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Abstract

We present the Higher Order Proxy Neighborhoods
(HOPS) approach to modeling higher order neighbor-
hoods in Markov Random Fields (MRFs). HOPS incor-
porates more context information into the energy func-
tion in a recursive and cached manner. It induces little
or no additional computational cost in the overall mini-
mization process, and can better represent the underly-
ing energy leading to fewer total computations. Indeed,
when integrated with the Graph-Shifts energy minimiza-
tion algorithm we observe a 30% average decrease to
the convergence time. We apply HOPS to high-level
labeling of natural and geospatial images; our results
show that HOPS leads to smoother labelings that bet-
ter follow object boundaries. HOPS can label an image
with an average 75% accuracy in a couple of seconds.

1. Introduction

Energy minimization is the standard approach for
solving image labeling problems, such as assigning an
object class with each pixel. During energy minimiza-
tion, achieving the global optimum can be very costly in
terms of computational complexity (the solution space
is combinatorial in the number of labels). Thus, a vari-
ety of approximation methods have been proposed. Pre-
vious algorithms, however, either suffer from low con-
vergence speeds [6, 5] and local minima [1], or are able
to perform large changes in the energy space but do not
guarantee convergence on some energies [2].

The recently proposed Graph-Shifts algorithm [3, 4]
exploits an adaptive hierarchical representation of an
image to rapidly decrease the energy and converge ef-
ficiently. Graph-Shifts does minimization by dynami-
cally manipulating the hierarchical representation to re-
label, or shift, large groups of pixels at the same time.
Over 75% of the total energy reduction is performed

within the first 5% of all shifts; its average convergence
time on a modern PC is only several seconds, which
is substantially faster than many energy minimization
algorithms. Although it was originally invented for seg-
menting sub-cortical structures in Magnetic Resonance
images [3], it has been shown to work well in other ap-
plications, such as natural image restoration [4]. How-
ever, due to the first order Markov Random Field (MRF)
energy model it adopted, its labeling results on natu-
ral images can be noisy and do not always follow local
boundary structure.

Our proposed Higher Order Proxy Neighborhoods
(HOPS), which is inspired by the Belief Propagation
algorithm [5], extends the MRF energy to third order
neighbors in a recursive and cached manner with little
additional computational cost. With more contextual in-
formation taken into consideration, HOPS further opti-
mizes the energy minimization process, resulting in a
30% speedup of the already efficient Graph-Shifts algo-
rithm. The number of noisily labeled regions are greatly
reduced and object boundaries are better preserved, thus
producing more meaningful labels when HOPS is ap-
plied to natural images.

2. The Graph-Shifts Algorithm

In short, the Graph-Shifts algorithm is composed
of two stages: (1) Coarsening: an adaptive hierarchy
is built on top of the image by recursively grouping
the nodes (pixels) with similar values (color, intensity,
depth) together, and (2) Shifting: nodes shift iteratively
by taking the label of their neighbor, which would cause
all of its descendants to take the new label.

2.1 The Adaptive Dynamic Hierarchy

The hierarchical structure differs from traditional
pyramidal structures of the image in the following
ways: (1) The hierarchy is built according to the data

978-1-4244-2175-6/08/$25.00 ©2008 IEEE





3.1 The Higher Order Proxy Neighborhoods

In order to avoid being confused in such local sit-
uations thus performing unnecessary shifts, one could
completely overhaul the E2 term and build a local his-
togram surrounding µ of size x × x to justify the dis-
tribution of different classes, or to extend the neighbor-
hood relationship to one that covers more ground (e.g. a
pairwise third order neighborhood). The first approach
would increase the computational time by x2/|N1|,
where x is the size of the local window and |Ni| is the
size of the original ith order neighborhood. The sec-
ond approach is even more complicated, since connect-
ing a node with all its second and third order neighbors
would increase the number of connected neighbors for
any node µ by |N1| · |N2| · |N3|. Such greater neighbor-
hood complexity would increase the computational cost
of the minimization.

We propose HOPS, which incorporates energy from
second and third order neighbors yet still maintains the
standard first order neighborhood system. Inspired by
Belief Propagation [5], the connectivity of the nodes
and hierarchy is not changed. Rather, information from
higher order neighbors τj is received indirectly through
first order neighbor proxies νi in a process like message
passing (as shown in figure 2). The energy function is
revised as:

E[{mω : ω ∈ D}] =
∑
µ∈D

E1(I(S[µ]),mµ) (5)

+
1
2

(∑
〈µ,νi〉

E2−1(mµ,mνi)

+
1
α

∑
〈νi,τi〉

E2−2(mνi ,mτj )
)

where E2−1 and E2−2 can be implemented using equa-
tion (3), and α depends on the νi’s number of neighbors.

If the energy is calculated directly at each node, the
computation time is expected to increase by an order
of 2 at each iteration. However, since the E2−2 term
calculated at node µ would be the same as the E2−1

term of node ν, we could get an algorithm with only lin-
ear increase in time complexity, if we cache and update
the E2−1 term in each node ν. By doing so, whenever
an arbitrary node µ is calculating its energy and needs
the E2−2 term, it can simply sum up all the E2−2 term
passed back from its first order neighbors ν.

With HOPS, redundant shifts are avoided in situa-
tions such as the ones illustrated in figure 1. Node µ
in the first graph will possibly change its value from
−1 to +1 even if it is selected before its neighbors.
In the rightmost graph, the region with label value −1

Figure 2. The Higher Order Proxy Neighborhoods.

Figure 3. HOPS v.s. First-Order.

will have a higher probability of being changed into
a smooth field of value +1, since the energy function
is now taking more neighborhood/context information
into consideration when the shift is performed.

4. Experiment Setup and Results

Our experiments have been conducted on a subset of
the Lotus-Hill Institute (LHI) Dataset [8], which con-
sists of 400 10-class images, and 2-class aerial im-
ages. We randomly split the data into 200 training
sets and 200 testing sets, and the probability maps
P (mµ|φ(I)(µ)) for the unary energy term E1 are gen-
erated by the Probability Boosting Tree (PBT) algo-
rithm [7]. All processing time is calculated on a Cen-
trino 1.6GHz laptop with 1GB DDR-266 RAM using a
Java implementation of the algorithm, and all parame-
ters are set the same as the original Graph-Shifts algo-
rithm [3, 4].

The computational complexity for each iteration of
our method is O(kN) if energies are cached as de-
scribed, and O(N2) if the E2−2 term is recalculated



sky 88.2 8.6 0.3 1.9 0.9
water 2.8 65.3 4.6 2.1 5.9 16.0 3.0 0.3
road 0.1 16.1 72.6 0.4 0.8 5.3 3.6 0.9
grass 0.5 1.0 0.6 69.1 7.8 19.4 1.5 0.1

tree 1.1 1.8 0.5 4.3 67.1 17.3 7.6 0.2
mountain 1.9 3.4 0.6 4.0 9.8 74.6 5.4 0.1

creature 5.1 6.1 3.0 4.1 30.1 8.6 40.2 2.8
building 1.8 1.1 1.9 1.1 3.7 9.7 80.1 0.5

bridge 0.2 2.2 6.2 6.5 4.2 13.2 57.2 8.2 2.2
vehicle 5.2 11.0 0.1 6.5 20.5 0.1 21.6 34.8

Table 1. Confusion matrix for the HOPS extension on
the LHI dataset.

Figure 4. Results of aerial photo labeling.

instead of being cached. Comparing this with O(N)
for systems using the first order pairwise neighborhood,
a slight increase in total computation time seems in-
evitable. However, since HOPS allows more contextual
information to be considered into the energy function,
potential redundant shifts such as the ones illustrated
in Figure 1 would not be chosen, thus greatly reducing
the total shifts needed for convergence. In our experi-
ments, the total number of iterations until convergence
is decreased by 30 – 75%, and the actual convergence
time is decreased by 30 – 50%. For all 200 testing im-
ages, the overall pixel accuracy of our HOPS extension
is 75% (refer to Table 1), which is roughly the same
as the original Graph-Shifts algorithm. However, as we
can see from figure 3, the proposed HOPS extension of
the Graph-Shifts algorithm produces much more “rea-
sonable” labels, and the object boundaries are better fol-
lowed.

We also tested HOPS on color-infrared aerial pho-
tos and airborne LiDAR (Light Detection and Ranging)
data, to prove that the extended neighborhood would
also speed up the whole convergence progress, while
performing as well as the original first order neigh-
bor. The columns from left to right of Figure 4 are:
a pseudo-color composition of the color-infrared photo
and first return of LiDAR, histogram based probabil-
ity maps (first row is the building class and second
is the background class), labeling results of first-order
and HOPS. Both HOPS and first-order Graph-Shifts are
able to achieve good labeling results, yet HOPS con-
stantly converges 30% faster than the first-order Graph-
Shifts algorithm.

5. Conclusion

In summary, the proposed Higher Order Proxy
Neighborhoods (HOPS) successfully improves the con-
vergence speed of the already efficient Graph-Shifts al-
gorithm by an average of 30% and produces more re-
fined labeling results. Redundant iterations are effec-
tively avoided by incorporating more neighboring con-
text information into the energy function. Thus the con-
vergence speed is increased while outputing smoother
labels which follow local boundaries better. Unlike
traditional higher order nieghborhood systems which
would increase the complexity of node connectivity by
orders of |Ni|, HOPS retrieves higher order neighbor in-
formation in a recursive and cached manner, which in-
duces little additional computational cost for each iter-
ation. These time-efficient characteristics makes HOPS
ideal for real-time labeling tasks, and we plan to chal-
lenge accurate real-time video object labeling problems
in the future, using MRF-based dynamic hierarchicical
models with HOPS.
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