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Abstract. In this paper, we analyze the effects of energy normalization in adaptive-
hierarchy-based energy minimization methods. Adaptive hierarchies provide a
convenient multi-level abstraction of the underlying MRF. They have been shown
to both accelerate computation and help avoid local minima. However, the stan-
dard recursive way of accumulating energy throughout the hierarchy causes en-
ergy terms to grow at different rates. Consequently, the faster-growing term, typ-
ically the unary term, dominates the overall energy at coarser level nodes, which
hinders larger-scale energy/label change from happening. To solve the problem,
we first investigate the theory and construction of adaptive hierarchies, then we
analyze the theoretical bounds and expected values of its energy terms. Based
on these analyses, we design and experimentally analyze three different energy-
normalizing schemes. Our experiments show that properly normalized energies
facilitate better use of the hierarchies during optimization: we observe an average
improvement in the speed by 15% with the same accuracy.

1 Introduction

Markov random fields (MRF) provide a convenient and consistent way of modeling
contextual constraints and stochastic interaction among variables, and have been shown
useful in solving both low-level vision (e.g. restoration, stereo matching) and high-
level vision problems (e.g. semantic image labeling). These problems are formulated as
labeling tasks, where each site µ in the lattice G0 is assigned a label L that can rep-
resent either low- or high-level features. The optimal solution is pursued by searching
for the labeling configuration with the highest posterior probability, or equivalently, by
minimizing the corresponding Gibbs energy function. Achieving the global optimum,
however, is typically intractable, since the solution space is combinatorial in the num-
ber of labels. Therefore, a variety of approximation algorithms have been proposed to
accelerate computation [1–4]; hierarchical approaches [5–9], such as multiscale/multi-
resolution methods, multigrid relaxation, or renormalization group theory/transformation,
are among the popularly studied ones.

Traditional hierarchies, where finer-level nodes are grouped into coarser-level nodes
by their spatial coordinates instead of their intrinsic similarity, contain incoherent nodes
around boundary regions at coarser levels. An incoherent node at layer n+1 (e.g., µn+1

in Fig. 1) is a mixture of multiple intrinsically different nodes at level n, denoted {µnj }.
Incoherent nodes not only blur the boundaries of the finer-level graph (e.g., the edges
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Fig. 1. Traditional versus Adaptive Hierarchies. The hierarchies in (a) are projected onto 4 × 4
images (b) for the ease of visualization. The coherent node at level n+1 of the adaptive hierarchy
can accumulate the energies of belonging to the red, yellow, or blue labels (textured with slashes,
backslashes, and horizontal lines respectively for monochrome prints) directly from their child
nodes, whereas the incoherent nodes in the traditional hierarchy requires a re-computation.

between µn3 , µn4 , and µn2 , µn4 ) but also make the direct reutilization of energies from
the original graph difficult. For example, the energy between µn2 , νn1 and µn4 , νn3 are 0
while using the Potts model, yet the energy between µn+1 and νn+1 is 1, which cannot
be derived from its children µnj ’s directly and hence must be recalculated at level n+1.
Conversely, it is difficult for a label/energy change at µn+1 to propagate effectively to
its children on level n: {µnj }. Therefore, traditional hierarchy-based approaches require
an costly overhead of recalculating the energies and weights for every coarser level.
Adaptive hierarchies, such as [10–12], produce coherent nodes because the methods
coarsen based on the similarity of the node attributes (e.g., color) rather than spatial
coordinates alone. These coherent nodes can be treated as a union of their underlying
finer-level nodes, and the energy can be directly accumulated from level n to n + 1.
A label change at a coarser-level node is equivalent to altering all its underlying finest-
level nodes, which triggers a large yet reasonable change in the overall energy.

Adaptive-hierarchy based energy minimization algorithms, such as [10, 13], modify
the hierarchy dynamically to reflect the change in labels and energies. Experiments on
a wide range of vision problems have demonstrated the aptness of adaptive hierarchy-
based energy minimization methods, and have consistently reported convergence time
within a few seconds on typically-sized images. These methods, although efficient, give
rise to a new class of normalization problems that were nonexistent or insignificant on
flat MRFs and traditional hierarchies. Nodes on any given level of a traditional hierar-
chy/flat MRF are of the same size, therefore, a constant set of weights (at each level)
suffices to balance the influence of different energy terms. However, nodes in adaptive
hierarchies grow at different speeds as the hierarchy is coarsened; therefore, different
weights need to be learned for nodes of different sizes/shapes. Directly learning all of
these weights is not possible. In this paper, we theoretically analyze the effects of these



normalization problems. To overcome them, we experimentally design three normal-
ization schemes and analyze them. Our analysis indicates that a further speedup of 15%
on average is possible when properly normalized hierarchies are used.

The remainder of the paper is organized as follows. We discuss the mechanism of
an adaptive hierarchy-based energy minimization method—Graph-Shifts—in Section
2. We then analyze the theoretical upper and lower bounds and expected value of the
energy terms, investigate the effects of having energy terms growing at different rates,
and propose our normalization solution in Section 3. Experiments and results are pre-
sented in Section 4, and we conclude in Section 5.

2 Review of Adaptive-hierarchy-based Energy Minimization

Our discussion on adaptive hierarchy-based energy minimization is focused on the re-
cently proposed graph-shifts algorithm [10], due to its efficiency and its inseparable
relation with adaptive-hierarchies. In short, the graph-shifts algorithm is composed of
two steps: (a) coarsening, i.e. the construction of the adaptive hierarchy, and (b) shifting,
i.e. the dynamic modification of the hierarchical structure for energy minimization.

2.1 The Energy Model

Given an input image I, each pixel corresponds to a node µ0 in a regular lattice G0.
The superscript 0 indicates that we are at the lowest level of a to-be-defined hierarchy.
Associate with each node a label variable mµ0 that takes values from a fixed set of
labels {L1,L2, ...,LK}. The task is to find the assignment of all label variables {mµ0}
that yields the highest posterior probability (MAP-MRF), or equivalently, minimizes
the following energy function:

E
[{
mµ0 : µ0 ∈ G0

}]
= λ1

∑
µ0∈G0

E1

(
I
(
S
[
µ0
])
,mµ0

)
+λ2

∑
〈µ0,ν0〉

E2

(
mµ0 ,mν0

)
.

(1)
E1 (unary energy) is the potential of each node being assigned a certain label, defined
on the local sub-image S

[
µ0
]

surrounding µ0. E2 (binary energy) is induced by the
interaction between neighboring nodes, where 〈µ0, ν0〉 denotes all neighbor pairs µ0

and ν0; λi’s are the weights of the different energy terms, where
∑
i λi = 1.

We use the same energy model for E1 as in [10] to ease direct comparison between
unnormalized and normalized energies in adaptive hierarchies. In short, the E1 term is
the negative log probability on the local subimage surrounding µ trained via boosting
in a supervised manner:

E1

(
I
(
S
[
µ0
])
,mµ0

)
= − log Pr

(
mµ0 | I

(
S
[
µ0
]))

. (2)

A pairwise smoothness measurement is used for the E2 term:

E2

(
mµ0 ,mν0

)
= 1− δ

(
mµ0 ,mν0

)
. (3)

For evaluating normalization effects, these choices for the energy terms are largely ar-
bitrary. As we will show in the remainder of the paper, the normalization problems are
a function of the graph structure and not the form of the energy terms. For this paper,
we choose high-level semantic image labeling as the main comparative problem.



2.2 Coarsening the Adaptive Hierarchy

The adaptive hierarchy is defined as a graph G with a set of nodes and a set of edges
stratified on multiple levels of an hierarchy. All nodes and edges in level n can be
viewed as a separate graph, denoted as Gn, and a node at level n is denoted as µn. As
above, the lowest level of the hierarchy is essentially a latticeG0 of regular sites (nodes)
µ0, and two nodes are linked with an edge if they are neighbors on the lattice.

Coarser-level nodes are computed recursively and stochastically as follows. Edges
on G0 are randomly turned on or off based on the local affinity. The on edges induce
a connected components clustering; the clusters become nodes in the next coarse layer
in the hierarchy. The structure of the coarsened adaptive hierarchy is constrained by a
coarsening threshold τ1 that limits the maximum number of nodes in a group, and an
affinity threshold τ2 that restricts un-similar nodes from joining. Any two nodes µn+1,
νn+1 (at level n+ 1) are connected by an edge if any two of their children (at level n)
are connected. The nodes are recursively coarsened until the size of graph Gn at level
n is within a pre-specified range of the number of labels.

A label layer GL that contains a single node per label is attached on top of the
highest layer of the current hierarchy GT . Each node in GT becomes a child of a node
in GL which it best fits (based on E1), then takes the label it represents; each node in
GL has at least one child in GT . The nodes in G are constrained to have a single parent
except the nodes in GL (which have no parents), and to have at least one child except
for the ones in G0 (which have no children). Since each node in G \ GL has only one
parent and can trace its ancestry back to a single node in GL, it will take the same label
as its parent and ancestors (a.k.a. parent-label constraint), and an instance of the graph
G is equivalent to a labeled segmentation

{
mµ0 : µ0 ∈ G0

}
of the image.

2.3 Recursive Computation of the Energy

For any node µn, let P (µn) be its parent, C(µn) be the set of its children, Al(µn)
denote its ancestor at level l, and Dl(µn) be the set of its descendants at level l. By
construction, any coarser-level node µn’s pixel-level descendants all belong to the same
label. Therefore, µn is treated as a union of µ0

i ∈ D0(µn), and the overall energy is
accumulated recursively throughout the hierarchy.

The unary term for assigning a label mµ to a node µ is defined recursively as

E1 (µn,mµn) =
{
E1 (I (S [µn]) ,mµn) if n = 0∑
µn−1∈C(µn)E1

(
µn−1,mµn−1

)
otherwise (4)

whereE1 (I (S [µn]) ,mµn) is defined in (2). The binary energy between two neighbor-
ing nodes µ, ν at the same level n, with labels mµ and mν is defined as:

E2 (µn, νn,mµn ,mνn) =
E2 (mµn ,mνn) if n = 0∑
µn−1∈C(µn)

νn−1∈C(νn)

〈µn−1,νn−1〉

E2

(
µn−1, νn−1,mµn−1 ,mνn−1

)
otherwise (5)



where E2 (mµn ,mνn) is defined in (3). The overall energy specified in (1) is for level
0 of the hierarchy, however, it can be computed at any level n as:

E [{mµn : µn ∈ Gn}] =
∑

µn∈Gn

E1 (µn,mµn) +
∑
〈µn,νn〉

E2 (µn, νn,mµn ,mνn) .

(6)
Note that we’ve intentionally dropped the weights on the terms to avoid confusion since
they will take different forms depending on our normalization scheme (Section 3).

2.4 Graph-Shifts

Graph-Shifts minimizes the energy by using a mechanism called a shift, which dynam-
ically alters the adaptive hierarchy during energy minimization. A basic shift is the
process of a node µn changing its parent to νn’s parent, where 〈µn, νn〉. Due to the
parent-label constraint, µn and all its descendants Dl<n(µn) will change their label to
P (νn)’s, thus cause a relabeling at G0 and a change in total energy. Refer to [10] for
more details regarding all types of shifts a node can perform.

Potential shifts are evaluated by their shift-gradients, which are computed efficiently
using the recursive formulae in (4), (5). For a node µn shifting from label mµn to label
m̂µn , the shift-gradient is

∆E (mµn → m̂µn) = E1 (µn, m̂µn)− E1 (µn,mµn)

+
∑
〈µn,νn〉

[E2 (µn, νn, m̂µn ,mνn)− E2 (µn, νn,mµn ,mνn)] . (7)

We go through all nodes inG\GL, calculate possible shifts, and only those with∆E <
0 are added to our list of potential shifts S.

At each round, Graph-Shifts chooses the shift with the steepest shift-gradient in S
and makes the corresponding shift in the hierarchy. For the nodes affected by the shift,
not only are their labels changed, but also their energies re-computed, possible shifts
and shift-gradients re-calculated, and S updated. The algorithm is repeated until con-
vergence, when no further shift will reduce the overall energy anymore (i.e. S becomes
empty). Notice that, although higher-level shifts tend to induce larger energy changes,
lower-level shifts might as well cause large energy changes and be executed before
higher-level shifts.

3 Proper Energy Normalization in Adaptive Hierarchies

Usually, in MRFs, there is no need to normalize E1 and E2 individually in (1), since
the weights λ1, λ2 are learned to optimize the labeling result. Traditional hierarchy’s
coarser-level nodes are also exempt from this concern, because the nodes are incoher-
ent and requires a recalculation of E1 and E2 (i.e. they cannot accumulate finer-level
energies for their own use). Adaptive hierarchies overcome the need of energy recalcu-
lation at coarser levels, yet the way it accumulates energies from finer-level nodes gives
rise to a normalization problem caused by the different growth rates of E1 and E2. In



the upcoming subsections, we prove the theoretical bounds and expected values of the
two energy terms, discuss the effect of having unnormalized energies during the energy
minimization process, and describe our proposed ways of normalizing the energy terms
in the adaptive hierarchy.

3.1 E1 Term Growth Rate Analysis

Due to the way energies are accumulated throughout the adaptive hierarchy (as in (4)),
a coarser-level node µn’s E1 term is primarily determined by the number of pixel-level
(level 0) nodes it represents; let M (µn) = |D0 (µn) | denote this number. The theo-
retical upper/lower bound and the expected value of M (µn), and therefore its E1, is
mainly decided by the coarsening threshold τ1. Let Ψn1 and Φn1 denote the maximum
and minimum possible E1 energy µn can possess, and let E0

1 be an unknown constant
that represents the average E1 energy at µ0 ∈ D0 (µn). E0

1 is constrained on the energy
model we use, e.g. the implementation of (2) using a discrete set of probability values
P (·) = {0, 1

255 , ...,
254
255 , 1} with log(0) set to a finite number larger than log( 1

255 ) de-
fines Ψ0

1 = 0 ≤ E0
1 ≤ 5.6 = Φ0

1. For levels other than the lowest one, the upper bound
of µn’s E1 energy, Ψn1 , grows exponentially as we go up the hierarchy:

Ψn1 = max
µn

E1 (µn,mµn) = max
µn

Ψ0
1 · M (µn) = Ψ0

1 · (τ1)
n
. (8)

The lower bound of µn’s E1 energy, Φ1, is

Φn1 = min
µn

E1 (µn,mµn) = min
µn

Φ0
1 · M (µn) = Φ0

1 · (1)n = Φ0
1 . (9)

As for the expected value of E1 (denoted as E(·)), we treat the number of finer-
level nodes that form a coarser-level node as a random variable X ∈ {1, 2, ..., τ1} with
probability PX(x) = 1/τ1 for all x:

E(X) =
τ1∑
X=1

1
τ1
X =

1
τ1

τ1∑
X=1

X =
1
τ1
· (τ1 + 1) τ1

2
=
τ1 + 1

2
. (10)

Therefore, for any node µn, its expected E1 energy is:

E (E1 (µn,mµn)) = E
(
E0
1 · M (µn)

)
= E0

1 ·
(
τ1 + 1

2

)n
, (11)

which still grows exponentially as we go up the hierarchy.

3.2 E2 Term Growth Rate Analysis

The upper/lower bound and expected value of a node’s local E2 energy (sum of all E2

on µn’s edges, denoted as E′2 (µn)), are conditioned not only on the number of pixel-
layer nodes M, but also on how the nodes are distributed. For any two neighboring
nodes µ0 and ν0, the energy on their common edge is neglected after they are grouped
into a coarser-level node µn, as defined in (5). Thus, E′2 (µn) is not determined by all



edges of all µ0 ∈ D0(µn), but only on edges of all µ0 ∈ D0(µn) where 〈µ0, ν0〉,
ν0 /∈ D0(µn). We define the size of this set as N :

N (µn) =
∑

µ0∈D0(µn)

s.t. 〈µ0,ν0〉, ν0 /∈D0(µn)

(
1− δ(mµ0 ,mν0)

)
. (12)

N (µn) is analogous to the perimeter of the object formed by all µ0 ∈ D0(µn), while
M (µn) is analogous to the area it occupies (on a 2D lattice). Therefore,E′2 (µn) is con-
strained on N (µn), while the relationship between N (µn) andM (µn) is dependent
on the object’s shape. This definition allows us to discover, when given a coarser-level
node µn with a fixedM (µn), the possible values of N (µn) and therefore derive the
upper/lower bound and expected value of a node’s E′2 fromM (µn).

Let Ψn2 and Φn2 denote the upper and lower bound of E′2 (µn) at level n, and let E0
2

be the average E2 energy of a single edge at level 0: 〈µ0, ν0〉, where µ0 ∈ D0 (µn)
and ν0 /∈ D0 (µn). The bounds of E0

2 are dependent on the energy model used, e.g. (3)
would yield E0

2 = {0, 1}, and are again denoted Ψ0
2 and Φ0

2. From basic geometry, given
anyM (µn), N (µn) is largest when its D0 (µn) are aligned linearly as in Fig. 2.(a),
where N (µn) = 2M (µn) + 2. Therefore, in theory, Ψn2 can increase exponentially at
the same speed of Ψn1 .

Ψn2 = max
µn

E′2 (µn) = max
µn

∑
〈µn,νn〉

E2 (µn, νn,mµn ,mνn)

= max
µn

Ψ0
2 · N (µn) = max

µn
Ψ0

2 · 2M (µn) + 2 = Ψ0
2 · 2 (τ1)

n + 2 . (13)

N (µn) is smallest when the shape formed by all its D0 (µn) is near circle/square (de-
pending on the neighborhood system used), as in Fig. 2.(b)-(d). Although N (µn) =
4 (M (µn))1/2, i.e. N grows only at a fraction of M’s speed, notice that N (µn) >
M (µn) whileM (µn) < 16.

Φn2 = min
µn

E′2 (µn) = min
µn

∑
〈µn,νn〉

E2 (µn, νn,mµn ,mνn)

= min
µn

Φ0
2 · N (µn) = min

µn
Φ0

2 · 4 (M (µn))
1
2 = Φ0

2 · 4 (1)
n
2 = 4Φ0

2 . (14)

The expected value of E′2 (µn) requires the knowledge of the mean shape of all
nodes at Gn. We estimate E′2 by using a rectangular-shaped node with variable length
l and width αl (α ∈ R+) to approximate any shape a nodes can possess. Therefore, for
any node,M = αl2, N = 2 (αl + l), N = 2 (α+ 1) (M/2)1/2, and its expected E′2:

E (E′2 (µn)) = E

 ∑
〈µn,νn〉

E2 (µn, νn,mµn ,mνn)

 = E
(
E0
2 · N

)
= E0

2 · 2 (α+ 1)
(
M
2

) 1
2

= E0
2 ·
√

2 (α+ 1)
(
τ1 + 1

2

)n
2

. (15)
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Fig. 2. N (µn) versusM (µn) under different shapes. Each node is a pixel-level node, the gray
bevelled rectangle represents the range of the coarser-level node µn, and blue nodes (textured
with horizontal lines for monochrome prints) indicate µ0 ∈ D0 (µn). Solid lines are the edges
between nodes of different labels.

Empirically, α is a relatively small constant. Therefore, E(E′2(·)) is only a fraction of
E(E1(·)) at the same level of the adaptive hierarchy.

3.3 The Effects of Un-Normalized Energies in Adaptive Hierarchies

As we have shown in 3.1 and 3.2, for any node µn, the relationship between its expected
E1 and E′2 is

E (E1 (µn,mµn)) ≈ E (E′2 (µn))2 ≈ ((τ1 + 1) /2)n . (16)

In other words, µn’s E1 is expected to be ((τ1 + 1) /2)n/2 times as large as its E′2
energy. LetE′ (µn) be the local energy cached at node: µn,E′ (µn) = E1 (µn,mµn)+
E′2 (µn)). The difference between E (E1 (µn,mµn)) and E (E′2 (µn)) becomes much
more significant at coarser-level nodes, which would eventually cause the E1 term to
dominate E′ (µn) . While considered with their respected weights λ1, λ2 learned from
the pixel-layer standard MRF

E (E′ (µn)) = λ1E (E1 (µn,mµn)) + λ2E (E′2 (µn))

≈ λ1E (E1 (µn,mµn)) + λ2E (E1 (µn,mµn))1/2 (17)

λ2E (E′2 (µn)) becomes negligible as n increase. In other words, no matter what value
λ2 is assigned while it is learned, it has little effect on the final local energy of a coarser-
level node.

The effects of this phenomenon are two-fold: (a) coarser-level nodes in the hierarchy
are less likely to change their labels even when they are spatially inconsistent with
their neighboring nodes, and therefore (b) shifts are more likely to happen at finer-level
nodes. One might argue that the first effect is desirable, due to the intuition that coarser-
level nodes are more likely to represent individual objects such as a ball or a box,
thus being able to easily change their labels would be unreasonable. However, there is



no guarantee that the likelihood term is reliable (i.e. we might have bad coarser-label
nodes at the beginning). Furthermore, even if we were to design an adaptive hierarchy
with different weights λ1, λ2 for different levels, it should be learned instead of being
adjusted by the coarsening factor. One notable drawback of the first effect is that the
algorithm is more likely to be trapped in local minima, which contradicts with one of the
original design goal of the Graph-Shifts algorithm. The second effect tends to increase
the total number of shifts, since more finer-level shifts are needed to accomplish the
same energy-change as one coarser-level shift.

3.4 Normalizing the Energy Terms

We experimentally design three strategies for normalizing E1 and E′2 for nodes in the
Graph-Shifts hierarchy: (a) energies normalized only at level 0 of the hierarchy, denoted
as EN0, (b) energies normalized by a constant, denoted as ENC, and (c) energies nor-
malized with the node mass (M), denoted as ENM. We will experimentally analyze
them, along with the unnormalized version, denoted as UNE, in 4.

The only difference between version (a) (EN0) and unnormalized energies (UNE)
is that: at level 0 of the hierarchy, the output ofE1 andE2 are normalized to the interval
[0, 1]

Ω1

(
I
(
S
[
µ0
])
,mµ0

)
= E1

(
I
(
S
[
µ0
])
,mµ0

)
/Ψ0

1 ,

Ω2

(
mµ0 ,mν0

)
= E2(mµ0 ,mν0)/Ψ0

2 . (18)

For comparison, high-level energies defined in (2), (3) causes E1 to output discrete
values in the interval [0, 5.6], and E2 ∈ {0, 1}. Note that coarser-level nodes are still
unnormalized. Since the optimum values for λ1, λ2 are learned for different energies,
we show in 4 that this normalization have no effect on convergence speed or labeling
accuracy. Proving this equivalence facilitates the normalization of coarser-level ener-
gies.

Version (b) (ENC) normalizes all nodes’ E1 and E′2 to the interval [0, 1] as

Ω1 (µn,mµn) = E1 (µn,mµn) /
(
Ψ0

1 · M (µn)
)
,

Ω2 (µn) = E′2 (µn) /
(
Ψ0

2 · N (µn)
)
. (19)

The unnormalized energiesE1,E2 are still used for the recursive computation of coarser-
level energies. This is because normalizing the terms to [0, 1] is just for balancing their
effects on the final E, not for reweighting all finer-level nodes when they are grouped
into a coarser-level one. Notice that, since all nodes in the hierarchy are normalized to
the same interval [0, 1], a coarser-level label-change no longer tends to cause a larger en-
ergy change. In other words, instead of favoring coarser-level shifts at the early rounds
of the Graph-Shifts algorithm, it will give equal preference to finer- and coarser-level
shifts. This characteristic is both an advantage and disadvantage, in the sense that local
minima have a higher chance of being avoided, yet it is expected to take a much longer
time to converge.

The third and final normalizing scheme, (c), (ENM) overcomes the unreasonable
fairness between finer- and coarser-level shifts induced by version (b). The energies
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Fig. 3. Shifts versus the layer it occurred. For every labeling task, if it takes z shifts to converge,
the layer at which the shift number (shift #) y ≤ z takes place is averaged over all labeling tasks
where y occurred.

Ω1 and Ω′2 are normalized to the same interval, so that the final energy term Ω is
not dominated by a single energy term, yet higher-level nodes preserve their original
tendency of causing a larger energy change.

Ω1 (µn,mµn) = E1 (µn,mµn) /Ψ0
1 ,

Ω2 (µn) =
E′2 (µn)

Ψ0
2 · (M (µn) /N (µn))

. (20)

4 Experiments and Results

Our experiments are conducted on an 11-label, 412-image subset of the LHI dataset
[14]. We randomly split the data into training and testing sets, where 170 of them were
used for training and 242 of them for testing. We trained the PBT classifier [15] to select
and fuse features from a set of 105 features, consisting of color, intensity, position,
histograms, and Gabor filter responses. The pair-wise contextual relationships between
different labels are also learned to construct the PBT classifier. For a test image, the
probability of each pixel belonging to one of the 11 labels are computed from the PBT
classifier, then formulated into the E1 term using (2). We then compare the energy-
minimization effects of the Graph-Shifts algorithm using unnormlized energies (UNE)
versus the three versions of normalized energies (EN0, ENC, ENM defined in (18), (19),
and (20) respectively). The hierarchy coarsening parameters are empirically set to τ1 =
20 and τ2 = 0.5 in all experiments. The optimum weights are learned, where UNE’s
λ1 = 0.1, λ1 = 0.9, EN0’s λ1 = 0.3, λ2 = 0.7, ENC and ENM’s λ1 = 0.6, λ2 = 0.4.

Our results show a significant improvement in convergence speed when coarser-
level energies are normalized properly (using ENM). The average number of shifts
required while using ENM is 3774, versus 4110 shifts for UNE; the average conver-
gence time is 3.17 seconds versus 3.71 seconds, which is a 15% speedup. This result
is expected, because unnormalized energy causes the E1 term to dominate E, which
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Fig. 4. Randomly selected labeling results. ENM converges to results similar to those of UNE in
only 85% of time. The details are slightly different due to the different orders shifts take place
while approximating the global minimum.

discourages higher-level shifts from taking place. Our analysis in Fig. 3 shows that, the
properly normalized version (red line) not only converges faster, but also induces more
coarser-level shifts (which tend to cause larger energy change) at earlier stages of the
energy minimization process. Energies normalized only at level 0 (EN0, yellow line),
exhibits almost the same characteristic as the unnormalized version (UNE, blue line).
One interesting point is, while equally weighting all nodes at different levels of the hi-
erarchy (ENC, green line), finer-level shifts are more likely to happen early during the
energy minimization process, causing the algorithm to require more shifts (5740) and
take 1.5 times as long (4.31 seconds) to converge.

Interestingly, however, UNE, EN0, ENC, ENM achieves almost the same labeling
accuracy of 70% ± 0.5%. This is because the pixel-level MRF energy models are es-
sentially the same for UNE, EN0, ENC, and ENM, as shown in 3.4, therefore should
converge to similar energy-minimized results. Their difference in coarser-level energy
accumulation only affects the level and order at which shifts takes place (Fig. 4). In
ENM, coarser-level shifts happen more frequently at earlier stages of the energy min-
imization process, thus in some sense optimizes the shifting sequence. In UNE, since
coarser-level shifts are unreasonably oppressed, groups of finer-level shifts have to be
performed to achieve the same pixel-level label change.

5 Conclusion

In summary, this paper has investigated the theory and construction of adaptive hier-
archies, then has examined the potential problems of using it to perform energy mini-
mization without proper normalization. The recursive energy accumulation of adaptive
hierarchies causes unnormalized energy terms to grow at different speeds, thus resulting
in the faster growing terms to dominate the final energy in coarser-level nodes. Empiri-
cally, the unary energy outweighs the binary energy at coarser-level nodes, which makes



coarser-level shifts less likely to occur, therefore increasing the total number of shifts re-
quired for minimization. We designed three different methods for normalizing coarser-
level energies, and experimentally confirmed that the best results are achieved when the
different energy terms of a node are normalized to the same interval, while coarser-level
nodes still possess relatively larger energies compared to finer-level nodes. Properly
normalized energies triggers a 15% speedup in convergence time while maintaining
the same accuracy rate. We plan to further justify our findings in the future by experi-
menting on other types of energy models, along with looking into the effects of proper
normalization in other types of hierarchical algorithms.
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