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Abstract

In this paper, we present a practical approach for integrating computer vision techniques into human-computer interaction
systems. Our techniques are applicable in conventional 2D windowing environments and advanced 3D scenarios. The method
is transparent in the sense that no modification (e.g. no re-compilation) of the underlying application software is required.
To realize this functionality, we propose aninterface scannerthat analyzes the input event requirements of a given running
application and translates them into event descriptions available from our vision-based HCI framework. We include a
description of our vision system that extends the basic set of events like ButtonPressEvent, MotionEvent, ButtonReleaseEvent
by more abstract events like TurnDialEvent, DeleteEvent.

We describe our framework for 2D interfaces based on the UnixX11 API and for 3D interfaces which use OpenGL. We
provide an analysis of the stability and accuracy of the framework for our current implementation.

1. Introduction
Present applications are designed to use conventional input devices, like keyboard or computer mouse. The limited set of
the available input events has required applications to define a complex set ofmode-buttons1 and often, a difficultinteraction
languagefor the user to learn. Vision-based interfaces have the potential to provide a richer set of events that extends the
basic set of typical events provided by the current graphical systems, like our target Unix X11-graphical environment.These
additional events would allow the user to perform more complex tasks in a direct way through natural hand gestures and
functional motions to which they are accustomed in everydaylife.

The approach we present in this paper allows an easy transition to vision-based interfaces by translating the richer stream
of visual events into existing event streams of typical graphical interfaces. For example, the action of pressing a button is
translated into a mouse click on the button to effect the sametrigger in the system. The structure of an event stream in the
typical graphical Unix application relies on communication between the server program (XServer) and the client application
(Figure. 1).
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Figure 1:Extension of the common graphical 2D API.

The XServer provides a transparent layer allowing the passing of events between input devices and applications. Ad-
ditional input devices can be added to generate events that are sent to the applications. This modular feature allows us to

1We define amode-buttonas an application element that effects a change in the application mode. An example where mode-buttons are needed is in
switching among the various modes of a line-drawing tool (freehand, straight-line, poly-line, etc) in a drawing program.
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supplement traditional devices with our framework withoutany modifications to the existing client software.
Typically, human-computer interaction (HCI) systems continuously track the user in order to model his or her actions [5,

20]. However, an alternative approach has recently been suggested by two independent groups [8, 24]. Instead of globally
tracking and modeling the user, these papers suggest monitoring a local volume around each interface component. The
authors suggest using a hierarchical processing model suchthat coarse, inexpensive operations like image differencing are
used to trigger more expensive operations like template matching. They use state machines to define a network of operations
which recognize certain actions per volume above each interface element. We adopt this approach in this paper because it
provides a concrete methodology for applying vision techniques to both conventional and experimental interfaces.

The rest of the paper is organized as follows. We provide a short survey of related research in Section 1.1. Section 2
discusses our framework of combining vision into 2D/3D interfaces. In Section 3, we explain the details of our current 2D
and 3D implementation of the proposed framework. Section 4 presents some experimental results of our implementation.
Finally, we provide the conclusions and a short discussion.

1.1. Related Work
Generally, vision-based interaction is based on recognizing human body motion and facial expression with the general goal
of supporting HCI [2, 4, 11, 12, 22]. Many interaction systems [9, 10, 15, 16, 14, 18, 25] have been implemented to show the
promise of vision-based HCI.

Hand gestures have been a popular choice in vision-based HCIbecause of their convenience and naturalness. Most
gesture systems employ a tracking-based approach to recognize a small set of gestures. Wilson and Oliver [20] presented
the “GWindows” system that combines vision and speech to augment traditional “WIMP” (windows, icons, mouse, pointer)
interfaces. Both motion tracking and depth computation areused to recognize pointing and moving gestures. One of the
drawbacks of the system is the limited gesture set which doesnot contain a selecting gesture.

A bare-hand HCI framework is proposed in [5]. The hands are segmented from the background via image differencing.
The fingertips of the user’s hands are detected and grouped. Gestures are defined as different finger configurations. Zhang
et al. [25] present a “visual panel” system that uses a singlefingertip as the sole interaction medium. The lack of a temporal
model for dynamic gestures is compensated by a simple timer,i.e., a certain gesture command is issued when the user stays
in the same configuration for a predefined period of time. The SocialDesk system [9] uses a “shadow infrared scheme” to
segment the user’s hand from the background, which is a projected desktop. They model gesture commands as a transition
between two postures. One limitation is the 2D nature of the system, which can not handle 3D gestures.

Vision-based HCI has also been incorporated into virtual environments and augmented reality systems [11, 17, 18, 23].
Both manipulative [1, 21] and communicative gestures [18] are used to interact with virtual or real objects. The Perceptive
Workbench [18] system uses multiple infrared light sourcesand a gray-scale camera with an infrared filter to detect the 3D
shape of the hand and the objects in the system. Gestures are recognized based on tracked hand position and pointing direc-
tion. Several applications, such as terrain navigation andvirtual game playing, have been built using the system. However,
the gesture vocabulary is limited compared to the complexity of the system and the capability of 3D construction.

2. Localization of Interface Elements
As discussed in Section 1.1, extensive research has been done in the area of human tracking for HCI. Many approaches track
the user and focus on the analysis of the human posture and motion. The sequence of gestures is generated relative to the
event source, in this case the user. This requires the systemto recognize all possible gestures at all locations in the interface.
However, since most interface components occupy a small area of the interface and respond to only a subset of the gestures,
this will result in unnecessary processing. Recently, an alternative approach was suggested by [8, 24] to address this problem.

Figure 2:Each element of the interface defines its own volume of interest in space. The volumes can contain each other in
case of hierarchical element structure.

In this approach, each interface element observes a volume in space and defines a set of gestures to which it responds.
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Any user activity detected in this volume is forwarded to this element (Figure. 2). These volumes can contain each other in
case that a graphical interface element consists of a hierarchy of regions with a parent region and embedded sub-regions. We
developed parsers that use existing interface definitions for 2D and 3D applications to define the positions of the volumes
in space. In both, the 2D and 3D cases, the vision component localization is derived from the graphical language used to
generate the visual output on the screen. Therefore, the vision-based gesture recognition is tailored to the requirements of the
application.

2.1. 2D Case
Conventional programs. The basic calculator application on X11-based systems, thexcalc(Figure. 3), is an example that
demonstrates the hierarchical structure depicted in Figure 2. The entire calculator area can be used for detection of the hand
in the volume above it, and the single keys of the calculator carve sub-volumes in this regions monitoring for KeyPress events.
To avoid the modification (i.e. re-compilation) of existingclient software, the event requirements for a given application are
parsed directly from the XServer screen structure.

Figure 3:The X11 calculator application opens separate subwindows for each of the keys specifying the type of event that
activates it.

The XServer defines a nested hierarchy of windows (Figure 4).All application windows are children of the RootWindow
which represents the entire screen. Using theXQueryTree(), a complete window hierarchy can be retrieved based on the
application name.

XGetWindowAttributes
    −> attributesXGetWindowAttributes

    −> attributesXGetWindowAttributes
    −> attributes

XGetWindowAttributes
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Root Window

XQueryTree−>n_children

XGetWMName −> ’xcalc’

XGetWindowAttributes
    −> attributes

XGetWindowAttributes

    −> attributes

XGetWMName −> ’xterm’

XQueryTree−>n_children

Figure 4: Application windows and requested events can be identified in the screen hierarchy starting at the RootWindow
that represents the entire screen.

Once the corresponding window structure is found, the HCI system identifies the requested event types for this window
using theXGetWindowAttributes()call. The events are mapped onto the user gestures in our HCI Framework (Section 3.1.1).
Typical X11 application gestures are: ButtonPressed, ButtonReleased, MotionNotify accompanied by the x,y coordinates of
the current position of the screen. In Section 3.1.1, we explain the specific implementation we have used for this mapping.

The vision-based system passes these events to the applications using the identified window structures using theXSendE-
vent()call.

Extensions As we have mentioned in the introduction, human gestures provide a more powerful set of input events than
conventional input devices. Additional event types can be generated by different gestures presented to the system. Possible
examples are DestroyEvent, TurnDialEvent, etc. These events can be added to the current XServer definition or masqueraded
as ClientEvents, which are part of the default XServer definition.
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2.2. 3D Case
In analogy to Section 2.1, we need to define the position of theactive volume for the gesture recognition in front of the
surface of an interface element in 3D space. The simplified situation of a planar interface geometry in 2D with its well-
defined graphical definitions for interfaces in applications is not given in 3D. However, 3D interfaces are still not common
and they are not standardized. In our framework, we use OpenGL world models to define surfaces that accept user interaction.
In our implementation, we use GLQUADS to model the surfaces (vertices) of our virtual objects in space. The rendered
scene is overlayed with the regular stereo camera view.

The actual processing of gestures and creation of the video-based events proceeds similarly to the 2D case with the only
difference that the surface orientation is now arbitrary inspace. It is completely defined by the quad definitions in the OpenGL
model that is used for rendering.

3. Vision-Based Events
In Section 2, we proposed an approach for the localization ofvision-based interface components based on a given graphical
interface. Here, we present our implementation of the vision-based event generation.

3.1. 2D Interfaces
The control of most conventional 2D interfaces has been limited to the keyboard and mouse for practical purposes. This has
led to a fairly small set of interface elements and associated events: e.g. button, scrollbar, menu (which is a button), etc. In
this section, we describe our techniques for 2D interfaces which map gestures to both these existing events and to new events.
Our experimental platform is a copy of the touchpad system presented in [3], but we have enhanced their setup by lifting the
homographic calibration to full 3D calibration and also adding color calibration between the display and the cameras.

3.1.1 Mapping Events

In this section, we describe the specific translations from vision-based gesture events to conventional events for graphical
applications. As discussed earlier, for each interactive element of a program, we automatically (and dynamically) create a
vision interactive element which looks for the expected human gesture input. For conventional input, the possible interactive
elements are limited to clickable items and draggable items. Thus, we must only define two distinct mappings to encompass
all conventional application control; this is expected since the mouse is very simple controlling device.

For clickable items, we define a natural pressing gesture that is performed by the user extending one outstretched finger
near the interactive element, touching the element and thenremoving the finger. A ButtonPress event is generated when the
visual parser observes the finger touching the element and then a ButtonRelease event when the fingers moves away.

For draggable items a natural gesture is again used: the userapproaches the item with two opposing fingers open, and
upon reaching the item, he or she closes the fingers as if grasping the item (there is no haptic feedback). Then, the user is
permitted to drag the item around the workspace, and whenever he or she wishes to drop the item, the two grasping fingers
are released quickly. The corresponding events we generateare ButtonPress, MotionNotify, and ButtonRelease.

Figure 5 shows examples of the two gestures from one camera. The accuracy of the network is shown in Table 1 for
pressing and Table 2 for grabbing.

3.1.2 Feature Extraction

Robust hand detection is a crucial prerequisite for gesturecapturing and analysis. Human hands demonstrate distinct appear-
ance characteristics, such as color, hand contour, and geometric properties of the fingers. We carry out segmentation based
on the appearance of the hand.

Assume that the background is known2, the hand can be detected by segmenting the foreground from the image. The key is
to find an efficient and robust method to model the appearance of the background and the hand. Background subtraction, gray-
scale background modeling [6], color appearance modeling [19], color histogram [7] and combining of multiple cues [21]
are among the most widely used methods to model the background and perform foreground segmentation.

We propose to directly model the appearance of the background by computing the transform between the physical scene
and the images of the scene captured by the cameras. By this means, when the user’s hand enters the scene, we can detect
the hand by performing foreground segmentation based on themodeled background.

2In the 2D touchpad setup this is trivial since the backgroundis precisely what is rendered on the screen at any given moment.
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Figure 5:(Top) Pressing Gesture. (Bottom) Grabbing Gesture. (Left)Original Image. (Right) Segmented Image.

We model the color appearance of the background using an affine model. The color images from the cameras and the
rendered scene are represented in YUV format. An affine modelrepresents the transform from the color of the rendered
scene, i.e.,s = [Ys, Us, Vs]

T , to that of the camera imagec = [Yc, Uc, Vc]
T . Using a3 × 3 matrix A and a vectort, we

represent this model using the following equation.

c = As + t (1)

The model parameters,A andt, are learned via a color calibration procedure. Basically,we generate a set ofN scene
patterns of uniform color,P

.
= {P1 . . . PN}. To ensure the accuracy of the modeling over the whole color space, the colors

of the set of the calibration patterns occupy as much of the color space as possible. We display each patternPi and capture
an image sequenceSi of the scene. The corresponding imageCi is computed as the average of all the images in the sequence
Si. The smoothing process is intended to reduce the imaging noise. For each pair ofPi andCi, we randomly selectM pairs
of points from the scene and the images. We construct a linearequation based on theseN × M correspondences and obtain
a least squares solution for the12 model parameters.

We use image differencing to segment the foreground. Given background imageIB and an input imageIF , a simple
way to segment the foreground is to subtractIB from IF . We compute the sum of absolute differences (SAD) for the color
channels of each pixel. If the SAD is above a certain threshold, this pixel is set to foreground. Figure 6 shows an example of
the segmentation.

To improve the robustness of the foreground segmentation, we include an additional skin color model. Many skin mod-
els have been proposed in the literature [13]. Here we choosea simple linear model in UV-space. Basically, we col-
lect skin pixels from segmented hand images and train the model as a rectangle in the UV plane. Four parameters, i.e.,
Umin, Umax, Vmin, Vmax, are computed and used to classify image pixels.

3.1.3 Gesture Modeling

For the gesture mapping discussed in this paper, we use a set of neural networks to perform the actual recognition. As
discussed earlier, since an event window is monitored in theimages for each of the interface components and no user tracking
is required for the gesture recognition in this form, a neural network is a suitable technique to perform the recognitionof the
gesture posture in the image window. We train a standard three-layer binary network for recognition. We choose a coarse
sub-sampling of the segmented image window as input to the network. We use the normalized intensity to reduce photometric
distortion.

3.2. 3D Interfaces
In this section, we discuss our approach for incorporating vision based analysis of interaction in 3D settings. In 2D, we
assume the interactive regions of interest lie on a plane in some given distance and orientation. However, in 3D, we make no
such assumption. The target system consists of a Head Mounted Display (HMD) with two small analog cameras mounted on
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Figure 6: An example of image segmentation based on color calibration. The upper left image is the the original pattern
rendered on the screen. The upper right image is the geometrically and chromatically transformed image of the rendered
pattern. The lower left image shows the image actually captured by the camera. The lower right image is the segmented
foreground image.

the sides providing the video. In our current experiments, we use a regular stereo camera rig and the result is viewed on the
desktop monitor. A setup with a virtual box rendered in spaceis depicted in Figure 7.

Figure 7:Setup for the 3D camera experiment. A physical box is included only for verifying the accuracy.

3.2.1 Assumptions

Before we can analyze a 3D interactive application, its GUI must be defined in a virtual 3D environment. Furthermore, this
GUI must be accessible to our analysis tool which will add a buffer volume around each interactive region. Finally, the
cameras used to capture the human interaction should be properly calibrated.

3.2.2 Interface Component Visibility

In this development, we assume that the 3D scene will be rendered based on the camera calibration. We also assume that
the active part of the 3D application will be in the viewing frustum of the cameras. We check if each interactive region can
be seen by the camera system by taking the dot-product of the camera optical axis and the normal of the surface. If the
dot-product is negative, the surface is visible to the camera. If the surface is visible to both cameras, the interface element is
considered active.
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Training Testing
Positive 2051/2051 2057/2058
Negative 1342/1342 1342/1342

Table 1:Recognition Accuracy for Pressing Gesture.

Training Testing
Positive 366/367 364/367
Negative 480/480 483/483

Table 2:Recognition Accuracy for Grabbing Gesture.

3.2.3 Video Processing

The 3D interface elements act as a transparent layer to the actual interactive 3D region below. For each visible region, we
perform coarse image processing (e.g. motion detection) onthe projection of the volume seen above the visible surface.The
region undergoes finer image processing as specified in a predefined state machine. Using two or more cameras, the disparity
of points within the volume can be computed and used to extract more information about the change within the region.

4. Experimental Results
4.1. 2D Segmentation
We have carried out a series of experiments to quantify the accuracy and stability of the system. First, we examine the
robustness and stability of the color calibration algorithm. We train the affine color model using343 unicolor image patterns
which are evenly distributed in the RGB color space. To test the accuracy of the learned affine model, we display over100
randomly generated color images and examine the resulting segmentation. In this case, the ground truth is an image marked
completely as background pixels. For both cameras, the system achieves segmentation accuracy of over98%.

We also investigate the efficacy of the linear skin model. We learn the model by analyzing image sequences containing
the hands of over10 people. To test the model on our platform, the user is asked toplace his or her hand on the flat-panel and
keep it still. Next, we render a background which is known to perform well for skin segmentation and treat the resulting skin
foreground segmentation as the ground truth. The user is asked to keep his or her hand steady while we render a sequence
of 200 randomly generated patterns. For each image, we count the number of incorrectly segmented pixels against the true
segmentation. The overall skin segmentation accuracy is over93%.

4.2. 2D Recognition Experiments
One of our example 2D mappings is to use a button press gestureto mimic a mouse click event. As discussed earlier, we train
a 3-layer neural network to recognize the button press gestureand grabbing gesture. For each of these networks, there are
512 input nodes (16 × 16 × 2 for each stereo pair),20 middle layer nodes, and1 output node. The accuracy of the network
is shown in Table 1 for pressing and Table 2 for grabbing.

We carry out an experiment to test the accuracy and spatial sensitivity of the button press gesture. We display an array of
square buttons, which are adjacent to each other with no buffer-space. Then, the system randomly chooses one of them and
instructs the user to press it. We vary the size of the button from20×20 pixels to75×75 pixels and repeat the experiment for
each size. Figure 8 shows the scene when the size of the buttonis 40×40 pixels; here, we see that the size of the user’s finger
tip is about 40 pixels wide at the display resolution. Figure9 shows the testing results. In the graph, we see the accuracyof
the press recognition rapidly increases with the size the button. We also note that, as expected, for button sizes smaller than
the fingertip resolution (about 40 pixels), the accuracy is much worse.

Figure 8 also shows an application using the button press gesture to control a calculator program in X window system.

4.3. 2D Pointing Stability
To investigate the stability of the location recognition and the underlying segmentation, we perform an experiment in which
the user is asked to point and stay at an arbitrarily specifiedposition on the screen. For this experiment, we have trained
a neural network system to localize the spatial coordinatesof the fingertip. Thus, for a given image region defined for an
interface element, the images are processed by the network which yields a single(x, y) sub-pixel resolution tip-location.
Again, the input to the network is a coarse, sub-sampled image (256 total samples), and the network has16 hidden nodes.
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Figure 8: Left picture shows the scene of when the finger is trying to trigger a button of40 × 40 pixels. Right picture shows
a user is controlling an X window program using finger press gestures.
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Figure 9: 2D button press experiment result

We hand-annotated each training datum by clicking on the fingertip location. Over600 training samples are used and the
average error for the training data is0.0099 image pixels.

To test the stability, we dynamically change the scene by rendering randomly generated background images and record the
output of the pointing gesture recognizer. The stability ofthe system is measured by the standard deviation of the recorded
2D position. On a standard flatpanel monitor with a resolution of 1280× 1024 pixels, our system reports an average standard
deviation of0.128 and0.168 pixel in thex andy direction, respectively.

4.4. 3D Examples
The 3D interface works with user-dependent skin calibration. The system learns the skin hue and distribution from an initial
sample presented in a window (Figure. 10).

Figure 10:(left) Initial hue calibration for user-dependent skin detection; (right) hand segmentation test.

The calibrated system is used to extract the finger shape in both camera images. We estimate the finger tip position in both
images using PCA, and reconstruct its 3D position (Figure. 11).

The 3D position of the finger is calculated relative to the active (visible) surfaces of our model. The virtual surfaces change
color on contact providing visual feedback to replace the missing haptic feedback (Figure. 12). We align the cardboard box
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Figure 11:Extraction of the finger tip position in both images for the 3Dreconstruction.

with the virtual box because in the current setup, the resultis viewed on a regular computer monitor which does not create
any 3D perception to the user.

Figure 12:Examples of 3D surface contact.

5. Conclusions and Future Work
In this paper, we present a practical approach to integrate principles of local-based gesture modeling into both conventional
and experimental 3D interfaces. The first contribution is todirectly use the graphical interface descriptions to definethe
active area and type of expected events in 2D and 3D space. Thesuggested parsing of the underlying models that define
the graphical layout allows an easy integration with existing client software. The second contribution is the framework for
mapping visual recognition events to conventional interface events and providing a method to extend the event vocabulary.

While we have demonstrated that the complete set of 2D interface events can be mapped, there is no standard 3D interface
model or event vocabulary. In our current work, we are tryingto establish such an interface model. We note the similarityin
our approaches to visual recognition in 2D and 3D: essentially, the methods reduce to analyzing image regions for expected
visual events. Thus, the main difference between the 2D and 3D case as presented in this paper is the method for foreground
segmentation and feature extraction. Therefore, we expectto merge the 2D and 3D gesture recognition in future work.
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