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Abstract

Building facade detection is an important problem in corapwision, with applications in mobile robotics and semastene
understanding. In particular, mobile platform localipatand guidance in urban environments can be enabled withiateanodels
of the various building facades in a scene. Toward that eredpresent a system for detection, segmentation, and paamet
estimation of building facades in stereo imagery. The psedanethod incorporates multilevel appearance and digpeatures
in a binary discriminative model, and generates a set ofidat® planes by sampling and clustering points from the anaigh
Random Sample Consensus (RANSAC), using local normal asggerived from Principal Component Analysis (PCA) toinf
the planar models. These two models are incorporated into-detyer Markov Random Field (MRF): an appearance- ancadlisp
based discriminative classifier at the mid-level, and a ggdmmodel to segment the building pixels into facades atftigh-
level. By using object-specific stereo features, our disitrative classifier is able to achieve substantially highsruracy than
standard boosting or modeling with only appearance-basgdifes. Furthermore, the results of our MRF classificatiditate a
strong improvement in accuracy for the binary building déte problem and the labeled planar surface models pravigeod
approximation to the ground truth planes.

Keywords: stereo vision, mobile robot perception, hierarchical Markandom field, building facade detection, model-based
stereo vision

1. Introduction disparity map. Since most buildings have planar facades, an
many mobile robotic platforms are equipped with stereo cam-
Accurate scene labeling can enable applications that rely Oeras, neither of these assumptions is particularly réiseic
the semantic information in an image to make high level de- |, this paper, we propose a method for fully automatic build-
cisions. Our goal of labeling building facades is motivateding facade imaging—detection, segmentation, and paramete
by the problem of mobile robot localization in GPS-denied ar agtimation—for mobile stereo vision platforms. For an inpu
eas, which commonly arises i_n urban environments. Besidegereo image and disparity map, we desire a pixelwise segmen
GPS, other cues from the environment such as compass heaggion of the major building facades in the scene, as welk geo
ings and Time-Diterence-Of-Arrival (TDOA) of radio signals, - metric models for each of these planar facades. Our approach
along with vision-based localization/[1], can enable seman proceeds in three main steps: discriminative modeling with
methods of navigation in these areas. However, these methyip appearance and disparity features, candidate plaee-de
ods stfer from low accuracy and are subject to interferenceyjgn, through PCA and RANSAC, and energy minimization of
orin the case of vision-based localization, struggle witblo-  \RrF potentials. A diagram of the workflow for candidate plane
sion and clutter in the scene. The vision-based localin@®  yetection and high-level labeling is provided in Figl 1. We
proach being developed by our group depends on the detectigRake no assumptions on the quality of the input data, and in
of buildings within the field of view of the cameras on a mobile 5t many of our methods were driven by the need to deal with
platform as a means to reduce thiéeets of clutter on local-  the missing or inaccurate data that is common to single-view
ization, and to enable navigation based on static, sen@igtic gtereq imagery. Consequently, we adopt a top-down approach
meaningful landmarks detected in the scene. Within thigpro fitting planes globally in the image, rather than a bottopn-
lem, accgrate detection and labeling pf the facades is itl_ipt)r approach that would ier from missing disparity data on the
for the high level localization and guidance tasks. We 1@Str |ocq) scale. This is also directed toward our goal of segimgnt
our approach to identifying only planar building facadesda the major facades in the scene, and not every planar surface.
we require image input from a stereo source that produces @ oyr experiments, we uséfethe-shelf single-view stereo data
produced by a system-on-a-chip camera that computes dispar
T — » ity in real time, and we acknowledge that the maps mdiesu
Present addresstniversity of Hawai‘i at Manoa, Department of Me-

chanical Engineering, 2540 Dole St.-Holmes Hall 310, Hohal HI 96822 from both missing data and rahge-uncgrtalnty. o
jad4@hawaii.edu Our work leverages stereo information from the beginning.
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Figure 1: Workflow of the proposed method. The proposed BldAclassifier computes a probability map for binary clasdiiiza of pixels into buildings
and non-buildings (Step 1, Sekl 3). We then generate a seindidate planes with parameter estimates using a RANSAGhtlodt incorporates local PCA
normal approximations (Steps 2-4, SEC] 4.2). Finally, weesa two-layer MRF to compute labelings for the binary désation at the mid-level and for facade
segmentation at the high-level (Step 5, $ed 4.3).

Our discriminative model is generated from an extensiomeft orientations. From these sets of points, we are able to atim
Boosting on Multilevel Aggregates (BMA) methad [2] that in- the parameters of the primary planes in the image.

cludes stereo features [3]. Boosting on Multilevel Aggtega  We then incorporate both of these sources of information
uses hierarchical aggregate regions coarsened from thgeimainto a Bayesian inference framework using a two-layer Marko
based on pixelféinities, as well as a variety of high-level fea- Random Field (MRF). We represent the mid-level MRF as an
tures that can be computed from them, to learn a model withinsing model, a layer of binary hidden variables represerttie

an AdaBoost|[4] two- or multi-class discriminative modefin  answer to the question “Is this pixel part of a building fae2t
framework. Since many mobile robot platforms are equippedrhis layer uses the discriminative classification probighels a
with stereo cameras, and can thus compute a disparity map f@tior, and éfectively smooths the discriminative classification
their field of view, our approach of using statistical featiof  into coherent regions. The high-level representation istsP
the disparity map is a natural extension of the BMA approachnodel, where each hidden variable represents the labefing o
given our intended platform. Since buildings tend to hae pl the associated pixel with one of the candidate planes, dr wit
nar surfaces on their exteriors, we use the stereo featst no plane if it is not part of a building. For each pixel, we con-
ploit the property that planes can be represented as linear f  sider its image coordinates and disparity value, and etetha
tions in disparity space and thus have constant spatialegred  fitness of each candidate plane to that pixel, and incorpdrat
[5]. We will refer to this extension of BMA to disparity fea#s  into the energy of labeling that pixel as a part of that plake.

as BMA+D. We use the discriminative classification probabil- more in-depth discussion of our modeling and labeling matho
ity as a prior when performing inference for the facade label can be found in Sectidd 4.

In order to associate each building pixel with a particudar f ~ The primary contributions of this paper are a novel approach
cade, we must have a set of candidate planes from which to ite discriminative modeling for building facade detectidratt
fer the best fit. We generate these planes by sampling theeimadpverages stereo data, a top-down plane fitting procedutieson
and performing Principal Component Analysis (PCA) on eachdisparity map, and a novel Markov Random Field for fusing the
local neighborhood to approximate the local surface noahal appearance model from the discriminative classificatiahtba
the sampled points. We then fit models to those points by-iterageometric model from the plane fitting step to produce a facad
tively using Random Sample Consensus (RANSAC) [6] to findsegmentation of a single-view stereo image. Our method for
subsets that fit the same plane and have similar local norméhcade segmentation using the two-layer MRF and RANSAC
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was originally proposed in_[7], but this paper includes d ful boundaries will be vertical) to compute facade-wise segmen
quantitative study on the performance of these methods on tation. However, their impressive results (% F-score) re-
larger dataset, and this is the first inclusion of any of thiskv  quire multi-view. With single-view, their approach prosc

in an archival publication. comparable results to ours (8% pixel-wise F-score vs. our
77.7%). Although they are interested in facade segmentation
1.1. Related Work of the images, they do not pursue any disparity or depth infor

Other research in the area of modeling with stereo cues imfmation from their multi-view scenario, and thus do not agém
cludes the work of Konolige et al.|[8], which integrates agype  any modeling of the facades that they segment. The multiview
ance and disparity information for object avoidance, aresus approach inl[17] automatically creates textured 3D modgls o
AdaBoost to learn color and geometry models for ideal routesirban scenes from sequences of images. They perform seman-
of travel along the ground. They use stereo information #r d tic segmentation on the images and partition the resultbg 3
tection of the ground plane and for distinguishing obswdet  facades along vertical lines between buildings. They ptedu
not for classifying and labeling those objects. Li et al. 8p  very realistic looking 3D model for each building by leveirag
disparity data in a template-based AdaBoost frameworkirThethe regularity of buildings in urban areas. However, theee a
work is applied to human pose estimation, and their featar@s no quantitative results with which to compare our perforogan
strictly pixel-based. Perhaps the most similar approaabuto Despite the additional information that multi-view stereo
discriminative modeling method is from Walk et al. [10], whi  provides, we pursue a single-view approach due to our prob-
incorporates object-specific stereo features into a coatisim  lem constraints. For image-based localization from facssde
of classifiers for pedestrian detection. Although thespatis timates, we anticipate the need to capture many singlecstere
ity features are very dierent from the ones that we use, the frames in a panorama. Facade orientations within the narrow
use of object-specific properties to drive those featuresis  field of view of a single stereo image likely will not constrai
sistent with our approach. However, their ultimate goabis f the location or pose of the camera with respect to the build-
detection of pedestrian bounding boxes, and not for pixel laings in an urban environment. However, by foveating to ob-
beling of those detected pedestrians. An important distinc  serve other buildings in a panorama, a set of facade essmate
between the two problems is also that buildings can occupy #om multiple single-view stereo images can be pieced togret
much larger percentage of the pixels in the frame, and come ito give a more constraining set of facades from a wider field
a much greater range of shapes and sizes than humans. of view. Additionally, many semantic scene segmentation ap

Luo and Maitrel[11] proposed using the same algebraic corproaches exist using single-view camera imagery. By dtiliz
straint on planar surfaces, but for the purpose of corrgais-  ing depth from stereo, those single-view approaches cax-be e
parity. Their approach relies on the assumption that witinin  tended to extract geometric information about the labeted f
ban scenes, all surfaces will be planes, so their geometiep cades in the form of planar models.
erties can be used to enhance poor disparity calculatians. | The homography approach aslin/[18] could be applied to this
stead, we are using a linear gradient constraint in our digpa problem in order to bypass the disparity map altogether to ob
features to identify those regions which do, in fact, fit thlat  tain planar correspondences between images. Howevergve ar
nar assumption. pursuing a purely automatic approach that does not use prior

Building facade detection and segmentation have been arlchowledge or human intervention, and their real quadratie e
continue to be well-studied problems. Many recent papers itbedding approach requires the number of planes to be known a
the literature have focused on segmentation of buildingdas  priori, and their feature points are hand-selected.
for use in 3D model reconstruction, especially in the contex The approach in_[19] uses appearance, stereo, and 3D ge-
of architectural modeling or geo-spatial mapping appilicet  ometric features from a moving camera with structure from
such as Google Earth. Korah and Rasmussen use texture to segetion. They leverage a Manhattan-world assumption in in-
ment building facades, among other facade-related tas{s [1 door scenes to achieve a three-class segmentation of the sce
Frohlich et al. |[13] perform facade labeling with a Random-with ~ 75% labeling accuracy. Although their features and ap-
ized Decision Forest, but do not attempt to segment individproach are very dierent from ours, and their problem more
ual facades. Wendel at al._[14] use intensity profiles to findconstrained, their use of stereo and 3D features in addition
repetitive structures in coherent regions of the image depr visual features is in line with our proposed method.
to segment and separatéfdrent facades. Hernandez and Mar-  Posner et al. | [20] classify laser scan points that have been
cotegui employ horizontal and vertical color gradientsaing projected into the camera frame into 10 urban classes (e.g.
leveraging repetitive structures, to segment individaabfles brick, vehicle, grass). They take a bottom-up approach for
from blocks of contiguous buildings in an urban environmentplane fitting to their point cloud data: the space of the scan
Hoeim et al. [15] use a single camera image to infer coarsés discretized into cubes, and local plane models are fitéo th
planar orientations for regions of the image in order to cre{points within them, and these local planes are merged iato pl
ate popped-up 3D views of the scene, but their approach doesr patches based on orientation. The plane orientatiativel
not consider segmentation or modeling of buildings or tfeeir  to the ground becomes a feature, along with numerous cotbr an
cades. Recky et al.| [16] use semantic segmentation of thexture features, for a multiclass SVM classifier. They acéi
scene with a discriminative random field, then find repetitiv high accuracy (83- 91% for diferent types of walls) in classi-
patterns and leverage some contextual constraints (ecgdéa fying the pixels corresponding to points from their lasearss;
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but they do not do produce a full segmentation of the image, oa boosting framework (point and patch-based features)iyare

isolate individual facades. ited in their discriminative power. Since these featuresidb
Several other methods utilize vanishing points for planar s leverage any context from the underlying image, their stiat

face detection. David identifies vanishing points in a manoc are often polluted when the patches capture regions thidicon

lar image by grouping line segments with RANSAC and thenpixels from multiple classes. In order to provide featufest t

determines plane support points by the intersection ofélge s avoid this problem, and that alsdfer a richer set of statistics

ments that point toward orthogonal vanishing points, wtiely ~ to measure from the image, BMA uses adaptive coarsening to

clustering them to extract the planes of the facade [21]eBati  build a hierarchy of aggregate regions from the image, essen

al. [22] implement a system for building facade detectiangs tially a hierarchy of linked superpixels. It links each dixgth

vanishing point analysis in conjunction with 3D point cleud the aggregates above it in the hierarchy, and computesésatu

obtained by corresponding a sweep of images with known orien the aggregates as well as the traditional patch and point-

entations. Lee et all_[23] use a line clustering-based ambro based features on the image. These aggregate featurestare ri

which incorporates aerial imagery, vanishing points, aiféio  in information that is not captured in the image-level feaf

projective geometry cues to extract building facade tedur they are computed at multiple scales, and they adapt to the un

from ground-level images, again toward 3D architecturatlmo derlying structure of the image to follow object boundariei$

els reconstruction. of the new aggregate features, as well as patch-based Haar fe
Our work draws on the contributions of Wang et al. | [24], tures and x and y coordinate point features, are used todrain

whose facade detection method using PCA and RANSAC witiAdaBoost model for discriminative classification.

LiDAR data inspired our approach with stereo images. Perhap

the approach most similar in spirit to ours is that of Galltip e 2 1. Adaptive Multilevel Coarsening

al. [25], who also use an iterative method for generatinglzan

date plane models using RANSAC, and also solve the labeling From a graph defined on the image pixels, we compute a hi-

problem using graph cuts [26]. However, their approacteseli €rarchy of progressively coarser graph layers containgoges

on multiview stereo data and leverages photoconsistenty codate nodes grouped from the nodes of the finer layer. At each it

straints in their MRF model, whereas we perform segmentatioeration of coarsening, each node in the current layer, septe

with only single stereo images. In addition, on a fundamientaind @ pixel or aggregate, is grouped with its connected neigh

level their method involves finding many planes that fit logal  POrs into an aggregate based on thigndies of their statistics

and stitching them together in a bottom-up manner, whereas w€-9. intensity). Each aggregate inherits both connegtand

aim to extract our planar models from the global data seh-wit Statistics from its children, the latter being the weighteean

out an explicit restriction on locality. We present quaattite of its children’s properties, and all of its features are poted

results on the accuracy of our planar modeling as well. du_ring coarsening. A reduction factat, limits the number of
Although many of these results are directed toward 3D modefhildren per aggregate, and therefore determines the heigh

reconstruction, some other work has been focused toward€ hierarchy. Coarsening is stable: the grouping proeetur

our intended application of vision-based navigation, nigme based on a deterministic decision boundary for aggregatie-st

[21,127/28/ 29]. Additionally, our work is focused on reti tical afinity. Inthelworst case, the gomplexity of the coarsening

of the estimated plane parameters, as implemented in thampla Procedure is log-lineac(nlog. n)) in the number of pixels;,

surface model of 5], and not on 3D model reconstruction. ~ Putlinear O(n)) in the average case. This coarsening procedure
Our approach proceeds in five steps: 1) computing a probéi-nd the _a_ggregate features summarized below are desanibed i

bility map with a discriminative classifier (Ség. 3), 2) sdimg ~ full detail in [2].

the disparity map (Sed._4.2.1), 3) computing local normal es

timates at the sampled points using PCA (fec. #.2.1), &-iter 2.2. Aggregate Features

tively generating a set of candidate planes with RANSAC (Sec

[4.2.2), and 5) using a hierarchical Markov random field to €com

pute facade segmentations (SEc.] 4.3). Please seélFig. 1 fo

visual representation of this workflow.

The features below are defined on the aggregates at each level
P%the hierarchy for an aggregateising the following notation:
L(u) set of pixels it represents
N(u) set of neighbors on same level
C(u) set of child nodes
2. Boosting on Multilevel Aggregates miny(u), miny(u) -~ minimum spatial location
max(u), max(u) maximum spatial location
Our discriminative modeling approach is based on the Boost- X(u), y(u)  spatial location
ing on Multilevel Aggregates (BMA) method proposed|ih 2. 9().a(u). b(u) intensity and color (Lab space)
We use the version of BMA that is extended to include disparit
features (BMA-D, see Sed.13) for producing pixelwise proba- Photometric and Spatial Statistical Features

bilities for the building class. Although the full methodgly is e Average Statistics:weighted mean fogr(u) (similarly for
not reproduced here, the core components upon which our con- vy, g, a, andb)

tributions are based are described below. The central iflea o m(u) = Z m(c) 1)
BMA is that the feature types that are traditionally usedimit =)
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X(U) Z m(c)x(c) (2) 3. BMA+D Classifier

<C(u) We implement the Boosting on Multilevel Aggregates algo-
rithm described above, but with extensions for working with

* Aggregate Moments: central moment about the aggre- gisparity maps and their associated features. This extensi

gate’s mean statistic, computed over its set of pixels, fofyas initially proposed in [3] and expanded in [7]. In our fa-

X(u) (and similarly fory, g, a, andb) cade segmentation algorithm, the BMA classifier produces
1 a probability that each pixel in an input image is from thddbui
M¥&(u) = 5 Z (x(i) — x(u))* (3) ing class. The BMA method builds a hierarchy of aggregate
(u) ieL(u) regions on the input image and then uses novel features com-

puted on these aggregate superpixel regions, in additipixéd

and patch based features, to perform discriminative ¢leasi

tion within an AdaBoost framework. Our additions to BMA
include accommodations for working with invalid data in the
disparity map: areas of the scene outside the useful range of

e Adaptive Histograms: for intensity, colors, and Gabor
responses are computed oléu). Histogram bin weights
are each considered features. For example bbirfi the

intensity histogranty: ) X
the stereo camera, and dropouts where the disparity can not
1 be computed within the camera’s range due to occlusion, lack
Hg(u, b) = o Z 6(g(i) — b) (4)  of texture, or instiicient similarity between the images for a
el () match at that point. Additionally, we introduce several elov
disparity-based features into the boosting framework. Athe
Shape Features aBoost algorithm automatically selects the most discratiiry
e Elongation: ratio of height to width of an aggregate’s features in an adaptive way, and produces the best subset of t
bounding box full feature set, given the training data.
Although in principle any classifier could be used for this
h(uy — max(u) — miny(u) step, so long as it could produce a probability map for binary
&u) = w(u) - max(u) — min,(u) ®) classification in identifying building pixels, we develapthe

BMA +Disparity Classifier as a way to incorporate problem-
e Rectangularity: measures the degree to which an aggre-.SpeC.iﬁC knoyvledge into Fhe boosting framework. Our results
gate fills its bounding box in thls_do_mam are superior to appr_oac_;hes that do not leeerag
disparity information in their classification.
r(u) = wu)h(u) - m(u) 6) 3.1 Dense Disparity
Computing the dense disparity map of a scene, given a stereo
e PCA: compute the 2D spatial covariance matrix and itspair, is a non-trivial problem [30]. Although there have bee-
two eigenvalues;(u) and,(u). PCA features arg;(u),  centadvancements in sensors such as the Microsoft Kinact th
A2(u), the ratiojj—gl‘g, and the &-diagonal covariance. produce very dense depth or disparity maps, and therefere en
able high-level tasks that depend on the quality of that (fata
example, [[31]), these sensors are unsuitable for outdaar us
Many commercial stereo cameras are equipped with embedded
¢ Adaptive Relative Haar-like Features: patch-based Haar processing for real-time disparity map computation. Al
features but with spatial coordinates defined relative to afgnege products often have good resolution and do a decent job
aggregate’s bounding box. of computing the disparity map, there are limitations irgmin
o both the hardware and software. Stereo cameras generadly ha
. Context_ual F_eatures:measur_e the similarity _Of an aggre- fixed focal length sensors, so the range in which the cameras
gate to its neighbors at a region level. Consider a distancgap, focus is limited, resulting in a finite region in which dis
measureD(u, V) between neighboring aggregateandv  narity can accurately be computed. Additionally, the omdo
on a statistic (intensity for example). Define a min-contextycessors of stereo cameras can not execute the moretaccura
feature (and max and mean features similarly) as: but computationally intensive, disparity map algorithmslsas
TRW-S [32]. Even @-line computation of the disparity map is
imperfect, because occluded regions from one image will not
have a match in the other image, and thus will not have a dis-
parity value. FigurEl2 illustrates a typical example of gdisty
__map with invalid regions (shown in black). We discuss our ac-
¢ Mass: m(u) of an aggregate measures the homogeneity of ;. o dations for these obstacles in sections 3.2 and 3.4.

Adaptive Region and Contextual Features

f(u) = Vrergli(ﬂ) D(u, V) @)

Hierarchical Features

aregion.
3.2. Coarsening on Disparity
e Number of Neighbors: | N(u) | captures the local com- e perform coarsening on the disparity map in the same
plexity of a region. manner as the image intensity coarsening procedure prdpose



hierarchy. hierarchy. erarchies, and valid dis-
parity.

Figure 2: Atypical image with its disparity map. Invalid regs of the disparity Figure 4: Suitable pixels for training the BMAD model (in white).
map are in black.

_ o . _ which do have valid disparity values, and a second model with
in [2]. Invalid disparities are first mapped to zero, and wenth 1y image features for classifying the pixels in invalicr-
build a hierarchy of disparity aggregates of equal heighh& iy regions. We train both models on pixels and their corre-
one for the image. We use the same definition of piXBhay  sponding aggregates from a single set of training images; in
as [2] does for intensity: exp[s, — s//] for pixelyaggregates  poth cases, we only use a pixel if it has a consistent class la-
andv, and their associated statistgsvhich in this case is dis-  pg| in all of the associated aggregates above it in the fiayar
parity. An gxample of mtler-lsny and d_|sp§1r|ty hierarchies-p  Thjs ayoids training on pixels whose aggregate statistiag m
duced by this procedure is illustrated in Figlite 3. Althotlgh  pe polluted at some higher level. For the BMB model, we
coarsening proceeds similarly for both intensity and dispa  frther constrain the set of suitable training pixels by lgiog

and the aggregates for both still tend to adhere to objeai®ou he same criteria to the labels up the disparity hierarafy, ey
aries, the resulting hierarchies have somewh@dint charac- restricting the set to those pixels that have valid disparit-

ter. The separate disparity hierarchy allows the aggrefgate g5, as in FigurBl4. Since we are using the image-only model

tures to capture the statistics of regions with similar iy 1, ¢|assify those pixels that do not have valid disparitytraén

values, which may not align with regions of similar integsit  he image model on those pixels that have consistent labels i

] ) both hierarchies and invalid disparity in the training da&o

3.3. Disparity Features during classification, given an input image and disparitppma
The BMA framework for intensity and color images adds pixels from valid regions of the disparity map are classifise

a variety of aggregate features to the pixel- and patchebasdng the model incorporating both image and disparity fesgur

statistics of standard boosting [2], all of which are summa-and pixels in invalid regions are classified using the modgi w

rized in Sec[ 2 . We implement all of these pixel-, patch-, andnly image features. As we are performing the coarsening pro

aggregate-based features for disparity, and in additioluie ~ cedure from standard BMA twice (once for the image and once

several disparity-specific features intended to help oiisoate  for the disparity map), the complexity of this step is alsg-lo

between building and non-building pixels. By measuring thelinear (O(nlog: n)) in the number of pixels, in the worst case,

uniformity of the disparity gradient across an aggregatecan ~ and linear O(n)) in the average case.

separate the building and background classes by the pyopert

that planar facades will have constant gradient [5] in ditpa 4. MRE Model and Facade Parameter Estimation

space. We compute thegradient images of the disparity map

by filtering with the directional derivative of a 1-D Gaussia  We have developed a Markov random field model to per-

distribution in thex-direction (similarly fory): form segmentation and facade model labeling. For each pixel
) in an image, we compute its label for both the binary build-
9 _ 1 -x ing/background labeling problem, as well as the best fit plane
G, (X) = Xexp| 5— (8)
ox V2ro3 202 label among a set of facade models generated from the data.

o . . ] ) This overall approach was proposed initiallylin [7] but hasiv
that is discretized into a kernel of fixed width. From these-gr eypanded and more thoroughly evaluated here.

dientimages, we compute the average and range of the gtadien
in each direction, as well as the vector gradient magnitude a 4.1. Plane Parameters

angle. We have also included the Laplacian as a feature, be-\we now derive the planar model that we use for modeling
cause the Laplacian of a planar surface in a disparity map igycades in disparity space. Throughout this discussioraswe
zero. For this we convolve the image with the3 Laplacian  gme that we have stereo images in which the extrinsic ealibr
kernel. tion parameters are unknown but constant. Since we do not aim
o o for full 3D reconstruction, we assume that the intrinsidloal
3.4. Training and Classification tion parameters are known to the camera or disparity source,
When we wish to classify an image, some regions will notbut they are not required for modeling planes in disparicsp
have corresponding disparities; we compensate by basing ogiven a disparity map. Thus, we can determine the surface nor
classification scheme on two models. We use a model that irnal parameters up to a constant that describes the camera pa-
cludes both image and disparity features for classifyinglgi rameters; and since that constant will be the same across all
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o =37
(a) Intensity hierarchy and original image

‘.t ,“, s .

-

(b) Disparity hierarchy and disparity map

Figure 3: Intensity and disparity hierarchies. The firstrfimages in each row show the hierarchy levels from the lowaghe left (aggregates coarsened directly
from source) to the highest on the right. The final image irheaev is the source image in order to facilitate the comparisbobject boundaries with top-level
aggregate regions. At each level, the aggregate regioreobmed with random gray values.

candidate planes, we can use the computed surface normals4@®. Candidate Plane Detection

differentiate between planes. _ Our MRF computes the optimal label for each building pixel
A plane in 3D space can be represented by the equation:  from a set of candidate planar models. We now describe the

top-down approach that we use to generate the dominantrplana

ax+by+cz=d ©®)  modelsin an image.
and for non-zero deptfz, this can be rewritten as: We perform the second phase of our method by iteratively
using RANSAC to extract a set of points that both fit a pla-
al( N bY . d (10) nar model in disparity space and have a local normal estimate
z z z that is consistent with the model. The extracted plane nsodel

become the set of candidate planes for our high-level MRF la-
tt!)eling. Each pixel in the image will be labeled by the MRF as
belonging to one of these candidate planes or else assigned a
null label.

We can map this expression to image coordinates by the iden
tiesu=f-Zandv=f- ’—Z’ wheref is the focal length of the
camera. We can also incorporate the relationship of thester
disparity value at camera coordinatey) to the depthgz, using
the identityD(u, V) = f—zB, whereD is the disparity and is the

. ; 4.2.1. Local Normal Estimation
baseline of the stereo camera. Our plane equation becomes:

Based on our assumption of planar building facades, we can

u v d-D(u,V) use Principal Component Analysis to determine a local nbrma
a? + b? tC= ~iB (1) ta point in disparity space as m33]. Since we are working
with regionally dense disparity data, we sample from thél-ava
which reduces to: able points that have valid disparity. For each sampledtpoin
aB bB cfB we first construct the covariance matrix for points in itsghei
(F) u+ (F) (T) = D(u,v) (12)  borhood of the disparity map. To do this, we consider all fgoin

pi = (u,vi,—D(u;, Vv;)) with valid disparity in a 5x 5 window

centered on this point. Note that stereo cameras that camput
nthe disparity map with onboard processing in real-timerofte

not produce dense disparity maps, so the neighborhood may be

sparse. Other neighborhood sizes could be used, but we found

Althoughn = (a,b,c)T is the surface normal in world coordi-
nates, for our purposes we can seek to determine the folipwi
uncalibrated plane parameters= (&, b’, ¢’), where:

,_aB b = bB , cfB 13 that a 5x 5 window provided good estimates while remaining
e I I (13) local. We compute the centroigh, = & >N, pi, of the points
such that {pi}i=1..n In the neighborhood, and calculate thex3 covari-
ance matrix with:
u N
n - \1/ =au+bv+c =D(uvV) (14) W = %Z(pi—ﬁ)éb(pi—ﬁ) (15)
i=1

This new set of plane parameters relates the image cooedinatwhere® is the outer product. We then compute the eigenval-
and their corresponding disparity values by incorporathmgy  ues ofW, and the eigenvectors corresponding to the largest two
constant but unknown camera parameters. eigenvalues indicate the directions of the primary axedadal



planar estimate to that neighborhood of points. The eigenve
tor corresponding to the smallest eigenvalue thus indicthie
direction of the local surface normal,). Y : Multiclass label - facade

4.2.2. RANSAC Plane Fitting

Once we have normal estimates, we take a greedy approach D¢ Disparty image
to fitting planar models to the points in disparity spacedpim
ing a set of models for the major planes in the image. We take
a sampleS, of image points with valid disparity, and compute % ) % ) {0 X:Binary label - planar surface
the local planar surface normal estimates by the afore wmeedi D; /( - j% )/\
method. We then seek to fit a model to some subs8taffthe CO——4 'q —C
form: . .
aV+,Bu+ E(—D(U, V)) +6=0 (16) O O O O O O O p : Classification probability
wherefi = %(a,,B, 0) is the surface normal from Eq.{[14). Since O O O O

RANSAC finds the largest inlier se,, that it can amon¢,

we will fit the most well-supported plane first [6]. We then re-

move the inliers, leavin§’ = S\ Pi,, and repeat this process it-

eratively, finding progressively less well-supported psruntil Figure 5: Our two-layer MRF model.

a fixed percentage of the origindlhas been clustered into one

of the extracted planes. In our experiments, we used a sarhple

2000 points from the image, and concluded the plane extracti identified by the previous RANSAC procedure. Figure 5 shows

once 80% of the points had been clustered, or when RANSAG graphical representation of this MRF model. Our motiva-

failed to find a consensus set among the remaining points. Wgon for this design stems from the fact that these are relate

assume Gaussian noise on the inlier set for our RANSAC plangut distinct questions, and they are informed bffedent ap-

model, and throughout we use a standard deviatian,cf 5. proaches to modeling buildings. The mid-level MRF représen
Although we use RANSAC to fit a standard plane model, wean appearance-based model, while the high-level MRF repre-

use a modified error term in order to incorporate the inforomat  sents a generative model for the planar facades.

in the local normal estimates. Here, since our local norrsii e

mate required the use of a three dimensional coordinatersyst

(u,v,=D(u,v)), and produces a normal of that form, we musty 3 1. Mid-level Representation

use a slightly dierent normal formulation o, = («,f, €).

The standard measure of error for a plane model is the diistan(%u

of a point from the planeEn, =| av + Bu + e(-D(u,Vv)) + @ |,

We want our energy function for the mid-level model to cap-
re the confidence (probability) of our discriminativessi-
. . . cation, and we want there to be a penalty whenever a pixel with
assumingim = (e, B, €) is a unit vector. We compute another ~ . : o .

a high confidence is mislabeled, but a smaller penalty faglpix
measure of errokorm, the dot product of the model plane nor- . ! . . o R

with lower confidence in their a priori classification. We ase

malny, and the local normal estimatg, ), which is the cosine . !
of the dihedral angle between the two planes defined by thoslgIng model to represent our mid-level MRF, where our labels

normals. If we take its magnitude, this metric varies frono O t Xs, for s € A ourimage lattice, come from the getl, 1). We de-

: ) : fine a new variableg to represent a mapping of thg € {-1, 1}
1, with 1 representing normals that are perfectly aligned, a s A
0 representing a dihedral angle of°90Since the range ot label to the se{0, 1} by the transformatiobs = ~5=. For a par-
depends on the properties of the image (resolution, digpari

- ticular configuration of labels we define our mid-level energy

range), we combine these two metrics as follows: function as:
E = (2- EnomEm = (2= | ("m.Nwy) DEm (A7) E() = > [(1-bs)p(s) + bs(1 - p()] - 7m D | X% (18)
sed S~t

such that the dihedral angle scales the error term fEprio
2Enm, depending on the consistency of the model and local nofwhere p(s) is the discriminative classification probability at

mals. andyn is a constant weighting the unary and binary terms. The
bs quantity in the unary term essentially switches between a
4.3. MRF Model penalty of p(s) if the label ats is set to—1, and a penalty of

We model our labeling problem in an energy minimization1 — p(s) if the label atsis set to 1. Thus fop(s) = 1, labeling
framework as a pair of coupled Markov Random Fields. Ourxs = —1 will incur an energy penalty of 1, but labeling = 1
mid-level representation seeks to infer the correct condion ~ will incur no penalty. Similarly forp(s) = 0, labelingxs = -1
of labels for the question “Is this pixel part of a building fa will incur no penalty, but labeling it 1 will incur a penalty a.
cade?” Based on this labeling, the high-level represemtati A probability of 0.5 will incur an equal penalty with either la-
seeks to associate those pixels that have been positively dseling. Our smoothness term is from the standard Ising model
signed as building facade pixels to one of the candidatesglan In our experiments, we usedyg value of 10.
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4.3.2. High-level Representation from the left camera of a stereo imageach with a correspond-

In designing our energy function for the high-level MRF, we ing 16-bit disparity map that was computed onboard the camer
want to penalize points which are labeled as being on a pland] real time. Allimages have 500312 resolution and human-
but which do not fit the corresponding plane equation wellc Ou annotated ground truth for both binary classification acdde
set of facade labelg, for se 4, is{0,...,m}, with mequalto ~ Segmentation. The data was collected on a university campus
the number of candidate planes identified in the plane detect With range of architectural styles, as well as a business dis
step. It corresponds to the set of candidate planes indeaed f trict, and is intended to capture a broad range of common ur-
1 tom, as well as the label 0, which corresponds to “not on &ban settings. There are a total of 251 facades represeneel in
plane”. We define a set of equatioks(s) for p € {0,...,m}  dataset, and for each one, we have computed a gold-standard
such that plane model from its ground truth facade segmentation. &her

Ep(9) =| au + by + ¢, — D(9) | (19) are s[x _imqges that do not contain any facades, and among the

remaining images of the dataset, many feature occlusioths an

where the surface normaj, = (aj, by, ;) corresponds to the other objects (cars, trees, people, etc.) common to urbtan se
plane with labelp, and D(s) is the disparity value as. We tings, so there is an adequate representation of negative sa
normalize this energy function by dividing by the maximum ples.
disparity value, in order to scale the maximum energy pgnalt Existing datasets that contained facade images were not ade
down to be on the order of 1. For consistency in our notationquate for validating our approach, primarily because th@y-c
we defineEq(s) to be the energy penalty for a label of Osat  tain only optical images and not disparity maps. Even the
corresponding to the “not on a plane” classification. We setlatasets that are intended for facade segmentation (fon-exa
Eo(s) = bs, such that a labeling of1 in the mid-level represen- ple eTRIMS [34]) do not contain individually segmented fa-
tation results irbs = 0, so there is no penalty for labelirsggs  cades. We are not aware of another publicly available, human
“not on a plane”. Similarly, whems = 1, bs = 1, so there isa annotated, quantitative stereo building facade dataseityae
penalty of 1 to label any of the non-planar pixels as a plane. believe this new set, which is the first of its kind, can became

To construct our overall energy function for the high-level penchmark for the communlﬁy
MRF, we incorporate the exponential of the set of planar en- | gJi experiments, any parameters of our method’s compo-

ergy functionsE, with a delta function, so the energy cost is pent algorithms were set consistent with the values preijou
only for the plane corresponding to the lapegl Since we can- mentioned in the text

not computeE,, without a valid disparity value, we use an indi-
cator variablgp € {0, 1} to switch to a constant energy penalt o .
for all planeggnd {the }no—plane option, in order to %;F/) H;ricy 5.1. Discriminative Modeling
on the smoothness term for that pixel's label. For the smooth We performed 6-fold cross-validation with our method
ness term, we use a Potts model, weighted like the mid-levéBMA +D), appearance-only BMA, and standard AdaBoost
representation with a constapt. In our experiments, though, with pixel features (x & y location) and patch-based Haar fea
this value ofy, was 1. Thus the high-level energy function we tures. See Tablg 1 for a pixel-wise quantitative comparisfon
are seeking to minimize is: these models. With the BMAD classifier, we obtain a 2% in-
" crease in accuracy over appearance-only BMA model, and a 6%
E(l) = Z Z5ys= o - €Xp (o Ep(9)) + 7’“2 Byemy (20)  increase over the standard AdaBoost classifier. We computed
=1 p=0 st thed’ statistic for the image-wise performance of all three clas-
sifiers and performed a one-tailed student’s t-test on thisss
tic for all pairs of classifiers. Both BMA and BMAD exhibited
statistically significant performance wigitvalues below A%
when compared to AdaBoost. The comparison of BMDAto
To perform the energy minimization, we use the graph cutappearance-only BMA resulted in @mvalue of 85%, which,
expansion algorithm, specifically the implementation préed ~ when coupled with the summary statistics in TdBle 1, in@isat
in [26]. We perform the minimization in two stages. We first at least modest statistical significance to the improvenrent
minimize the energy of the mid-level MRF to obtain an approx-classification accuracy. Taken over the entire datasetethe
imation to the optimal labeling of planar surface pixels.isTh sults imply that in this problem domain, disparity featuaes a
step uses prior knowledge from the discriminative classific beneficial addition to an appearance-only model.
tion. Next, we use the mid-level labeling as well as the detéc Figure[® shows ROC curves for these classifiers. Addition-
candidate planes as a prior for the high-level MRF, and we usally, one image from each validation set was randomly setkect
graph cuts again to compute an approximation to that optimefbr visual comparison of the three methods. Figure 7 shows
labeling. the probability map of the classifier's output for each of the
methods, along with the two-class labeling with a threshudld

4.4. Energy Minimization

5. Experimental Results

2Tyzx DeepSea V2 camera with 14 cm baseline arfdréizontal field of

L . . view.
We have performed quantitative experiments using Our sy gataset is publicly available at:
method on a new dataset that consists of 141 grayscale imaggeSp: //www.cse.buffalo.edu/~ jcorso/r/gbs
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Table 1: Quantitative scores for the AdaBoost, BMA, and BMAclassifiers
on the building and background (BG) classes. Recognititesrare computed 0ol |
pixel-wise over the entire dataset.
True\Pred| BG | Building oo ]
ADB 63.58| 36.42 orr )
BMA BG 72.73| 27.27 & osr ]
BMA +D 75.33| 24.67 2 o5l 1
o
ADB 24.67| 75.33 ol ]
BMA | Building | 23.97| 76.03 | |
BMA +D 23.51 76.49 ol —— BMAD |
ADB 0.6876 — B
0.1 Adaboost 4
BMA F-scores 0.7282
BMA +D 0 7421 00 0‘,1 0‘.2 013 0‘,4 0‘.5 016 O‘.7 0‘.8 0‘,9 1
i False Positive Rate

Figure 6: ROC curves for our BMAD method (blue), appearance-only BMA
Table 2: Recognition rate for the building class on the e$rBrclass dataset  (red), and patch-based AdaBoost (green).
[34]. Note: BMA performs 2-class labeling, all other methgzerform 8-class

segmentation.

Table 3: Quantitative scores for the mid-level MRF labelargl the BMA-D

Method Rec. Rate (%) classifier on the building and background (BG) classes.
ICFHGS- [35] 71.9 True\Pred| BG | Building
BMA 70.3 BMA+D BG 75.33| 24.67
ICF [35] 62.0 MRF 79.98| 20.01
RDF-meanshift [36] 60 BMA+D - 23.51| 76.49
RDF-watershed [36] 59 MRF Building 21.15| 78.85
ICFwoC [35] 41.1 BMA+D 0.7421
MRE | 0TS 0.7773

0.5. Of these six examples, the appearance-only BMA model

achieved the best accuracy (2% more than BND) for one  tyres or subsequent MRF segmentation is consistent with the

image, and the AdaBoost classifier achieved the best agcuragapeling accuracy of the building class from the statehef-art
(4% more than BMA-D) for another. However, for the other myti-class labeling approaches.

examples, the BMAD model outperforms the other classifiers

by as much as 8%, and the confidence shown in the probabik 5 F5cade Detection

ity map is often higher for both classes. Since the prokgbili _ . _ _
map acts as a prior for the mid-level MRF labeling, higher-con The mid-level MRF results exhibit further improvement in

fidence from discriminative modeling can translate to highe accuracy over BMAD alone. Tablgl3 shows a pixel-wise quan-
accuracy in the MRF binary classification. titative comparison of these two methods. With the Bayesian
. . inference of the MRF, we achieve a classification accuracy of
Although the state-of-the-art in facade segmentation come . .

. almost 80% for each class, and an improvement in overall ac-
as part of multi-class approaches, we compare the two-class

1 : . curacy of 9% over AdaBoost, 5% over BMA, and 3% over
BMA approach to the methods in [36,/35] in Table 2 in order to
. - L : BMA +D.

place our results in the context of the existing literatiBance
our BMA+D and MRF methods require disparity maps in ad- , .
dition to camera imagery, we are limited to comparison with®-3: Facade Segmentation and Parameter Estimation
the appearance-based BMA version. These semantic segmen\We computed the facade segmentations and the plane param-
tation methods use the eTrims dataset [34] and label bgidin eters for each of the labeled planes in all of the images from
as well as 7 other classes. We performed two-class labelinghe dataset; some examples are shown in Figlire 9. For each
an admittedly easier task, on the same dataset, using 4@smagof the manually labeled planes in the dataset, we computed
for training and 20 for testing as in [35]. But since our goalground truth parameters by sampling the labeled region and u
of facade modeling does not require full semantic segmientat ing RANSAC to determine the plane parameters. Out of 251
of the scene, we do not extend our approach to the multi-clagstal facades in the set, 40 of them were misclassified as-back
case. The performance without the inclusion of disparigr fe ground by the mid-level labeling. The other 211 facades were
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34

Original Ground Adaboost Adaboost BMA BMA BMA+D BMA+D
Truth Probability Classification Probability ~Classification Probability ~Classification

Figure 7: Some examples of discriminative model output. Drege was selected at random from each of the 6 validation §escores are annotated on each
classified image.

labeled with at least one candidate plane in the high-|eosl+
ing for a detection rate of 84%.

As noted above, some of the ground truth facades are not
detected by the mid-level MRF, but multiple segmented ane
per ground truth facade are also common. In order to asse:
the accuracy of our plane parameter estimation, we compu!
a weighted error measure as the mean pixel-wise angular err
between the labeled plane and the ground truth facade geara
over all pixel in the dataset where the ground truth and high
level labeling are both non-null. Our angular error metsithie
dihedral angle between the estimated plane and the grouthd tr
plane (with normal vectons, andng, respectively):

¢ = arccosfie - Ng)

The average angular error for any such pixel over the entin
dataset is 207°. A histogram showing the relative number of
pixels labeled with a plane model having angular error irheac
bin (see Fig.[B) indicates that the peak of the distributibn o
errors is the range of 8 10°. Similarly, the examples shown

in Figure[® indicate that some facades are modeled very acc

rately, while others have high angular error. This discrega ° 10 20 3 0 %0 6 o 8 9
motivates our further analysis, which we discuss in the segt Angular Error (deg)
tion.

Figure 8: Pixel-wise angular error histogram represerttiregrelative number
5.4 Analysis of pixels that are labeled with a plane model having corradpa angular error

. . _across the full dataset .
Our method often segments a detected facade into multiple

plane labels, which makes 1-to-1 comparisdiiclilt. In order
to overcome this challenge, and to examine the error distrib
tion of Fig.[8 further, we consider two methods for comparing
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Original Ground Truth MRF Segmentation Plane Projection

Figure 9: Some examples of MRF labeling output. For eachrgtdruth facade (blue), the closest-fitting plane from theRV(Breen) is projected along with it to
illustrate the accuracy of the estimation in three dimamsio

the segmentations to the gro_und truth. First, for each giou.nTabIe 4: Accuracy for our two methods of comparison to growuath: largest

truth facade, we compare to it the plane whose label occupieggment and most accurate segment

the largest portion of that facade’s area in our segmemtaie -

have noticed that there is often one (or more) accurate glane Method | Avg. Err. | Avg. Size (% of GT area

timate on each ground truth facade, but it may only cover a Largest| 21.973 66.57

minority of the ground truth facade. For example, in the selco Best 13.765 53.00

example of Figurgl9, the facade on the left in the ground truth

is best modeled by the plane corresponding to the white label

in the estimate, but the majority of that facade is labeletth wi

less accurate planes. In order to measure the accuracy of ofife minor and erroneous plane labels, although that is lseyon

method in estimating at least some portion of each grourtid tru the scope of this paper.

facade, our second method of comparison chooses the most ac-The quality of the disparity map is likely to be at least some-

curate plane estimate out of the set of labels that cover eaahhat responsible for this phenomenon, as the usable range of

facade’s region. In both cases, we compute the averagearngumost stereo cameras is limited. For example, the camera used

error between the chosen segmented plane (largest or belst) ao capture our dataset can only resolve features up ton

the ground truth facade, weighted by the size of the segrasnt, a distance of 1&. Thus, even moderately distant facades are

well as the average percentage of the ground truth facade colikely to be significantly more prone to large errors in thesti-

ered by the chosen label. These results are collected ieflabl mates; they will be both small in the frame and less likelyra fi

Additionally, for both methods a histogram showing therilist an accurate consensus set in RANSAC due to the uncertainty in

bution of chosen labels binned by both angular error andssize their disparity values. Similarly, for a facade with many in

a percentage of the frame area can be seen i Hg. 10. valid disparity values, it may not be sampled adequatelg, an
These histograms indicate that most of the high-error seghe points it does have may erroneously be included as part of

mentations occur with small areas: for both of the methdds, t an inlier set that does not actually lie on the facade. Perhap

vast majority of facades larger than 10 % of the frame hawe leson account of this phenomenon, we have observed that many of

than 10 degree error. This implies that the errors are géyera the high-error segmentations are rotated primarily abdwdra

small (< 10 %) for the major facades in the image, and it mayizontal axis, but are much more accurate in their rotatiayuab

be possible to restrict or post-process the labeling toieite  a vertical axis. Under the assumption that facades tend to be
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Random Field model that allows for inference on the binary
(building/background) labeling at the mid-level, and for seg-
mentation of the identified building pixels into individualb-

nar surfaces corresponding to the candidate plane models de

mined by RANSAC.

Our BMA+D discriminative model provides superior perfor-
mance to other classifiers using only appearance featurds, a
our mid-level MRF labeling has proven to further improve the
accuracy of the classification to approximately 80%. We were
able to identify 84% of the building facades in our dataséty w
an average angular error of 24om the ground truth. However,
the distribution of errors peaks in frequency below,ifidicat-
ing that a large percentage of the labels provide very ateura
estimates for the ground truth, although some of the lalrvels p
duced by our method have very high error. Further analysis
shows that these high-error labelings most often occur ailsm
segmented regions. Thus our method produces accurate plane
estimates for at least the major facades in the image.

A further approach that may enhance these results is strict
enforcement of a verticality constraint on the candidasael
models. Extraction of the ground plane would enable us to
leverage the assumption that building facades, in genaral,
perpendicular to the ground plane. Using only locally ezt
candidate plane models is an avenue of future work in this.are
Another avenue for future investigation is the integratibthe
distance-based uncertainty of each point in disparity sjiao
the RANSAC models in order to encourage plane fitting to the
more accurate points close to the camera. We also intend to
pursue other methods for either improving the quality ofithe
put data (e.g. multiview stereo) or improving the methods of
compensating for diicult disparity maps.

Figure 10: Histogram of angular error per segment, with eiated segment
size (as a % of the image) for the largest segment (top) anchd®t accurate
segment (bottom). Blue represents smaller error and redsepts larger error.  ACknowledgments
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