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a b s t r a c t

We present a new method for describing images for the purposes of matching and registration. We take
the point of view that large, coherent regions in the image provide a concise and stable basis for image
description. We develop a new algorithm for feature detection that operates on several projections (fea-
ture spaces) of the image using kernel-based optimization techniques to locate local extrema of a contin-
uous scale-space of image regions. Descriptors of these image regions and their relative geometry then
form the basis of an image description. The emphasis of the work is on features that summarize image
content and are highly robust to viewpoint changes and occlusion yet remain discriminative for matching
and registration.

We present experimental results of these methods applied to the problem of image retrieval. We find
that our method performs comparably to two published techniques: Blobworld and SIFT features. How-
ever, compared to these techniques two significant advantages of our method are its (1) stability under
large changes in the images and (2) its representational efficiency.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider the problem of matching (or register-
ing) differing views of a scene to each other. This, problem, which
has received an immense amount of attention over the last decade,
is currently solved using two different approaches.

One set of approaches, pioneered by Schmid and Mohr [1] and
extended in many recent papers (Section 2), makes use of local re-
gion descriptors for indexing and matching. The general idea of
such approaches is to locate regions of high information content
using an interest operator, and to then create indices for matching.
The key to good performance is to create interest operators and
match indices that are insensitive to geometric and photometric
image distortions. The advantage of the approach is generally the
robustness of matching to occlusion, changes in lighting, and mod-
erate changes of viewpoint. The disadvantages are the need to
identify such local image regions, and (typically) the use of only
grayscale image projections. In particular, large areas of the image
are potentially discarded as ‘‘untextured” and therefore unusable
by the method. In addition, since the local methods emphasize fea-
ture discriminability, they generally have a high storage cost. Mi-
kolajczyk and Schmid [2] evaluated the performance of several
local image descriptors. Their evaluation tested the descriptors’
stability to rotation, scaling, affine transformations, and illumina-
ll rights reserved.
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tion changes. The study showed that SIFT [3] features performed
the best over all conditions.

Another set of approaches, exemplified by Malik et al. [4,5] in-
stead represent images through segmentation. This approach is
particularly appealing for image retrieval problems where the goal
is to find similar, rather than exactly matching, images. The advan-
tages are that large areas of the image tend to be stable across large
changes in viewpoint and can be matched in a spatially approxi-
mate manner, and the associated representation tends to have a
smaller storage cost since the goal is to summarize image content.
The disadvantage is that it is necessary to have an efficient yet sta-
ble segmentation process, and to find image cues that are them-
selves stable over variations in pose and lighting.

In our work, we consider a ‘‘middle ground.” Namely, our goal is
to create interest operators that focus on homogeneous regions,
and local image descriptors for these regions. Intuitively, we pro-
pose to locate a sparse set of large, homogeneous regions (features)
that can be simply characterized to summarize the image content.
To this end, we perform a sparse image segmentation, and then in-
dex images based on the results of that segmentation. The segmen-
tation is performed in parallel on several scalar image projections
(feature spaces) using kernel-based optimization methods. The
optimization evaluates both the size (large regions tend to have
high stability across widely disparate views) and the coherency
(e.g., similar color, texture, depth, or image gradient) of region con-
tent. Once a region is located, its description is composed of simple
kernel-weighted statistics of the coherent content. This description
is concise, and it is stable under drastic changes in viewpoint, and
it is insensitive to photometric changes provided the initial image
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projections are. We claim that using such sparse regions provide a
plausible trade-off between the discriminating power of local tech-
niques and the summarizing efficiency of global methods. Finally,
since we compute multiple image regions, images can be geomet-
rically registered in a manner similar to interest point-based
registration.

In principle, our method is most similar to Greenspan et al. [6]
and Schaffalitzky and Zisserman [7]. [6] use a mixture distribution
as the underlying continuous representation of the image. As we
will discuss in Section 3.1, we define a similar mixture distribution
as our underlying representation. However, [6] estimate the mix-
ture distribution jointly for the whole image by using an expecta-
tion maximization algorithm with a minimum description length
(MDL) term. Their model is derived on a fixed feature space (space
and color). Matching is done via a global KL distance score. While
our ultimate representation is similar, our algorithms are philo-
sophically different: [6] seek a global representation and do joint
optimization, while we seek a more local representation optimiz-
ing each feature point independently (using kernel techniques).
Furthermore, there is no natural way to tune their algorithm to
yield models with as many computed features as our models be-
cause they incorporate an MDL term into the objective function.
We match part-by-part while [6] compute a global distance score.
Finally, we define a general feature space that a system engineer
can tune, which does not require any change on the model estima-
tion; [6] fixes the feature space.

[7] use the texton segmentation [5] and create a texture-region
descriptor that is invariant to affine geometric and photometric
transformations. They robustly estimate the epipolar geometry of
a wide baseline system by matching these regions. While emphasis
on scene-retrieval and registration based on regions as opposed to
points is similar to their work, we differ in the region detection and
description. The remainder of this paper first presents a literature
survey of local and global methods, then details our kernel-based
segmentation methods and last, provides comparative experimen-
tal results supporting the claim that the proposed features that
summarize provide a plausible balance between local features
and global segmentation.
2. Related work in image modeling

In this section, we discuss two of the basic approaches at mod-
eling images: local, pixel-level modeling and global, entire-image
modeling. We also briefly discuss the important issue of scale
selection.

2.1. Local methods

Local, pixel-level methods focus on finding salient points in
images. As discussed in Section 1, the general idea of such
approaches is to locate regions of high texture content using an
interest operator, and to then create indices for matching. The first
so-called interest operator was proposed by Moravec [8], which
detects points with high-contrast neighborhoods and is rotationally
invariant. Another rotationally invariant interest operator is the
Harris corner detector [9], which performs a local gradient eigen-
analysis to select points with neighborhoods whose gradient is
varying in both image dimensions. The Harris detector has a high
repeatability rate [10], which is important since the interest points
will be matched across images.

The pioneering work of Schmid and Mohr [1] emphasizes the
invariance properties of both detection and description of the
interest points and the local regions surrounding them. They use
local, differential grayvalue invariants in a multiscale representa-
tion at a number of interest points (Harris corners) in the image
for description. The invariants are the local differential jets from
Koenderink and van Doorn [11]. Their representation is robust to
similarity transforms and partial visibility. Additionally, they in-
clude information from multiple scales yielding a scale-invariant
(up to the scale quantization) representation. To match, they pro-
pose a fast multidimensional hash-table voting algorithm that is
robust to mismatches and outliers.

Schmid and Mohr’s work gave rise to numerous related tech-
niques, which we summarize next. Lowe [12,3] proposed a scale-
invariant feature transform (SIFT). The interest point, or key, loca-
tions are identified with a staged filtering approach that searches
through a discrete scale-space [13] for minima and maxima of a
difference-of-Gaussian function. For representation, the image
neighborhood around each key location is assigned a canonical ori-
entation in accordance with the local image gradients. Then, the
feature vector is constructed by orientation planes. A local image re-
gion can be separated into a set of orientation planes each consist-
ing of only the gradients corresponding to that orientation. The
keys are invariant to image translation, scaling and rotation, and
partially invariant to illumination changes. Since the keys have a
relatively high storage cost, Ke and Sukthankar [14] proposed an
extension of Lowe’s SIFT [12] method, PCA-SIFT. While SIFT patch
descriptors are constructed by smoothed orientation histograms,
the PCA-SIFT patch descriptors is based on the projection of the
patch gradient maps into a low-dimensional eigenspace.

In recent years, many researchers have proposed affine-invariant
interest points and features. Lazebnik et al. [15] detect interest
points in the images by local maxima of the Laplacian in scale-space.
Then, for each maxima, the local image region, at the appropriate
scale, is then normalized based on the second-moment matrix
resulting in affine-invariant patches. The normalized patches are
represented using intensity-domain spin images, a two-dimen-
sional histogram with axes of brightness and distance from the
patch center.

Tuytelaars and van Gool [16] proposed detection of regions by
finding intensity-based local extrema, constructing an irregularly
shaped blob, and then fitting an affine invariant ellipse (equivalent
to the irregularly shaped blob up to the second-order moments).
The regions are described by Generalized Color Moments, which
implicitly characterize the shape, intensity, and color distribution
of the region pattern in a uniform manner. They couple the image
description with Harris corners and apply it to the wide-baseline
stereo problem. Related work in wide-baseline stereo using inter-
est region based techniques include the Maximally Stable Extremal
Regions by Matas et al. [17,18] and the scale-invariant, normalized
affine-corner pairs of Tell and Carlsson [19].

The last set of techniques we discuss uses a maximization of the
Shannon entropy measure [20] in the image signal to detect and
characterize salient points. The idea is to define saliency in terms
of local signal complexity. Gilles [21] uses salient image patches
to register aerial images; he uses the entropy of local image patch
histograms to characterize saliency. However, Gilles fixed a global-
scale for the size of the patches per image. For the case of aerial sa-
tellite imagery where an affine geometry assumption is plausible,
the fixed scale is acceptable, but in the general case, it is not. Kadir
and Brady’s scale-saliency technique [22] extended Gilles’s sal-
iency detector to incorporate patch scale. They search for clusters
of high-entropy in scale-space and use them as the interest points.
Hare and Lewis [23] use the scale-saliency interest points for im-
age matching.

Fraundorfer and Bischof [24] argue that one should fuse the
characterization with the detection because if they are separate,
then it is possible the detector may find regions whose description
will not be salient. [24] use geometric features (specifically, Harris
corners [9]) to describe the local image patch. Hence, they improve
the robustness of the patch description to photogrammetric and
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geometric changes [25]. They incorporate Kadir and Brady’s [22]
scale-selection technique and find that their method significantly
reduces the number of false matches.

Mikolajczyk and Schmid [2] evaluated the performance of sev-
eral local image descriptors. Their evaluation tested the descrip-
tors’ stability to rotation, scaling, affine transformations, and
illumination changes. The study showed that SIFT [3] features per-
formed the best over all conditions. Thus, we use the SIFT method
in our comparative analysis (Section 7) to represent the class of lo-
cal methods.

2.2. Global methods

The global methods attempt to capture the most important con-
tent of the image as a whole. Such methods, in general, attempt to
form a low order summary of the image. One set of methods, which
we do not cover in this paper, use global histograms to represent
the image (e.g., [26]). We discuss those methods that use image
segmentation as a representation. Since the segmentation litera-
ture is broad, we further restrict it to the subset the emphasizes
an image retrieval application because of the direct relation to this
work. This approach is exemplified by Malik et al. [4,5]. They at-
tempt to group pixels that roughly correspond to objects therefore
allowing image-to-image matching at the object level. In the mod-
eling, they incorporate color, texture, and position features into a
Gaussian mixture model (GMM). They use the Expectation-Maxi-
mization [27] with the Minimum Description Length principle
[28,29] for GMM estimation and model selection. Similarly, Green-
span et al. [30,6] use GMM modeling in a 5D color and spatial fea-
ture space to model images and video. For image-to-image
comparison, they directly compare the GMM using a novel approx-
imation of the Kullback–Leibler distance Mo and Wilson [31] ex-
tend these ideas in a multiresolution GMM.

Ruiz et al. [32] generalize the notion of the scale-space blob [13]
to include color information. The scale-space blobs are analogous
to a full image segmentation. They use the automatic scale-selec-
tion principle based on extrema of the normalized Laplacian [33].
Neural networks are used to learn the image categories.

Schaffalitzky and Zisserman [7] describe a texture-region
descriptor that is invariant to affine geometric and photometric
transformations and insensitive to the shape of the texture region.
In the affine-normalized region, they compute a rotationally and
scale invariant description using a statistical approach that creates
a histogram of the dominant gradient at each pixel (for each scale).
In their approach, detection of regions is solved by standard tex-
ture-based image segmentation [5].

2.3. The scale issue

Scale is a crucial parameter in the analysis of objects in images.
In our case, there are two essential notions of scale: the integration
scale of the image content (e.g., texture or edges), and the scale of
an associated spatial kernel function used to summarize image
content. In both cases, there is no universally accepted method
for choosing an optimal scale. In our work, we focus primarily on
determining the correct scale of a spatial kernel for summarizing
image content.

Lindeberg proposed a set of scale-selection principles [33] for
feature detection and image matching, and a technique [13] for
building a gray-level blob and scale-space blob representation of
an image. Comaniciu et al. [34] proposed the variable bandwidth
mean shift to solve this problem (in the context of kernel-based
density estimation [35]). Collins [36] applied Lindeberg’s general
scale-selection principles [33] to extend the kernel-based mean
shift tracking to refine the scale of the object being tracked. Okada
et al. [37] presented a method for the creation of an anisotropic,
Gaussian scale-space by extending Lindeberg’s [33] isotropic
scale-space methods.

3. Image modeling

A coherent region in an image is a connected set of (relatively)
homogeneous pixels. Coherency is indifferent to the character of
the homogeneity. For example, the image of a plaid shirt with a
colorful, checkered pattern is considered coherent. This notion of
region coherency is the basis for image segmentation and has been
studied in various methodologies for multiple decades: e.g., the
piecewise constant Potts model [38] and the piecewise smooth
Mumford and Shah model [39]. We will use the coherency idea
in multiple image feature spaces in Section 4; currently, we con-
sider single, scalar (e.g., grayscale) images (discrete signals).

3.1. The model

We denote the image I¼: fI; Ig where I is a finite set of n pixel
locations (points in R2), I is the map I! X (here, X is some arbi-
trary value space). We model the appearance of a region as a con-
stant value a with additive i.i.d. noise assumed to be zero-mean
Gaussian Nð0;w2Þ. The region is assumed to be connected; spa-
tially, we describe a region with an anisotropic Gaussian kernel:

Kði; rÞ ¼ 1

2pjWj
1
2

exp �1
2
ði� lÞTW�1ði� lÞ

� �
; ð1Þ

where i 2 I and r¼: fl 2 R2;W 2 GLð2Þ;W ¼ WTg fully describe the
anisotropic Gaussian. We restrict the discussion to normalized ker-
nels:

P
i2IKði; rÞ ¼ 1. We note that this restriction is only an approx-

imation since we are working with sampled data (see Appendix A).
The spatial parameters r and the appearance parameter a fully de-
scribe the region.

We use the Gaussian to spatially describe the region because it
has relatively few parameters, is sufficient to estimate regions of
arbitrary size and orientation, and does not require the precise
estimation of object boundaries. Pixels are weighted based on their
proximity to the spatial mean of the Gaussian kernel.

The complete model for describing an image is a set of region
pairs fðri;aiÞ : i ¼ 1; . . . ;mg. One can conceptualize this model as
a mixture distribution [40] in a joint feature-spatial space with
Gaussian components and uniform mixing weights.

3.2. Model estimation

The free parameters of the model are the number of regions and
both the spatial and appearance parameters for each region. The
most popular [40] technique to estimate a mixture model is the
Expectation-Maximization method [27]. While it has guaranteed
convergence, it is very sensitive to initialization and requires the
number of components as input. In our formulation, the number of
components corresponds to the number of coherent regions, which
is a data dependent variable. As in [4,6], one can apply the minimum
description length principle [28,29]. However, there remains a prob-
lem due to the regular sampling of the pixels, which violates the
assumption that the location samples are normally distributed.

Instead of taking this joint approach to estimating the model, we
propose a local approach that defines an interest operator for coher-
ent regions. We assume the number of regions is unknown and
derive an objective function on the five parameters of the spatial
anisotropic Gaussian. Given a set of region parameters r, we estimate
the appearance parameter a by minimizing the following error term

a� ¼ arg min
a

X
i2I

Kði; rÞ IðiÞ � að Þ2; ð2Þ



Fig. 2. Explanation of data-flow in image dimensionality reduction.
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Fig. 1. A comparison of the region scaling between our homogeneous regions (one-
third) and Lowe’s SIFT keys (1.5). The LoG kernel is shown as a dotted line with the
region size as a solid line.
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which follows directly from the assumed Gaussian noise distribu-
tion and the use of a spatial weighting kernel. The minimum is
the kernel-weighted estimate of the appearance parameter:

a� ¼
X

Kði; rÞIðiÞ: ð3Þ

Plugging this kernel-weighted mean back into Eq. (2) and switching
the arguments to the region parameters r, we arrive at the kernel-
weighted variance, which is used to estimate the r parameters.

r� ¼ arg min
r

X
Kði; rÞ IðiÞ � að Þ2

¼ arg min
r

X
Kði; rÞIðiÞ2 �

X
Kði; rÞIðiÞ

h i2
: ð4Þ

However, this error function is unstable and has zero variance as its
minimum, which is degenerate (the function would be minimized
when the region is only sampling the value at a single pixel). To reg-
ularize the error function, we include a second, additive term. While
many regularizing choices are possible, we choose one that has a
physical meaning. We minimize the squared distance between the
kernel and the image. Since we consider, normalized kernels, we in-
clude a scale factor b for the kernel.

min
X

bKði; rÞ � IðiÞ½ �2: ð5Þ

We include a normalizing factor 1
n and a multiplier c that is set by

hand to weight the two terms of the function. We combine (4)
and (5) to yield the final objective function:

arg min
b;l;W

X
Kði; rÞIðiÞ2 � a2 þ c

n

X
bKði; rÞ � IðiÞ½ �2: ð6Þ

By taking a binomial expansion and discarding both constant and
higher order terms, we use the following function to approximate
(6) [41]:

arg min
l;W

P
Kði; rÞIðiÞ2

a2 þ s
W

1
2
; ð7Þ

where s is a weighting factor between the two terms. We show the
derivation and proof in Appendix A. We note the appealing form of
this function. It is the sum of a homogeneity term and a scale term,
which are precisely the two characteristics we wish to focus on in
the coherent regions. Since the kernels are defined continuously,
standard optimization methods can be used to minimize (7) such
as gradient descent and newton minimization.

3.3. Initialization

We initialize the regions using conventional blob-finding tech-
niques. Marr and Hildreth [42] first proposed the use of the Lapla-
cian of a Gaussian (LoG) for distinguishing homogeneous regions
from the drastic changes in intensity that separate them. More re-
cently, Lowe [3], among others [15], used a Difference of a Gauss-
ian (DoG) to approximate the LoG filter. They construct a dense,
discrete scale-space of DoG responses and then perform an explicit
search for stable points (local extrema in space and scale).

To detect seed points, we likewise create a coarse, discrete
scale-space of isotropic DoG responses by sampling a few (in our
experiments, just 2) large scales. This coarse sampling is sufficient
for seed detection because we later refine each candidate seed and
localize it in both space and scale. Similar to Lowe, we look for local
extrema in the DoG response to detect seeds. However, since we
are coarsely sampling scale-space, we analyze each 2D DoG-re-
sponse separately (Lowe searches for extrema in 3D scale-space).
Our search will result in many spurious seed extrema, which will
converge to the nearest true extrema in the optimization of (7).

We define a seed with three parameters: l is set to the spatial
location of the extrema point, and the W is set to the product of
the 2� 2 identity and one-third of the scale of the LoG filter. Intu-
itively, this one-third scale factor shrinks the kernel to the homo-
geneous region at the filter’s center. In contrast, Lowe scales the
region by a factor of 1.5 because the SIFT keys function best in re-
gions of high contrast (the region including its surrounding areas,
for example). Fig. 1 shows a comparison of our scaling and Lowe’s
scaling with respect to the LoG function.

3.4. Merging

Different seed points may converge to the same minimum of
the objective function (7), and since the optimization is indepen-
dent for each seed point, we must account for this issue in a
post-processing step. It is possible to do a more sophisticated ini-
tialization procedure that would reduce the need for a merging
process. Essentially, there is a trade-off between the complexity
of the initialization and the necessity of a merging post-process.
Since we have a continuous objective function that can be mini-
mized with efficient techniques, we are conservative and choose
a simpler initialization that will result in multiple seeds converging
to the same minimum.

Let R denote the set of active regions in an image. For a region
R 2 R, denote the parameters by hðRÞ¼: fl;Wg. Since the regions are
described by anisotropic Gaussian functions, we use the Kullback–
Leibler (KL) divergence function [20] and sum it in both directions
to make it symmetric. Since we want to find regions that have con-
verged to the same local minimum, we set a threshold s let two re-
gions be equivalent if their KL distance is less than s. Such a
threshold must be used due to numerics and discretization in the
floating-point representation. Define an empty set of merged re-
gions R̂ ¼ ;, and merge with the following algorithm:

(1) For each region R 2 R.
(2) For each region S 2 R n R
(3) If dðR; SÞ < s, remove S from R

(4) Add R to R̂.



Fig. 3. Example pixel projections. (Left) Original image. (Middle) RGB linear combination with coefficients (�1,1,�1). (Right) RGB pixel likelihood with color (0,1,0).
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From our observations, we have found the number of regions
was significantly reduced (about 25% on average) after the merging
procedure. The procedure is insensitive to s, which we set (s ¼ 2:0)
based on empirical experiments measuring stability of region
merging. Once two regions are merged, we set their parameters
to the arithmetical average.

4. Multiple feature spaces

Images are complex entities; they are the result of numerous
physical and stochastic processes and live in a very high dimen-
sional space. To make image analysis tractable, we project the
images into a lower dimensional space. Each dimension in the pro-
jected space captures a single image character like red-ness, or stri-
py-ness. This idea is related to filtering techniques like using a
bank of Gabor filters as the basis (e.g. [43]), or dimensionality
reduction with principle components analysis (e.g. [44]). However,
we differ in that there is an underlying assumption that the image
has been constructed from a set of unknown scalar image pro-
cesses. The goal in our approach is to define a set of projections
that can approximate these unknown underlying processes.

Essentially, each projection defines a new feature space (see
Fig. 2). The intuition is that various projection functions will map
a region of consistent image content to a uniform image patch in
the scalar field: e.g., there is some texture and/or color projection
function such that an image of a plaid shirt will be mapped to a rel-
atively uniform scalar field. Thus, by choosing appropriate scalar
projections, we can capture coherent image content of varying
character. To that end, define a function S : X�I#R�I that pro-
jects the d-dimensional image I to a one-dimensional scalar field J.
The scalar image J is indexed by the same pixel locations I and is
thus comprised of fI; Jg, where J : I#R. We will simply write JðiÞ
instead of SðIÞðiÞ in the following examples.

There are two classes of projections: those that operate indepen-
dently on single pixels and those that operate over neighborhoods of
pixels. The methodology we propose is general and the construction
of these projections is application dependent. We do not restrict the
projections: they may be non-linear, and they may be dependent.

4.1. Pixel projections

A pixel projection is one that operates individually on the pixels
without considering any neighborhood information. While limited
in utility, they do not affect any invariance properties of the
detection.

4.1.1. Linear combinations of pixel color
A simple linear combination of image bands can define a useful

feature space. Given three coefficients fcr; cg ; cbg on the pixel color
components, the definition is

JðiÞ ¼ crIrðiÞ þ cgIgðiÞ þ cbIbðiÞ; 8i 2 I: ð8Þ

Fig. 3 (middle) shows an example. Such a discrete set of linear com-
binations is used by Collins and Liu [45] in a tracking framework.
Each vector of coefficients creates a feature space, and they propose
a Fisher discriminant-like ratio to choose the best feature space for
the current image frame.

4.1.2. Pixel color likelihood
A second pixel projection models a feature space as a Gaussian

process in color-space. Then, the projection computes the likeli-
hood on each pixel. Given a color, c and an estimated covariance
R, the likelihood function is written:

JðiÞ ¼ exp �1
2
ðIðiÞ � cÞTR�1ðIðiÞ � cÞ

� �
; 8i 2 I: ð9Þ

Fig. 3 (right) gives an example of the likelihood function.

4.2. Neighborhood projections

Neighborhood projections can be more powerful than the pixel
projections because they incorporate information from multiple
pixels in a single calculation. However, the neighborhood projec-
tions affect the invariance properties of the detection. For example,
for the detection to be scale invariant, we would need to know the
per-pixel integration scale (i.e. the size of the local neighborhood
needed to completely model the local image texture). While some
heuristic methods have been presented to estimate this local scale
[4], its calculation is error-prone, especially near object boundaries.

In addition to the two neighborhood projections we discuss be-
low, various linear filters can be used as projection functions as
well. These include gradient operator, Gabor [46] functions, and
template-matching kernels.

4.2.1. Grayscale variance
The neighborhood variance is a simple texture operator. Let

NðiÞ � I define the set of neighborhood pixels for i 2 I with cardi-
nality n. For pixel i, the variance is

JðiÞ ¼ 1
n

X
j2NðiÞ

IðjÞ � 1
n

X
j2NðiÞ

IðjÞ
 !2

: ð10Þ
4.2.2. Local orientation coherency
A second texture projection measures the local orientation

coherency, or the stripy-ness, of the neigborhood. Jahne [47, p.
357] suggests a ratio of a linear combination of the eigenvalues
of the structure tensor. Denote the local image gradients of I in
the x and y direction as Ix and Iy, respectively. Then, for pixel i
and its neighborhood N, the structure tensor T is

TðiÞ ¼
P

NðiÞI
2
x

P
NðiÞIxIyP

NðiÞIxIy
P

NðiÞI
2
y

" #
: ð11Þ

Let k1 P k2 be the eigenvalues of TðiÞ. Then, if there is a ideal local
orientation, one eigenvalue is zero, k1 > k2 ¼ 0. Considering image
noise, the ideal case will never happen. For dominant local orienta-
tion k1 � k2. Otherwise, if there is isotropic local orientation
(including the case of little gradient information), k1 � k2. Thus, this
suggests using the following ratio to analyze the presence of dom-
inant local gradient:



Fig. 4. Examples of the stripy-ness (local orientation coherency) projection. The grayscale images are on top with the corresponding projections below. In the projections,
white means more stripy.
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JðiÞ ¼ k1 � k2

k1 þ k2

� �2

: ð12Þ

For the case of dominant local orientation, then this ratio is near 1, and
conversely, for the case of no dominant local orientation, this ratio
tends to 0. Care must be taken in the implementation to avoid divi-
sion-by-zero; in our implementation, we threshold on very low gra-
dients. We give three examples of this stripy-ness projection in Fig. 4.

5. The complete detection algorithm

In this section, we summarize the complete algorithm for
extracting coherent regions. The local minima of a continuous
scale-space define representative coherent regions in the image
description. For a given input image I, define a set of scalar projec-
tions B ¼ fS1; . . . ; Sbg. For each projection p 2 B, define an initial,
empty set of regions Rp and carry out the following steps:
Fig. 5. Examples of the algorithm running on four different image projections. Top-left i
variance projection on the same image from Fig. 3(left). Bottom-left is a ‘‘grassy” color
mentioned in this figure the reader is referred to the web version of the article.)
(1) Detect seeds (Section 3.3).
(2) Independently, minimize the function in Eq. (7) to refine

each seed.
(3) Add convergent regions to Rp.
(4) Merge Rp (Section 3.4).

After computing the b region sets, we compute region descrip-
tions (Section 6). In Fig. 5, we show examples of the algorithm run-
ning on four different image projections.
6. Region description

In this section we discuss a few potential approaches to region
description; the description approaches are compared in Section
7.3. Recall that at this step in the algorithm, we have b sets of
regions R1 . . .Rb, (one for each feature space).
s the green color projection introduced in Fig. 3 (right). Top-right is a neighborhood
projection. Bottom-right is the stripy-ness projection. (For interpretation of color
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6.1. Single appearance with cooccurrence

The first description is the appearance model we have already
discussed. Here, we assume that the character is a constant value
in one of the projected images with zero-mean, normally distrib-
uted noise. We can either fix or estimate the variance. Because we
have not restricted the development to independent projections,
we must explicitly model the cooccurence information relationship
between different projections. In this context, cooccurence simply
means that the same region (spatial) has been detected in two or
more different projections.

We augment each region with a parameter-list indicating from
which projection it was detected. Denote the parameter-list of pro-
jection(s) for a region R by LðRÞ. Then, we define a new region set
that is the union of all detected regions detected R ¼

Sb
p¼1Rp. To

evaluate the cooccurence information, we enumerate through each
pair of regions in R. For each pair of regions ðR; SÞ, we evaluate
their spatial proximity with the KL distance. If dðR; SÞ < s, the
regions are said to cooccur. In this case, we define a new region T
that inherits its parameters from R and S: the spatial parameters
set to those of R (which are equivalent since dðR; SÞ < s) and the
projection list is combined by taking the union LðTÞ ¼ LðRÞ

S
LðSÞ.

We remove R and S from R and add T to R.
After checking each region pair in R, we compute the appear-

ance description for the remaining regions. For each region
R 2 R, describe it by computing the kernel-weighted mean (3) un-
der each projection in its list LðRÞ.

6.2. Appearance in all projections

The first method for describing the appearance of the regions
creates a summarization of the image based on the exact projec-
tions used in the segmentation. However, such a representation
may not be discriminative enough for certain problems, like im-
age-to-image matching. A slightly more discriminative approach
is to sample the appearance properties in all projections regardless
of a region’s originating projection.

Take the union of all regions detected R ¼
Sb

p¼1Rp. Then, for
each region in R sample the kernel-weighted mean over all projec-
tions B creating a b dimensional vector. This is the representation
we have used in [41]. Although this description yields good results
(Section 7), it is invalid to assume a single, homogeneous value in
every projection. Therefore, one must also measure the kernel-
weighted variance in each projection, which is shown to improve
matching results (Section 7.3).

6.3. Properties

The region description is implicitly invariant to rotation and
translation in the image because it is simply a set of kernel-
weighted statistics. However, as the detection is sensitive to scale
if a neighborhood projection is used, the description is also sensi-
tive to scale. Likewise, if the scalar projection is designed to extract
vertical texture (y-gradient in the image), then the region’s descrip-
tion under this projection is no longer rotationally invariant or ro-
bust to affine distortion. A rotated image will yield a completely
different region description under this projection. However, we
note that one can enforce some degree of invariance (e.g., affine
[15]) by explicitly incorporating it based on the spatial parameters
of the region before computing the description. We do not explore
this idea in this paper.

Given each of the description methods described above, the
maximum number of appearance parameters per regions is 2b
for b projections. It is clear that the image description is concise
(linear). Thus, the storage requirement for our technique will not
prohibit its scaling to large or very large databases.
7. Experiments

We use an image retrieval experimental paradigm. Thus, for a
given database of images, we apply our coherent region extraction
to each image independently. The image descriptions are then
stored in a database and a querying protocol is established. To per-
form retrieval, for each image in the dataset, we query the data-
base, and a sorted list of matching images is returned with the
best match first.

For the experiments, we use a dataset of 48 images taken of an
indoor scene from widely varying viewpoints and with drastic pho-
tometric variability (a subset of the dataset is shown in Fig. 6). We
hand-labeled the datasets; two images are said to be matching if
there is any area of overlap between them (hence the compara-
tively small data set size).

We use the standard precision–recall graphs to present the
matching results. The precision is defined as the fraction of true-
positive matches from the total number retrieved and the recall
is the fraction of matching images that are retrieved from the total
number of possible matches in the database. Thus, in the ideal case,
the precision–recall graph is a horizontal line at 100% precision for
all recall rates.

Denote the three bands of the input image as R;G;B and S as their
grayscale projection. Unless otherwise noted, we use a set of five pro-
jections: the three opponent color axes fðRþ Gþ BÞ=3; ðR� BÞ=3,
and ð2G� R� BÞ=4g which have been experimentally shown by
[48] to perform well in color segmentation, a neighborhood variance
measure in S with a window size of 16, and an orientation coherency
measure in S with a window size of 16.

For matching, we take a consistent nearest neighbor approach.
Given a pair of images I1; I2 and their corresponding region sets
R1; R2 computed from the same set of projections B, the matching
score between the two images is defined as the number of consis-
tent nearest neighbor region pairs. A consistent nearest neighbor
region pair is defined as a pair of regions with each being mutual
nearest neighbors in a brute force search through both region sets.
To be concrete, for region R 2 R1, solve the following function

R�2 ¼ arg min
R22R2

DðR;R2Þ; ð13Þ

where D is a distance function between the two region descriptions.
Then, for the nearest neighbor R�2, solve the following function

R�1 ¼ arg min
R12R

DðR1;R
�
2Þ: ð14Þ

The match fR;R�2g is considered consistent match if and only if
R�1 ¼ R.

From the possible descriptions previously discussed (Section 6),
there are two candidates for the distance function. First, if the ker-
nel-weighted means are used to describe the regions, then a simple
sum of squared distance measure is sufficient. Second, if the ker-
nel-weighted variances are included in the description, then the
more appropriate measure is the KL distance. Additionally, if the
cooccurence information is maintained, and the descriptions
stored are dependent on the projection in which the regions were
extracted, then the distance is only valid between regions that
have been extracted from an equivalent set of projections. The dis-
tance between regions that have been extracted from different pro-
jections is set to infinity.

7.1. Detection properties

The coherent regions have a number of good properties: stabil-
ity/invariance, conciseness, and scalability. Since the image
description is composed of a number of independent regions, like
other local descriptor methods [1], it is robust to occlusion (shown



Fig. 6. A subset of the indoor dataset (chosen arbitrarily) used in the retrieval experiments.

Fig. 7. The coherent regions extracted are robust to affine distortion of the image. The top-left is the original image, top-right is a rotation, bottom-left is an increase in the
aspect ratio, and bottom-right is a reduction in the aspect ratio.

J.J. Corso, G.D. Hager / Computer Vision and Image Understanding 113 (2009) 446–458 453
experimentally in Section 7.7). In addition, using the kernel func-
tions to weight the region statistics increases the robustness since
Detection Stability with Image Rotation
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Fig. 8. Detection repeatability experiment for rotated images. Our method is
labeled CRE (Coherent Region Extraction).
it weights pixels based on their distance from the region center and
avoids the difficult problem of boundary localization.

We claim that the detection is robust to affine distortions in the
image. In Fig. 7 we show the extracted regions using the RGB pro-
jection for exposition. To qualitatively analyze the detection, we
have transformed by different affine maps: (top-right) is rotation,
(bottom-left) increasing the aspect ratio, (bottom-right) reducing
the aspect ratio. From the figure, we see that roughly the same re-
gions are extracted.

We have also performed two experiments to quantitatively
measure the detection invariance. For these experiments, a point
projection is used, which is rotation, translation, and scale invari-
ant. In the first experiment (Fig. 8), we analyze the detection
repeatability under rotations in the image. For this experiment,
to detect if a region is re-detected, we use only the spatial param-
Table 1
Detection repeatability under random affine transformations of varying complexity.
Our method is CRE (Coherent Region Extraction).

Grade CRE (%) SIFT(%)

1 95 93
2 92 91
3 88 89
4 89 88
5 87 86
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Fig. 9. Graph showing precision–recall for each of the five projections used in the
experiments (independently).
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Fig. 12. Image representation for the three methods on the same image. For our techniq
key locations, scales, and orientations are rendered by arrows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

MV MC M

Fig. 11. Graph showing precision–recall for different region description algorithms.
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eters (since we know the underlying geometric transformation and
can directly invert it). We compare it against the SIFT method on
the same images. We find the two methods perform comparably.
In the second experiment (Table 1), we distort the image by an af-
fine transformation chosen at random with varying complexity
(five grades). The simplest transformations, grade 1, included scale
changes (1	 0:1) and rotations (	 p

16 radians). The most complex
transformations, grade 5, included scale changes (1	 0:5), rota-
tions (	 p

2 radians), and skew (1	 0:3).

7.2. Projections analysis

The projections define the feature spaces in which the image
will be analyzed for coherent content. The representative power
of the resulting feature spaces is dependent on the projections
used. In the following two experiments we analyze the matching
sensitivity to the projections we have used in the experiments.

In Fig. 9, we show the representative power of each of the five pro-
jections that we use in the experiments. The three opponent axes are
labeled Opp, the variance projection Var 16, and the orientation
coherency projection OC 16. The graph indicates that the color pro-
jections are more representative of the image content in the test
database than the two texture projections. The orientation coher-
ency projection performs the worst initially, but, for greater recall
rates, it improves with respect to the other projections. This change
is because the images we use have very few regions of stripy texture,
and thus, the color is more discriminative for low recall rates. How-
ever, for higher recall rates, the stripy region information is less
ambiguous than the remaining color information. In Fig. 9, the Opp

1 projection is, essentially, the grayscale image; it is interesting to
note that while it performs better than the variance and orientation
coherency for recall rates up to 20%, for the remaining recall rates, it
performs the worst. This degradation is due to the high variation in
the lighting conditions between the images, and the raw grayscale
data is not very robust to such photometric variation.

In Fig. 10, we show the effect of varying the number of projections
used in the image description. For Proj. 1, we just use the grayscale
image. For Proj. 2, we use the grayscale image and the variance pro-
jection with a neighborhood size of 16. For Proj. 3, we use the three
opponent color axes, and for Proj. 4, we add the variance with neigh-
borhood size 16. Proj. 5 is the same set of projections used in all the
other experiments. We find that the addition of multiple projections
greatly improves the retrieval accuracy.

7.3. Description comparison

In this experiment, we compare the candidate region descrip-
tions from Section 6. The three descriptions we compare are:

MC—Kernel-weighted mean and cooccurence modeling. Here,
we make explicit use of the projections from which the regions
are extracted.
M—A kernel-weighted mean from each projection.
MV—A kernel-weighted mean and variance from each
projection.
ue (left) and Blobworld (middle), a color representation is used. For SIFT (right), the
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Fig. 11 shows that the kernel-weighted mean and variance from
each projection performs the best of the three techniques. One
would expect the MC description to perform better since it explicitly
Table 2
Comparison of average per-image storage for the three techniques.

Average number
of elements

Size per element
(in words)

Average size
(in words)

Our technique (M) 333 5 1665
Our technique (MV) 333 10 3330
Blobworld 9 239 2151
SIFT 695 32 22,260
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Fig. 13. Comparison between our technique and other published techniques.
incorporates the projections from which the regions are extracted.
However, the resulting description is not as discriminative as those
resulting from other two description algorithms.

7.4. Retrieval comparison

We compare our technique to two representative techniques for
local and global image description: SIFT keys [3] and Blobworld [4],
respectively. Fig. 12 gives a visualization of the different represen-
tations. SIFT is an example of a local, affine-insensitive and scale-
invariant interest point descriptor. Note, that additional geometric
constraints are plausible for both our method and SIFT key match-
ing, but we do not employ any of them in order to keep the com-
parisons between methods fair. Blobworld is an example of using
segmented image regions as the description. To measure matches
using their provided source code, we used blob-to-blob queries.
For a query image I with regions r1; . . . ; rn, we queried the database
independently for each region ri and maintained accumulators for
each image. The final matches for the query image were those
images with the highest accumulators after queries for all n regions
had been issued.

Fig. 13 presents the precision–recall graph (average for query-
ing on all images in the database) for each of the methods. For re-
trieval, we find the SIFT keys outperform the other two methods.
This result agrees with the study by Mikolajczyk and Schmid [2].
Our method (MV) outperforms the Blobworld technique by about
6.5% precision on average. As we will discuss in the next section,
the better SIFT performance on this initial retrieval experiment is
likely a function of its high storage requirements, which are an or-
der of magnitude more than our method and Blobworld. SIFT ex-
ploits such a redundant representation to give improved results;
however, the scalability of SIFT is questionable.
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7.5. Storage comparison

As an image or a scene database grows, querying it becomes
more difficult and better indices or searching algorithms are re-
quired. In Table 2, we compare the storage efficiency for the three
methods. We see that our method generates a data-size on the
same order as Blobworld, which is far less than the SIFT approach.
This data reflects the available source code for Blobworld and SIFT.
It should be noted that the SIFT keys store 128 1-byte elements
while the other two methods use 4-byte (1-word) floating point
elements. We have not experimented with quantizing the storage
for our technique to further reduce the size.

Next, we show the results of an experiment that compares the
retrieval rates for the SIFT method with our method when they
store an equivalent (or nearly equivalent) number of features. In
this case, we are still not storing the same amount data since the
length of the SIFT keys are 128 bytes and the length of our descrip-
tors is 5, which is dependent on the number of projections (we use
the standard five projections and the M description). As suggested
by Lowe [3], the larger (in spatial scale) SIFT keys are generally
more stable and robust to noise. Thus, to reduce the number of SIFT
keys stored, we keep the largest. In choosing the subset of features
for our method, we rely on the value of the objective function for
each region, which incorporates both scale and homogeneity. We
have shown in [49] that this method is better than scale alone. In
Fig. 14, we show the precision–recall graph for four different sub-
set sizes: 150, 100, 50, and 20. The two methods perform compa-
rably at 150 feature with the SIFT method slightly outperforming
the coherent regions. However, in the next three graphs, we find
our technique drops in precision slightly for smaller subset sizes,
but the SIFT method drops at a much faster rate. One can infer from
these results that while SIFT is highly discriminative, it relies on
large quantities of redundant data.

7.6. Robustness to affine distortion

In Section 7.1 we discussed the properties of our representation,
and we claimed that it is robust to affine transformations of the im-
age. To test this claim, we changed the aspect ratio of each image in
the entire dataset and re-computed the coherent regions and SIFT
keys. We performed a complete dataset query (same as above) and
measured the precision–recall (Fig. 15) when querying with these
distorted images. We used the MV description method. We experi-
mented with aspect ratio changes of 0.5, 0.75. From the graphs, we
see that our method is robust to the image distortion. At the extreme
cases, it outperforms the SIFT method, which drops substantially.
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Fig. 15. Graph showing precision–recall for our technique and the SIFT
7.7. Robustness to occlusion

As mentioned earlier, one of the benefits of the local interest-
operator techniques is their robustness to occlusion since an en-
tire image (or object) is represented as a set of independent (and
local) measurements. Likewise, our method summarizes an image
as a set of independent regions. To simulate the occlusion, we
choose a rectangle independently at random in each image and
turn all the pixel intensities in that region to 0. In Fig. 16, we
compare the robustness to occlusion of our method and the SIFT
method as we vary the amount of occlusion. To compute the
change in precision we subtract the precision with occlusion from
the precision without occlusion. Thus, 0 change in precision
means the occlusion has no effect on the retrieval, negative
change in precision means the occlusion actually improved the
rate, and positive change means the occlusion caused the retrie-
val rates to degrade. An improvement is possible for small partial
occlusions when the occluder masks an ambiguous image region.
Essentially, a ‘‘smaller” change in precision means more robust-
ness to the occlusion. We compare the same occlusion sizes:
5%, 15%, and 25%. We find that our technique is more robust to
the occlusion in this experiment than the SIFT technique for the
same respective occluders.
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method when querying with distorted images from the database.
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8. Conclusion

We have presented a novel method for image representation
using a kernel-based, sparse image segmentation and description
method. The method is general in that it permits a variety of fea-
ture spaces that are represented as scalar image projections. We
create a continuous scale-space of anisotropic regions with coher-
ent image content. The regions are robust under drastic viewpoint
changes and varying photometric conditions. Our experiments
indicate that the methods are stable, reliable, and efficient in terms
of both computation and storage. In particular, the use of spatial
kernels admits efficient, optimization-based methods for segmen-
tation and image matching.

The main contribution of this paper is the exploration of fea-
tures that both summarize content and are moderately discrimina-
tive rather than features that are highly discriminative. In this
sense, we integrate ideas from traditional segmentation into the
interest point concepts thereby creating an interest region opera-
tor. However, it is clear that both approaches have their benefits
and drawbacks. Thus, we envision an integrated framework where
each interest point has a spectrum of representations associated
with it: at one end of the spectrum is a summarizing representa-
tion and at the other end is the discriminating representation. Such
a representation-spectrum will scale much better than either inde-
pendently with the large image databases and demand for real-
time applications we are beginning to find now and will increas-
ingly see in the future.
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Appendix A. Derivation of final objective function

We show that Eq. (7) approximates Eq. (6) (see [49] for a full
discussion). We approximate the discrete sum of the Gaussian
(1) over the image with the continuous integral:X
i2I

Kði; rÞ �
Z Z

Kðx; rÞdx ¼ 1; ðA:1Þ

where the integral is over R2 and x 2 R2. This integral is computed
in closed-form, and, since the regions are generally smaller than and
contained by the image, the approximation captures the majority of
the region-area. We also need the squared kernel:X
i2I

Kði; rÞ2 �
Z Z

Kðr; xÞ2dx ¼ 1

4pjWj
1
2
: ðA:2Þ

First, we solve for the scale factor in the template term of Eq. (6).

arg min
b

X
½bKði; rÞ � IðiÞ�2

0 ¼
X
½bKði; rÞ � IðiÞ�Kði; rÞ

b ¼
P

IðiÞKði; rÞP
Kði; rÞ2

b � 4pajWj
1
2:

ðA:3Þ

Next, we simplify Eq. (6):
arg min
b;l;W

X
Kði; rÞIðiÞ2 � a2 þ c

n

X
½bKði; rÞ � IðiÞ�2

arg min
l;W

X
Kði; rÞIðiÞ2 � a2 þ c

n
½4pjWj

1
2a2 � 8pjWj

1
2a2� þ const

arg min
l;W

P
Kði; rÞIðiÞ2

a2 � c
4pjWj

1
2

n
þ const:

ðA:4Þ

We assume that a2–0. Finally, we show that Eq. (7) is a first-order
approximation to Eq. (6). We use a special case of the binomial ser-
ies expansion [50]:

ð1� xÞ�r ¼
X1
k¼0

ðrÞk
k!
ð�xÞk

¼ 1þ rxþ 1
2

rðr � 1Þx2 þ 1
6

rðr � 1Þðr � 2Þx3 þ 
 
 


We have used the Pochhammer symbol ðrÞk ¼ rðr þ 1Þ 
 
 
 ðr þ k� 1Þ.
The series converges for jxj < 1. For the case r ¼ 1, we have
ð1� xÞ�1 ¼ 1þ xþ x2 þ 
 
 
 Let s ¼ n

4pc, and write B ¼ 4pc
n jWj

1
2.

s
jWj

1
2
¼ n

4pcjWj
1
2
¼ B�1 ¼ ð1� ð1� BÞÞ�1

¼ 1þ ð1� BÞ þ ð1� BÞ2 þ 
 
 
 � �B ¼ �4pc
n
jWj

1
2: ðA:5Þ

For the binomial expansion, we must ensure jð1� BÞj < 1. We de-
rive bounds for c to ensure 0 < B < 2. Note jWj

1
2 > 0, and n > 0.

The lower bound is clearly c > 0. The upper bound derivation
follows:

B < 2
4pc

n
jWj

1
2 < 2

c <
n

2p
jWj

1
2:

ðA:6Þ

Assuming (A.5) and (A.6) shows that the objective function defined
in Eq. (7) is an first-order approximation of Eq. (6).

We now discuss the bound (A.6) to show that the approxima-
tion holds in our experiments (Section 7). Recall n is the number
of pixels in the image, which is on the order of 105. We implement
(7) with the s ¼ 1. Then, by definition, c ¼ n

4p. Given the bound
(A.6), we can determine for what size regions this approximation
holds, i.e. we get a bound for W

1
2:

c <
n

2p
jWj

1
2

n
4p

<
n

2p
jWj

1
2

1
2
< jWj

1
2:

ðA:7Þ

Therefore, the approximation holds for all but extremely small re-
gions. Since the unit is the pixel, the lower bound roughly corre-
sponds to regions that are smaller than a pixel.
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