers
are released quickly. The corresponding events we gerematuttonPress, MotionNotify, and ButtonRelease.

Figure 5 shows examples of the two gestures from one caméra.adcuracy of the network is shown in Table 1 for
pressing and Table 2 for grabbing.

3.1.2 FeatureExtraction

Robust hand detection is a crucial prerequisite for gestapéuring and analysis. Human hands demonstrate dispipetea-
ance characteristics, such as color, hand contour, andeggomproperties of the fingers. We carry out segmentatiGeta
on the appearance of the hand.

Assume that the background is knctwvthe hand can be detected by segmenting the foregroundfi@imaige. The key is
to find an efficient and robust method to model the appeardrhe background and the hand. Background subtraction; gray
scale background modeling [6], color appearance modeli@y folor histogram [7] and combining of multiple cues [21]
are among the most widely used methods to model the backgmemahperform foreground segmentation.

We propose to directly model the appearance of the backdrbyrromputing the transform between the physical scene
and the images of the scene captured by the cameras. By thissm&hen the user’'s hand enters the scene, we can detect
the hand by performing foreground segmentation based omtitieled background.

2|n the 2D touchpad setup this is trivial since the backgroismutecisely what is rendered on the screen at any given momen

Figure 5:(Top) Pressing Gesture. (Bottom) Grabbing Gesture. (l@figinal Image. (Right) Segmented Image.
We model the color appearance of the background using are affodel. The color images from the cameras and the
rendered scene are represented in YUV format. An affine megeesents the transform from the color of the rendered

scene, i.e.s = [Y;, Us, Vi]T, to that of the camera image= [Y.,U., V.]7. Using a3 x 3 matrix A and a vectot, we
represent this model using the following equation.

c=As+t (2)

The model parametergl andt¢, are learned via a color calibration procedure. Basically,generate a set df scene
patterns of uniform colof? = {P; ... Py }. To ensure the accuracy of the modeling over the whole cplaces, the colors
of the set of the calibration patterns occupy as much of thar epace as possible. We display each patférand capture
an image sequenc®, of the scene. The corresponding imagas computed as the average of all the images in the sequence
S;. The smoothing process is intended to reduce the imagirgenbor each pair af; andC;, we randomly select/ pairs
of points from the scene and the images. We construct a legpsation based on thedé x M correspondences and obtain
a least squares solution for th2 model parameters.

We use image differencing to segment the foreground. Giamkdround imagdg and an input imagég, a simple
way to segment the foreground is to subtrgtfrom I=. We compute the sum of absolute differences (SAD) for thercol
channels of each pixel. If the SAD is above a certain threktbls pixel is set to foreground. Figure 6 shows an exanfple o
the segmentation.

To improve the robustness of the foreground segmentatierinelude an additional skin color model. Many skin mod-
els have been proposed in the literature [13]. Here we chaosienple linear model in UV-space. Basically, we col-
lect skin pixels from segmented hand images and train theetregla rectangle in the UV plane. Four parameters, i.e.,
Unmins Umazs Vinin, Vmaz, are computed and used to classify image pixels.

3.1.3 GestureModeling

For the gesture mapping discussed in this paper, we use d seti@l networks to perform the actual recognition. As
discussed earlier, since an event window is monitored imtlages for each of the interface components and no useirgck
is required for the gesture recognition in this form, a nenedwork is a suitable technique to perform the recognitibthe
gesture posture in the image window. We train a standare-taneer binary network for recognition. We choose a coarse
sub-sampling of the segmented image window as input to ttveomk. We use the normalized intensity to reduce photometri
distortion.

3.2. 3D Interfaces

In this section, we discuss our approach for incorporatisgx based analysis of interaction in 3D settings. In 2D, we
assume the interactive regions of interest lie on a planermesgiven distance and orientation. However, in 3D, we make n
such assumption. The target system consists of a Head MbDigplay (HMD) with two small analog cameras mounted on

T
= Kl

Figure 6: An example of image segmentation based on color calibrafidre upper left image is the the original pattern
rendered on the screen. The upper right image is the georadijriand chromatically transformed image of the rendered
pattern. The lower left image shows the image actually aepitby the camera. The lower right image is the segmented
foreground image.

the sides providing the video. In our current experimentsuge a regular stereo camera rig and the result is viewedeon th
desktop monitor. A setup with a virtual box rendered in spackepicted in Figure 7.

Figure 7:Setup for the 3D camera experiment. A physical box is incwatdy for verifying the accuracy.

3.21 Assumptions

Before we can analyze a 3D interactive application, its GUttibe defined in a virtual 3D environment. Furthermore, this
GUI must be accessible to our analysis tool which will add #douwolume around each interactive region. Finally, the
cameras used to capture the human interaction should beny@alibrated.

3.2.2 Interface Component Visibility

In this development, we assume that the 3D scene will be reddssed on the camera calibration. We also assume that
the active part of the 3D application will be in the viewing$tum of the cameras. We check if each interactive region can
be seen by the camera system by taking the dot-product ofaimema optical axis and the normal of the surface. If the
dot-product is negative, the surface is visible to the camkéthe surface is visible to both cameras, the interfaemeht is
considered active.

Training Testing

Positive | 2051/2051 | 2057/2058
Negative| 1342/1342 | 1342/1342
Table 1:Recognition Accuracy for Pressing Gesture.

Training | Testing
Positive | 366/367 | 364/367
Negative| 480/480 | 483/483
Table 2:Recognition Accuracy for Grabbing Gesture.

3.2.3 Video Processing

The 3D interface elements act as a transparent layer to thelawcteractive 3D region below. For each visible regioe, w
perform coarse image processing (e.g. motion detectioth@projection of the volume seen above the visible surfabe.
region undergoes finer image processing as specified in afimed state machine. Using two or more cameras, the digparit
of points within the volume can be computed and used to extnace information about the change within the region.

4. Experimental Results

4.1. 2D Segmentation

We have carried out a series of experiments to quantify tiseracy and stability of the system. First, we examine the
robustness and stability of the color calibration alganttWe train the affine color model usi3g3 unicolor image patterns
which are evenly distributed in the RGB color space. To testaccuracy of the learned affine model, we display avér
randomly generated color images and examine the resubmentation. In this case, the ground truth is an image mdarke
completely as background pixels. For both cameras, themsyathieves segmentation accuracy of ®as¢.

We also investigate the efficacy of the linear skin model. @& the model by analyzing image sequences containing
the hands of ovet0 people. To test the model on our platform, the user is askptat® his or her hand on the flat-panel and
keep it still. Next, we render a background which is knowneofgrm well for skin segmentation and treat the resultinig sk
foreground segmentation as the ground truth. The user edaskkeep his or her hand steady while we render a sequence
of 200 randomly generated patterns. For each image, we count theerwof incorrectly segmented pixels against the true
segmentation. The overall skin segmentation accuracyasa3%.

4.2. 2D Recognition Experiments

One of our example 2D mappings is to use a button press gestonienic a mouse click event. As discussed earlier, we train
a 3-layer neural network to recognize the button press gestudegrabbing gesture. For each of these networks, there are
512 input nodes 16 x 16 x 2 for each stereo pairk0 middle layer nodes, antloutput node. The accuracy of the network

is shown in Table 1 for pressing and Table 2 for grabbing.

We carry out an experiment to test the accuracy and spatiaitséty of the button press gesture. We display an array of
square buttons, which are adjacent to each other with nebsgfface. Then, the system randomly chooses one of them and
instructs the user to press it. We vary the size of the buttim 20 x 20 pixels to75 x 75 pixels and repeat the experiment for
each size. Figure 8 shows the scene when the size of the lmittdn 40 pixels; here, we see that the size of the user’s finger
tip is about 40 pixels wide at the display resolution. Figlighows the testing results. In the graph, we see the accafacy
the press recognition rapidly increases with the size tlibuWe also note that, as expected, for button sizes snthlie
the fingertip resolution (about 40 pixels), the accuracyisimworse.

Figure 8 also shows an application using the button pressmet® control a calculator program in X window system.

4.3. 2D Pointing Stability

To investigate the stability of the location recognitiomldahe underlying segmentation, we perform an experimentiichv

the user is asked to point and stay at an arbitrarily speqifésition on the screen. For this experiment, we have trained
a neural network system to localize the spatial coordinatelse fingertip. Thus, for a given image region defined for an
interface element, the images are processed by the netwddhwields a singlgz, y) sub-pixel resolution tip-location.
Again, the input to the network is a coarse, sub-sampled e total samples), and the network heshidden nodes.

Figure 8: Left picture shows the scene of when the finger is trying gmyéi a button ofl0 x 40 pixels. Right picture shows
a user is controlling an X window program using finger presstgees.

Testing Result of Button Press Gesture

100 —)
=9~ Accuracy 4
=©- False Positive
=B False Negative

©
O

D ~ o]
[=] (=} (=}

Percentage
a

0 .
20 30 40 50 60 75
Button Size

Figure 9: 2D button press experiment result

We hand-annotated each training datum by clicking on theefiifglocation. Ove600 training samples are used and the
average error for the training datali$099 image pixels.

To test the stability, we dynamically change the scene bgegng randomly generated background images and record the
output of the pointing gesture recognizer. The stabilityhaf system is measured by the standard deviation of thededor
2D position. On a standard flatpanel monitor with a resolutibl 280 x 1024 pixels, our system reports an average standard
deviation 0f0.128 and0.168 pixel in thexz andy direction, respectively.

4.4. 3D Examples

The 3D interface works with user-dependent skin calibratithe system learns the skin hue and distribution from diaini
sample presented in a window (Figure. 10).

Figure 10:(left) Initial hue calibration for user-dependent skin detion; (right) hand segmentation test.

The calibrated system is used to extract the finger shapdlincamera images. We estimate the finger tip position in both
images using PCA, and reconstruct its 3D position (Figutg. 1

The 3D position of the finger is calculated relative to thévaedtvisible) surfaces of our model. The virtual surfacearale
color on contact providing visual feedback to replace thesing haptic feedback (Figure. 12). We align the cardboexd b

= I E R Vi

Figure 11:Extraction of the finger tip position in both images for the @donstruction.

with the virtual box because in the current setup, the reswliewed on a regular computer monitor which does not create
any 3D perception to the user.

Figure 12:Examples of 3D surface contact.

5. Conclusions and Future Work

In this paper, we present a practical approach to integrateiples of local-based gesture modeling into both cotieaal
and experimental 3D interfaces. The first contribution islitectly use the graphical interface descriptions to deffivee
active area and type of expected events in 2D and 3D spacesubuested parsing of the underlying models that define
the graphical layout allows an easy integration with ergsitlient software. The second contribution is the framéwior
mapping visual recognition events to conventional integfavents and providing a method to extend the event voagbula
While we have demonstrated that the complete set of 2D atterévents can be mapped, there is no standard 3D interface
model or event vocabulary. In our current work, we are tryimgstablish such an interface model. We note the similarity
our approaches to visual recognition in 2D and 3D: essénttak methods reduce to analyzing image regions for explect
visual events. Thus, the main difference between the 2D Bneb3e as presented in this paper is the method for foreground
segmentation and feature extraction. Therefore, we expeaserge the 2D and 3D gesture recognition in future work.

References

[1] D.A.Becker and A.P. Pentland. Using a Virtual Environth® Teach Cancer Patients T'ai Chi, Relaxation, and Se#gery. InProc. International
Conference on Automatic Face and Gesture Recognifief6.

[2] M.J.Black and Y. Yacoob. Tracking and Recognizing Rigittl Non-rigid Facial Motions Using Local Parametric Mod#l$mage Motion.Interna-
tional Journal of Computer Visiqr25(1):23-48, 1997.

[3] J.J.Corso, D. Burschka, and G.D. Hager. The 4DT: Unetared HCI With VICs. INCVPR HCJ| 2003.

[4] A. Elgammal, V. Shet, Y. Yacoob, and L.S. Davis. Learnbgnamics for Exemplar-based Gesture RecognitionCdmputer Vision and Pattern
Recognitionvolume 1, pages 571-578, 2003.

[5] C.v.Hardenberg and F. Berard. Bare-Hand Human-Computeraction. InWorkshop on Perceptive User Interfac@601.

[6] T. Horprasert, D. Harwood, and L.S. Davis. A Robust Backmd Substraction and Shadow Detection.Aian Conference on Computer Visjon
2000.

(7]
8

El
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]
[18]

[19]
[20]
[21]

[22]
[23]

[24]
[25]

M.J. Jones and J. Rehg. Statistical Color Models with lAgagion to Skin Detectionlnternational Journal of Computer Visipd6(1):81-96, 2002.

R. Kjeldsen, A. Levas, and C. Pinhanez. Dynamically Réigurable Vision-Based User Interfaces.liternational Conference on Computer Vision
Systemgpages 323-332, 2003.

C. McDonald, G. Roth, and S. Marsh. Red-Handed: Collatioe Gesture Interaction with a Projection Table Pioc. International Conference on
Automatic Face and Gesture Recognitipages 773—778, 2004.

T. Moran, E. Saund, W. van Melle, A. Gujar, K. Fishkin,daB. Harrison. Design and Technology for Collaborage: Quitative Collages of
Information on Physical Walls. IACM Symposium on User Interface Software an Technplb@§9.

K. Oka, Y. Sato, and H. Koike. Real-Time Fingertip Tramkand Gesture RecognitiolEEE Computer Graphics and Applicatiogn22(6):64—71,
2002.

V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual Intetation of Hand Gestures for Human-Computer InteractfoReview. IEEE Transactions on
Pattern Analysis and Machine Intelligenckd(7):677-695, 1997.

S.L. Phung, A. Bouzerdoum, and D. Chai. Skin Segmentdtising Color Pixel Classificatioin: Analyssi and Compians IEEE Transactions on
Pattern Analysis and Machine Intelligenc#7(1):148-154, 2005.

J. Segen and S. Kumar. Fast and Accurate 3D Gesture Ri@oognterface. Innternational Conference on Pattern Recognitid998.

J. Segen and S. Kumar. Gesture VR: Vision-based 3D Hatedace for Spatial Interaction. ICM International Conference on Multimedipages
455-464, 1998.

J. Segen and S. Kumar. Shadow Gestures: 3D Hand Posesifisti Using a Single Camera. Gomputer Vision and Pattern Recognitjorolume 1,
pages 479-485, 1999.

J.M. Siskind. Visual Event Perception. Rroceedings of the NEC Research SymposiL888.

T. Starner, B. Leibe, D. Minnen, T. Westyn, A. Hurst, ahdVeeks. The Perceptive Workbench: Computer-VisioineBaSesture Tracking, Object
Tracking, and 3D Reconstruction for Augmented Dediachine Vision and Applicationd4(1):59-71, 2003.

M.J. Swain. Color Indexinglnternational Journal of Computer Visioi(1):11-32, 1991.
A. Wilson and N. Oliver. GWindows: Robust Stereo Visifam Gesture-Based . IWorkshop on Perceptive User Interfacpages 211-218, 2003.

C. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentlarfinder: Real-time Tracking of the Human Bod§eEE Transactions on Pattern Analysis
and Machine Intelligencel9(7):780-784, 1997.

Y. Wu, J.Y. Lin, and T.S. Huang. Capturing Natural Handiéulation. InProc. Int'l Conf. Computer Visiorvolume 2, pages 426-432, 2001.

G. Ye, J.J. Corso, and G.D. Hager. Gesture Recognitisind3D Appearance and Motion FeaturesPinceedings of CVPR Workshop on Real-Time
Vision for Human-Computer Interactip2004.

G. Ye, J.J. Corso, and G.D. Hager. VICs: A Modular HCIrReavork Using Spatio-Temporal Dynamidglachine Vision and Application2004.

Z.Zhang, Y. Wu, Y. Shan, and S. Shafer. Visual Paneltudir Mouse Keyboard and 3D Controller with an Ordinary PieCBaper. InWorkshop on
Perceptive User Interface2001.

10

