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Abstract
In this paper we present an image segmentation technique that fuses contributions from

multiple feature subspaces using an energy minimization approach. For each subspace, we
compute a per-pixel quality measure and perform a partitioning through the standard nor-
malized cut algorithm [12]. To fuse the subspaces into a final segmentation, we compute a
subspace label for every pixel. The labeling is computed through the graph-cut energy mini-
mization framework proposed by [3]. Finally, we combine the initial subspace segmentation
with the subspace labels obtained from the energy minimization to yield the final segmentation.
We have implemented the algorithm and provide results for both synthetic and real images.

1 Introduction
Image segmentation in a particular feature subspace is a fairly well understood problem [13]. How-
ever, it is well known that operating in only a single feature subspace, e.g. color, texture, etc,
seldom yields a good segmentation for real images. In the simple case given in Figure 7, seg-
menting in either the color or the texture subspace does not yield all of the regions. However,
combining information from multiple subspaces in an optimal manner is a difficult problem to
solve algorithmically. Although there is recent interest in combining two subspaces of informa-
tion, primarily color and texture [1, 4], we are unaware of any general technique for combining
multiple subspaces.

∗A short version of this paper [5] is published in the Proceedings of the 17th International Conference on Pattern
Recognition (ICPR 2004).



The obvious approach one might take to combine information from multiple subspaces is to
construct a large feature vector with components from each of the subspaces, and then employ a
standard segmentation approach. However, it is not clear that such an approach makes good use of
each subspace, and the curse of dimensionality may render the problem intractable.

In this paper we propose a method that fuses separate segmentations from multiple subspaces
into one final segmentation. The fusion is performed in the graph-cuts based energy minimization
framework [3, 10]; such an energy minimization approach attempts to capture the global structure
of an image where local techniques would fail.

1.1 Related Work
The literature on image segmentation is dense. Here, we sample relevant papers. Jain et al. [8] pro-
vide a complete survey of data clustering techniques. Our approach uses the normalized cuts [12]
image segmentation in each subspace independently. This approach is one of a class of techniques
characterized by Weiss [13] as an eigendecomposition of the affinity matrix.1 In these approaches,
dominant eigenvectors of the affinity matrix are used to recursively partition the image yielding a
global segmentation. The normalized cuts technique is also used in [11] where the authors provide
a technique for combining texture information and brightness information for image segmentation.

The strength of energy minimization techniques lie in their ability to model global image struc-
ture on which local methods would normally fail. However, before the recent work by Boykov
et al. [3, 2], energy minimization algorithms were typically solved through simulated annealing
methods which rendered them computationally intractable. Their framework provides an approx-
imate solution to the minimization in polynomial time. While not all energies can be minimized
using graph cuts, Kolmogorov and Zabih [10] define the class of energy functions which are graph
representable and thus can be minimized using graph cuts. The graph cut minimization techniques
have been successfully applied to image restoration [3], stereo [9], and joint stereo-background
separation [7].

2 Approach
We propose a technique that computes segmentations in multiple separate subspaces and then fuses
them in a manner that attempts to capture the global image structure. The thrust of our work is to
select an appropriate subspace for regions in the image based on the underlying image structure in
that region. We propose a general energy minimization algorithm that computes this selection, or
labeling.

We first concentrate on our approach for combining the results of segmentation algorithms. To
this end, let S be the set of labels for the considered subspaces and I be the set of image pixel
locations. For every subspace s ∈ S we define two functions: the quality function2 Qs : I → [0, 1]
and the segmentation Cs : I → Zs with the restriction that Zs1 ∩ Zs2 = ∅. Intuitively, the
quality function should measure the expectation that a pixel neighborhood will yield a promising

1The affinity matrix is a large matrix containing information about inter-pixel affinity (similarity or dissimilarity).
20 being the best quality and 1 the worst quality.
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segmentation. Q is the set of quality functions {Qs, s ∈ S} over all subspaces and C is similarly
the set of segmentations {Cs, s ∈ S} over all subspaces. One can employ a variety of techniques
to compute Q and C; in Section 3 we provide the complete algorithm and examples of techniques
to compute Q and C in Section 4.1.

2.1 Labeling via Energy Minimization
As discussed in [10], there is a certain class of energy functionals that can be minimized using
graph cuts. The energy function we choose belongs to that class of functionals. The input to the
energy minimization algorithm is the set of quality measures Q and segmentations C. The output
is to associate a labeling L : I → S for each pixel i ∈ I that is the best subspace from the set of
subspaces S. We assume that the clustering obtained in each subspace is the optimal one for that
subspace. Thus, wherever the quality measure is good for a particular subspace, the clustering for
that subspace will also be good. Based on [3], the energy functional that we minimize is

E(L) =
∑

i∈I

QL(i)(i) +
∑

i,j∈N

Vi,j(L(i), L(j)) (1)

where N is the neighborhood over a set of pixels, Vi,j is the discontinuity preserving smoothness
or the interaction term between neighboring pixels i and j. It is defined based on the clustering in
each of the subspaces. We simplify the notation L(i) to be Li here.

Vi,j(Li, Lj) = k2 + (k1 − k2) · δ(CLi
(i), CLi

(j)) · δ(CLj
(i), CLj

(j)) (2)

where CLi
denotes the clustering in the subspace with label L at pixel i, k2 > k1 and δ is the

Kronecker delta function.

2.1.1 Minimizing the Energy Functional

Following [3], we construct a set of graphs to minimize (1). The graphs are constructed without
a-nodes and the α-expansion steps3,4 are employed to minimize the energy. We explain the mini-
mization of (1) with an exemplary graph for two pixels during one α-expansion step is presented
in Figure 1 where the Q̂L(p)(p) terms are defined by

Q̂L(p)(p) =

{
∞ L(p) = α

QL(p)(p) otherwise (3)

In an α-expansion step, the max-flow is computed from the α node (source) to the ᾱ node
(sink). The cut is defined by those edges which are saturated during the max-flow algorithm. The
pixels are then labeled depending on which of their terminal edges (either α or ᾱ) is cut. If the α

edge is cut for a pixel p, the pixel takes on the new label α: i.e. Lp = α. But if the ᾱ edge is cut
for a pixel, the labeling does not change. Figure 2 presents the possible cuts on the example graph:

3One α-expansion is a single step of the approximation algorithm used to minimize the energy functional [3].
4Hence the use of small values for high quality and large values for low quality (Section 4.1 for more information).
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Qα(j)Qα(i)

Q̂α(i) Q̂α(j)

j

ᾱ

Vi,j(Li, Lj)

Figure 1: An exemplary graph for two pixels depicting one α-expansion step.

Cut 1 - Assigns i and j to label α.

Cut 2 - Preserves the previous labeling for i and j.

Cut 3 - Preserves i and assigns j to α.

Cut 4 - Assigns i to α and preserves j.
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Qα(j)Qα(i)

Q̂α(i) Q̂α(j)

j

ᾱ

Vi,j(Li, Lj)

α
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Qα(j)Qα(i)

Q̂α(i) Q̂α(j)

j

ᾱ

Vi,j(Li, Lj)

α

i

Qα(j)Qα(i)

Q̂α(i) Q̂α(j)

j

ᾱ

Vi,j(Li, Lj)

α

i

Qα(j)Qα(i)

Q̂α(i) Q̂α(j)

j

ᾱ

Vi,j(Li, Lj)

Cut 1 Cut 2 Cut 3 Cut 4

Figure 2: The four possible cuts (resulting labelings) from the max-flow procedure on the two-pixel
example graph. The cuts are depicted by the blue-dashed lines.
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2.1.2 The Interaction Term Vi,j

We explain the interaction term (2) by providing an intuitive motivation and then highlighting
informative cases. Intuitively, the interaction term (2) attempts to preserve the boundary at Li

and Lj if either subspace segmentation CLi
or CLj

indicates a boundary. Additionally, it enforces
smoothness in the labeling by linking adjacent pixels. We analyze the effect of the interaction term
on two datasets in Section 2.1.3.

Referring to (2), for one α-expansion step there are five cases on the parameters of the interac-
tion term. Here, the set of possible subspaces is {α, β, γ}. The following table enumerates them
(note that each case has either 2 or 4 subcases that depend on the subspace clustering Cα, Cβ, Cγ).

Li Lj

1 α α

2 β β

3 β α

4 α β

5 β γ

α

i

Qα(j)Qα(i)

∞ ∞

j

ᾱ

k1 Lj = α

Cα(j) = 1

Li = α

Cα(j) = 1

Figure 3: An example of case 1 where both i and j have the α label during an α-expansion step.

We examine a subcase of case 5 in detail through Figure 4. Both subspace clusterings have dif-
ferent labels, and the interaction term is high (k2) and acts as a discontinuity preserving constraint
between neighborhoods of pixels. The quality values drive the max-flow computation and govern
the resulting cut; the only cut that has the potential to change the resulting segmentation here is
the cut through (α, i) and (α, j), and this should only happen if the quality for i and j in subspace
α is very good. An important point to note is that the quality terms are the driving force in the
α-expansion labeling with interaction terms present to enforce smoothness in some cases and to
preserve discontinuities in others.
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We note that case 1 is redundant. Refer to Figure 3 for a labeled graph highlighting case 1 with
the subspace clustering at i and j being equal. It is easy to see that the Vi,j term plays no role here
because the two sink edges (i, ᾱ) and (j, ᾱ) have infinity weight and thus can never be cut.5

α

i

Qα(j)Qα(i)

j

ᾱ

k2
Lj = γ

Cβ(j) = 2

Li = β

Cβ(i) = 1

Qγ(j)Qβ(i)

Cγ(j) = 2Cγ(i) = 1

Figure 4: An example of case 5 where both i and j have labels different than α during an α-
expansion step.

2.1.3 Influence of the Interaction Term Vi,j

In this section, we analyze the effect of the interaction term on the labeling of two example images.
Figure 5 contains the two labelings for each image: on the left is the labeling with the interaction
term and on the right is the labeling without the interaction term. For the checker board image,
we see that the interaction term plays a very small role. This is due to the low frequency quality
measures computed on this image (Figure 7).

However, for the zebra image, we find that the interaction term plays a strong role in preserving
the smoothness of the resulting labeling. Referring to the zebra quality images in Figure 8, we find
ambiguous quality in the mid-section of the smaller zebra. Thus, a greedy algorithm would perform
similar to the right side (without any interaction term) and separate the smaller zebra into multiple
clusters. However, our algorithm incorporates neighborhood information (through the interaction
term) and the resulting labeling is smoother in the regions with ambiguous quality.

2.1.4 Proof that (1) is Graph-Minimizable

In order to prove that the energy function we use belongs to the class of functions in [10], we
rewrite the energy function in the same notation as used there. Let x1, x2, ......, xn, n = |I| be the

5Remember, that an edge with high weight (capacity) can bear more flow than an edge with low weight. During the
max-flow computation, in general, edges are saturated sooner if they have low capacity, and it is the saturated edges
which become part of the cut. Thus, an ∞-weighted edge can never be cut.
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binary variables associated with each pixel i ∈ I. The energy functional we minimize can then be
rewritten in terms of these binary variables xi as

E(x1, ...., xn) =
∑

i∈I

Di(li(xi)) +
∑

i,j∈N

Vi,j(li(xi), lj(xj)) (4)

where

∀i ∈ I li(xi) =

{
l0i, xi = 0
α, xi = 1

Here l0i is the labeling for pixel i before the α-expansion step. It has been shown in [10] that the
energy function in (4) is graph-representable if and only if the Vi,j satisfies the following inequality.

Vi,j(li(0), lj(0)) + Vi,j(li(1), lj(1))
︸ ︷︷ ︸

L.H.S.

≤ Vi,j(li(0), lj(1)) + Vi,j(li(1), lj(0))
︸ ︷︷ ︸

R.H.S.

(5)

Claim 1 The Vi,j in (2) satisfies the inequality condition in (5).

To show that Vi,j in (2) is graph-representable, we consider all possible cases and show that (5) is
satisfied by all of them.

Case 1. li(0) = lj(0) = α.
Substituting in the equation (5), all terms become equal to Vi,j(α, α). The L.H.S. of the equation
is equal to the R.H.S. thus satisfying the inequality condition.

Case 2. li(0) = α and lj0 = ᾱ OR li(0) = ᾱ and lj0 = α.
In this case, after substitution equation (5) becomes

L.H.S. = Vi,j(α, ᾱ) + Vi,j(α, α)

R.H.S. = Vi,j(α, α) + Vi,j(ᾱ, α)

Since Vi,j(ᾱ, α) = Vi,j(α, ᾱ) as Vi,j is symmetric by definition, the equality condition in (5) holds.

Figure 5: Labeling results from graph-cut methods with (left) and without (right) inclusion of the
interaction term for the synthetic dataset and the zebra image.
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Case 3. li(0) = lj(0) = ᾱ.
After substitution, equation (5) for this case becomes

L.H.S. = Vi,j(ᾱ, ᾱ) + Vi,j(α, α)

R.H.S. = Vi,j(ᾱ, α) + Vi,j(α, ᾱ)

Depending on the clustering of pixels i, j in both α and ᾱ subspaces, we have four sub-cases
outlined in the following table. One can see from the table for all the four cases that the L.H.S. ≤
R.H.S. and thus the inequality condition in (5) holds.

Clustering of i, j in α subspace Clustering of i, j in ᾱ subspace L.H.S. R.H.S.
Same Same k1 + k1 k1 + k1

Different Same k1 + k2 k2 + k2

Same Different k2 + k1 k2 + k2

Different Different k2 + k2 k2 + k2

Case 4. li(0) = β, lj(0) = γ s.t. β, γ ∈ ᾱ & β 6= γ.
The equation (5) for this case becomes

L.H.S. = Vi,j(β, γ) + Vi,j(α, α)

R.H.S. = Vi,j(β, α) + Vi,j(α, γ)

There are eight sub-cases depending on the clustering of the pixels i, j in α, β and γ subspaces. In
the following table, these sub-cases are enumerated. The L.H.S. ≤ R.H.S. in all of them and thus
the inequality condition in (5) holds.

Clustering of i, j in Clustering of i, j in Clustering of i, j in L.H.S. R.H.S.
α subspace β subspace γ subspace

Same Same Same k1 + k1 k1 + k1

Same Different Same k2 + k1 k2 + k1

Same Same Different k2 + k1 k1 + k2

Same Different Different k2 + k1 k2 + k2

Different Same Same k1 + k2 k2 + k2

Different Same Different k2 + k2 k2 + k2

Different Different Same k2 + k2 k2 + k2

Different Different Different k2 + k2 k2 + k2

As, the condition in (5) is satisfied by all the possible cases, the energy function (1) used for
subspace fusion is graph representable.

2.2 Fusion of Subspaces
The final step of our algorithm performs the fusion of the subspace segmentations C based on the
labeling L. Each pixel i ∈ I in the final segmentation is assigned to the region based on its labeling
L(i) and the subspace segmentation CL(i):
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Cf(i) = CL(i)(i), ∀i ∈ I (6)

Note that a boundary in L creates a boundary in the final segmentation. Likewise, note that
boundaries in the highest quality regions (over which L is constant) are preserved. To reduce
noise, we first median filter L.

3 The Complete Algorithm
The complete segmentation algorithm is presented in Figure 6. We initially compute a standard
single-subspace segmentation using the normalized cuts algorithm [12] and a pixel-coefficient for
each subspace that measures the subspace quality. These two quantities drive the energy minimiza-
tion which assigns a per-pixel subspace label that is then used in a fusion procedure.

SEGMENT ( Input Image I )
1 foreach (subspace s ∈ S )
2 foreach (pixel i ∈ I)
3 Compute quality Qs(i)

4 Compute clustering Cs(I)

5 Compute labeling L(I)

6 foreach (pixel i ∈ I)
7 Cf(i) = CL(i)(i)

8 return Cf as final segmentation

Figure 6: Proposed segmentation algorithm.

We employ the standard normalized cuts algorithm [12] to compute subspace segmentation
(Ck, k ∈ S) and choose to use the dominant 6 eigenvectors of the affinity matrix instead of per-
forming explicit recursion. We follow the same formula to compute the affinity matrix A as [12];
namely, we populate the entries of A as the product of the feature subspace similarity term and the
clamped spatial proximity term. Specifically, for pixels i and j let Xij =‖ X(i) − X(j) ‖2 where
X(i) is the spatial location of pixel i,

Aij = e
−‖F(i)−F(j)‖2

σF ∗

{

e
−Xij

σX if Xij < r

0 otherwise
(7)

where F(i) is the feature vector based on feature subspace (see Section 4.1 for examples of F) and
r is the neighborhood truncation threshold. We follow [12] in our choices of parameters, r, σF , σX :
5, 0.01, 4.0 respectively.

9



4 Experiments
In this paper, we consider techniques and results for the color and texture feature subspaces only;
however, there is no inherent limitation in our approach limiting it to these two subspaces. We
present results for both synthetic and real data.

4.1 Subspace Definitions
In both the color and texture subspaces, we use an intuitive approach to measuring quality (Qc

and Qt): the variance of the image I. For the color subspace, regions with low color variance
are expected to yield good segmentation. We take a conservative measurement and use the color-
channel with the worst variance. Let i ∈ I be a pixel in the image, Ni be a neighborhood of pixels
about i, µp(i) = 1

|N |

∑

x∈N Ip(x) where p ∈ r, g, b, i is a plane of the color image or grayscale,
and σp(i) = 1

|N |

∑

x∈N (Ip(x) − µp(i))2.

σc(i) = max[σr(i), σg(i), σb(i)] (8)

σt(i) = σi(i) (9)

By convention (Section 2.1), we define quality 0 as best quality and 1 as worst quality. Let η be a
threshold on the max color variance allowed (we use 0.2 in our experiments).

Qc(i) =

{
1 if σc(i) > η

σc(i)
η

otherwise (10)

Qt(i) = 1 − σt(i) (11)

For the color and texture subspaces, we define F(i) as follows:

- Color - F(i) = [v, v · s · sin h, v · s · cos h](i), where h, s, v are the HSV values.

- Texture - F(i) = [|I∗g1|, · · · , |I∗gn|](i), where the gk are the Gabor convolution kernels [6]
at various scales and orientations. In our implementation we use 4 scales and 6 orientations.

4.2 Results
Figure 7 shows the result of our algorithm on a synthetic image that contains three regions: one
from the texture domain and two from the color domain. It is clearly visible that fusing the sub-
spaces improves the segmentation significantly over either the color or texture subspace alone.

Figure 8 shows the result of subspace fusion on a real zebra image. The segmentation in both
the color and texture subspaces is shown with the resultant segmentation obtained by subspace
fusion.

It is important to note that the segmentation in the texture subspace in the zebra image is not
very good as the segmentation was run on a very low resolution image (i.e. 100x80) where the
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Figure 7: Result of subspace fusion on a synthetic image. First row shows the original image, and
the color subspace segmentation and quality. Second row shows the texture subspace segmentation
and quality and the final fusion segmentation. Note that quality ranges from 0 (black) to 1 (white)
with 0 the best quality and 1 the worst quality.

texture information is subdued. We expect that on higher resolution images the results would
be much better, but due to the high computation cost involved with segmenting high resolution
images, we currently restrict ourselves to low resolution images.

In Figure 9, we show the quality information in both the color and texture subspace on a leopard
image. The labeling assigned by the graph-cut energy minimization is also shown with black
corresponding to color and white to texture. Finally the clusters and the segmentation overlaid on
the original image are shown.

5 Conclusion and Future Work
In this paper we have presented a technique for image segmentation which employs information
from multiple subspaces. We make two contributions: First, we propose a technique to measure
subspace quality based on the expectation that a local image neighborhood will yield a good seg-
mentation for a given subspace. Second, we propose a novel use of the graph-cut based energy
minimization framework [3] to fuse the subspace segmentations into a final segmentation.

Presently, we show techniques and results for the color and texture subspaces. However, there
is no inherent limitation in our approach limiting it to these two subspaces.

For future work, we plan to experiment with additional subspaces: reconstruction geometry
for multiple cameras, contours, neighborhood statistics, etc. Also, the texture subspace we are
currently using is based on the Gabor filter response which assumes a repetitive texture. However,
for cases with scale-varying texture, this measure will perform poorly. Alternatively, since the Ga-
bor convolution provides a measure for repetitiveness, a better quality measure would be one that
judges a neighborhood’s repetitiveness. We are currently investigating both scale invariant repet-
itive texture measures and the use of Fourier analysis for computing a measure of repetitiveness.
For the graph cut results, we plan to study the effect of using different size neighborhoods.
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Figure 8: Complete segmentation for the zebra image. Top-left is the high resolution image and
top-right is the low-resolution image used. Row 2-left is the color subspace clustering, Row 2-
right is the texture subspace, Row 3-left is the color subspace quality, Row 3-right is the texture
subspace quality, bottom-left is the labeling with black assigned to color, and bottom-right shows
the final clustering.
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Figure 9: A leopard image dataset showing in column 1 the quality and clustering in the color
subspace, column 2 the quality and clustering in the texture subspace, in column 3 the original
image and the labeling, and in column 4 the final segmentation.
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