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ABSTRACT
We introduce a new problem called coaction discovery: the
task of discovering and segmenting the common actions (coac-
tions) between videos that may contain several actions. This
paper presents an approach for coaction discovery; the key
idea of our approach is to compute an action proposal map
for each video based jointly on dynamic object-motion and
static appearance semantics, and unsupervisedly cluster each
video into atomic action clips, called actoms. Subsequently,
we use a temporally coherent discriminative clustering frame-
work for extracting the coactions. We apply our coaction
discovery approach to two datasets and demonstrate con-
vincing and superior performance to three baseline methods.

Categories and Subject Descriptors
H.5.1 [Information System]: Information Interfaces and
Presentation—Multimedia Information Systems
; I.4.9 [Computing Methodologies]: Image Processing
and Computer Vision—Applications

General Terms
Algorithms, Experimentation

Keywords
coaction discovery, time series clustering, discriminative clus-
tering

1. INTRODUCTION
Human action modeling and understanding in the video is

one of the most popular topics in the current computer vision
community with many recent papers about action recogni-
tion [10, 18] and action detection [6, 20]. In this paper, we
introduce a new term for action: coaction, which is defined
as the common actions (coactions) between multiple long
term videos each of which is composed of multiple actions
(Figure 1).
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Figure 1: Our approach is to discovery the common
actions (coactions) between videos each of which
consists of several actions.

Coaction discovery has rich potential in computer vision.
First, given two long term videos, we can calculate a more
accurate distance of two videos based on the coaction of
two videos rather than the whole videos, and improve the
video retrieval result. Second, when there are many similar
videos from which we need to extract some common action,
it is possible to annotate only one video and obtain others
automatically through coaction discovery. Third, based on
the coaction of two videos, we can do video clustering and
understand the structure of a video set, which is increas-
ingly important given the massive amount of videos being
produced and uploaded onto the internet in recent years.

Although coaction discovery is a new problem, there are
similar works in action detection and image segmentation.
In action detection, some papers detect the position of the
action in the long term video by using the single action tem-
plate video [6, 20]. We would consider the extracted sub-
videos to be the coaction between the multiple action videos
and the template video. Whereas these methods are action-
specific, i.e., they are given the action template and seek its
similar segments in other longer videos; in our case, we take
a set of videos and seek to discover the coaction naturally
from them, without any specific knowledge of which type of
action may be present. Also, whereas these methods can be
considered to be detection methods (they are given an action
template and seek to detect it in the other longer videos),
in our case we take the multiple videos, each of which may
contain multiple actions, and seek to segment the coactions.

In image segmentation, there is a term called cosegmenta-
tion [5,7,13] which segments the common parts of an image



pair simultaneously. It is very similar in our high-level prob-
lem description, but our problem is on three-dimensional
video data. Coactions must be considered at a higher-level
than the common parts of an image pair since there are both
appearance and motion information. We are able, however,
to build upon this existing literature in part of our method,
using discriminative coclustering [7].

Coaction discovery is a unique challenge. First, the video
background presents an interesting difficulty: many image
analysis methods now use background information as con-
text for higher-level tasks (even action recognition from a
video [19]) and show performance improvement. However,
for coaction in videos, the backgrounds may dominate videos
and the coaction may erroneously incorporate background.
In the limit case, the discovered coaction is directly the back-
grounds. Second, since there are multiple actions in each
video and the position and time span of the actions is un-
known, we can not compare actions directly between videos
to obtain coactions. Conversely, we can not compare indi-
vidual frames between videos to get the coaction; individual
frames carry insufficient motion information to adequately
describe realistic actions. The novel nature of coaction dis-
covery and these noted challenges requires an innovative so-
lution to the problem.

We propose an approach that automatically discovers the
coactions between multiple videos. Our main idea is to lever-
age the dynamic and static appearance-semantic (detected
humans) cues to generate an action proposal score map for
each frame. We extract features based on the score map
by an innovative spatially-weighted bag-of-words using this
action proposal score map. We then segment the video into
meaningful actoms/clips through unsupervised time-series
clustering ( [4] use a similar notion of actom but theirs is su-
pervised and human-specific), and finally, estimate the coac-
tion between the videos using an extended discriminative
segmentation method that incorporates a temporal consis-
tency prior on those actoms. See Figure 3 for an overview.

To implement our method, we first propose an action-like
motion and appearance based measure that reflects a po-
sition’s score of belonging to the action region. To obtain
the action-like motion proposal map, we use the method
from [15] that computes optical flow and uses properties
of point trajectories, such as large difference between sur-
rounding and action region, to distinguish moving objects
from moving background. To obtain action-like appearance
proposal map, we use a static property of single frame, such
as response of human detector [3], since we assume the host
of the action is human. Our base assumption here is that hu-
mans are performing the actions of interest, but this can be
relaxed to application-specific semantics. Based on motion
and appearance information for action, it can generate the
action-like score map using an additive model. Second, we
extract the spatially-weighted features of each frame based
on the action proposal score map and compute the similar-
ity using the spatial pyramid kernel [9]. Then, we adopt
the aligned cluster analysis (ACA) [21], which is a time
series clustering method extended from the kernel kmeans
through the Dynamic Time Alignment Kernel (DTAK). It
jointly segments the video into actoms/clip [4] and clusters
the clips in the whole model. Finally, we have the clip-
based representation for each video. Considering each clip
as a node, the coaction discovery is reduced to cosegmeta-
tion on one-dimensional time series data, with one for each
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Figure 2: Two illustrative examples of a coaction
set over three videos each. Each row depicts the
actions of frames in a video and each distinct ac-
tion is depicted as a color; white indicates no ac-
tion is present. In the top case, the coaction is the
red/slash action (it uniquely occurs in videos one,
two and three) whereas in the bottom case, the coac-
tion is the blue/backslash and green/dots set. Even
though the orange action occurs in videos four and
six, it is not in the coaction because video five lacks
it.

video. We innovatively combine temporal local consistancy
within discriminative clustering [1, 7] to discovery the coac-
tions between videos.

In this paper, our main contribution is an automatic ap-
proach for coaction discovery between videos. To the best
of our knowledge, this is the first paper working on coaction
discovery for multiple actions in multiple videos. The impor-
tant novel parts of our approach include: (1) a new motion
and appearance based measure of action proposal score map
in the video; (2) a spatially weighted bag of words for each
frame based on this score map, (3) unsupervised clustering
of the meaningful actoms/clips for videos, and (4) a discrim-
inative clustering with temporal local consistency that ac-
commodates the actoms/clips. In the experiments, we build
a coaction dataset based on the UCF sport dataset [11] (CA-
UCF), by concatenating multiple single action videos, and
we use a small challenging data set collected from Youtube.
We apply our approach and other three baseline approachs,
our approach shows better performance than other baseline
approaches on CA-UCF.

2. APPROACH
A coaction is a common action that is occurring in two or

more videos. For example, in two videos of a baseball game,
the action of the pitcher pitching is common to both of the
videos. Figure 1 gives a high-level introduction to coactions.

Concretely, let V = {V1, V2, . . . , VN} be a set of N videos
with each video Vi represented as a sequence of ni frames
{v1
i , . . . , v

ni
i }, or with a shorthand set-notation v1:ni

i , which
we will use throughout the paper to denote subsequences of
frames, or clips, in a video and we will drop the subscript i
whenever it is irrelevant.

Let A be some oracle that maps a frame in a video to one
action among a set A of possible actions. An action is then
a subsequence of video-frames va:b such that each frame has
the same action: |

Sb
z=aA(vzi )| = 1. We can hence extend

the action oracle to operate on clips.
Finally, a coaction over V is then a set of m clips C =



{vaz :bz
i : i ∈ (1, N) and z = {1, . . . ,m})} such that the union

of actions over each video’s clips in the coaction is the same
for all videos in the coaction, which we write via a pairwise
equivalence:[
z

A
“
vaz :bz
k

”
≡
[
z

A
“
vaz :bz
l

”
∀ pairs k, l ∈ (1, N) . (1)

See Figure 2 for a pictorial explanation. Our definition of
coaction relies upon the common assumption that a single
action may occur at any given frame in a video (e.g., [12,14]),
but it is not difficult to relax that assumption for a more
general definition of coaction.

The basic problem we pose and solve in this paper is to au-
tomatically discover and temporally segment the coactions
in a given set of videos. Our coaction discovery algorithm
has four key steps.

1. We measure the probability that any action is occurring
over each frame in each video, which will allow us to
discard problematic background/action-free regions.

2. We then extract a bag-of-words feature histogram over
the videos using an innovative weighted histogram ap-
proach to focus the feature extraction on the actions
within the video;

3. The next step is to extract unsupervised actoms, clips
with atomic actions in them, using Aligned Clustering
Analysis (ACA) [21].

4. For the final coaction segmentation, we adapt the dis-
criminative cosegmentation algorithm [7] to our one di-
mensional actom cosegmentation.

The remainder of this section describes each of these steps
in more detail and Figure 3 presents a visual explanation.

2.1 Action Proposals
The first step in our method is to generate action pro-

posals: measurements over each video frame that represent
the probability the pixels within the frame are in some ac-
tion. We assume no classifier based on location, duration,
or appearance is available to generate action proposals and,
rather, our proposals based on two assumptions about ac-
tions in video are: first, there must be motion present around
an action, which we call the attribute of the action and sec-
ond, the key object in the action is human, which we call the
host of the action. The former is a bottom-up notion and
the latter is high-level semantic information; these assump-
tions may be altered depending on the particular coaction
application, but in our paper, they will suffice (we ultimately
work with human sports videos, such as UCF Sports [12]).
We derive a proposal map for each of these two assumptions
(described next) and then combine them to yield an overall
probability of action at a per-pixel level in the video frames.
Figure 3(a) shows the action proposals for example video
frames.

Moving-Object Score Map. For static and mostly
static backgrounds, finding the moving object is straightfor-
ward (e.g., frame-differencing or standard background sub-
traction [17]) and we will not discuss it in any detail. But,
when the background is dynamic or the camera is moving
freely, computing an action proposal for object motion is
quite more difficult. In this situation, we dynamically build
a model of the background by sparsely sampling trajectories
of salient points and robustly estimating a compact trajec-
tory basis from them based on the Sheikh et al. method [15].

For the zth frame vzi of video Vi, we use optical flow to
obtain dense trajectories at every fifth pixel p, the length of
trajectory is 15 frames in our paper. Optical flow is com-
puted with the method from [2]. Following [15], we assume
the background is comprised of three trajectory bases and
use RANSAC to estimate them at each frame. Given the
three computed bases bk, k = 1, · · · , 3, for the pixel p of vzi ,
the moving object score M(p; bk) is estimated based on the
reconstruction error of the trajectory of position p through
the computed three bases bi:

M(p; bk) = min
α

‚‚‚‚t(p)− 3X
k=1

αibk

‚‚‚‚ . (2)

where t(p) is the trajectory of position p. The larger the
minimal reconstruction error, the more likely the pixel is
not part of the dynamic background and hence the more
likely it is a moving object.

Human Score Map. We use the state of the art latent
SVM-based human detector [3] to compute the human score
map, H(p). For each pixel p in the frame vzi , we extract its
score H(p) directly from the detector.

Combined Action Proposal Score Map. For each
frame, we extract the two maps using the low-level mov-
ing object extraction M(·; bk) and high-level human detec-
tion methods H(·), and we normalize them such that lies
within the range of [0, 1] denoted M and H because each
map’s score has a different range. Our fusion rationale is
that we want the action proposals to focus on regions that
have foreground-like moving objects (an inter-frame quan-
tity) and human-like appearance (and intra-frame quantity).

score(p) = λM(p) + (1− λ)H(p) . (3)

To that end, the final action proposal map is a simple convex
combination of the two maps for data fusion and we set
λ = 0.4 in all experiments.

2.2 Feature Extraction from the Score Map
Given the action proposal map score each frame, we next

extract features that represent each frame in the video. Our
feature representation is based on the common bag of words
approach, but to emphasize the focus on parts of the video
actually containing human-like object-motion, we compute
a novel weighted bag of words using the action proposal map
from (3).

First, we use standard k-means clustering to learn our
codebook over a typical action dataset [12]. Our raw fea-
ture is dense HOG3D [8]. Then, given the codebook and a
new video, for each frame, we densely take the points from
the frame and extract the HOG3D feature for each pixel.
Each HOG3D point is assigned to one of words in the code-
book. However, whereas in standard bag of words approach,
each HOG3D point is equally weighted in the histogram, our
innovation is to weight each HOG3D point based on the ac-
tion proposal score map score(p) from (3). For the kth bin
of histogram hist,

hist(i) =
X
f∈F

1c(f)==i · score(p(f)) , (4)

where F is the feature set of all HOG3D point of the frame,
c(f) is the assignment of the feature f in the codebook, and
p(f) is the spatial position of feature point f . This his-
togram is referred to as a weighted bag of words histogram.



Video 1
Vi

de
o 

1
Vi

de
o 

2

(c) actom discovery for both videos (d) actom/clip based Discriminative Clustering 
for Co-Actions discovery

Video 2
Frame i

Moving 
Object Score 

map

Human Score 
map

(a) obtain action-like scoremap

(b) Feature Extraction: pyramid 
spatial weighted BoW based the 

Score Map

Action 
Proposal 

Score Map Level 0

Level 1

Figure 3: Algorithm overview where steps (a) to (d) correspond to Section 2.1 to Section 2.4, respectively.

Finally, we build the two level pyramid structure (i.e. 1x1,
2x2) [9]. Thus there are one weighted histogram hist0 in
the level 0, and four histograms {hist1, hist2, hist3, hist4}
in the leve 1.

To measure the similarity between two frames vki and vli,
we calculate the summation of the intersection kernel of each
histogram for two frames:

K(vki , v
l
i) =

4X
i=0

Ii(vki , vli) (5)

where Ii(vki , vli) =
P
j min(hist

(vk
i )

i (j), hist
(vl

i)
i (j)). Some

equivalent actions can be oriented in different directions,
such as walking right-to-left or left-to-right. To account
for this, we compute two similarities between each pair of
frames: flipped and unflipped. The unflipped similarity is
computed between the two original frames, while the flipped
similarity is produced by flipping one of the two frames left-
to-right. We then record the maximum of these two similar-
ities. We then segment the video based on these recorded
frame similarities using time series clustering.

2.3 Unsupervised Actoms Discovery
In some sense, a single action can be considered as com-

bination of sub-actions. These sub-actions have been called
“actoms” by [4] and are small clips in the video that contain
a single action. In [4], the actoms is annotated manually for
the training data. But, in our coaction discovery problem,
there is neither prior knowledge about what actions will be
present in the video nor about what kind of actoms should
be obtained for actions. So, we can not get the actom as
in [4]. In this section, we show how we obtain the actoms in
an unsupervised way via time series clustering.

What is an actom? There are two aspects: firstly, an
actom is a meaningful clip (semantically) in the video; sec-
ondly, this kind of clip should happen with some frequency.

The simplest way to unsupervisedly compute the actoms,
is to run kernel kmeans on the video frames. The subse-
quent frames within each cluster could be seen as the ac-
tom. However, because kernel kmeans adopts the kernel
for two single frames, the generated actoms are collections
of similar frames (in appearance and local flow), which are
quite different from the actom we seek because they can
not capture similar actions. We hence need a time series
clustering method that adds the actom generation (tempo-
ral actom segmentation) into the objective function of the
clustering algorithm. To reach the goal, we adopt an ex-
tension of kernel kmeans called Aligned Cluster Analysis
(ACA) [21], which combines kernel kmeans with Dynamic
Time Alignment Kernel (DTAK).

Given video set V = {V1, V2, · · · , Vk} with k videos, each
video Vi = {v1

i , · · · , vni
i } consists of ni frames. To make the

notation simpler, we concatenate the videos into one long
video and reindex themX = {v1

1 , · · · , vn1
1 , · · · , v1

k, · · · , v
nk
k } =

{x1, x2, · · ·xn} with n =
Pk
i=1 ni.

We set the number of clusters to p based on the assump-
tion that there are p different kinds of actoms. The Aligned
Cluster Analysis (ACA) method segments X into m disjoint
actoms each of which belongs to one of p clusters. The ith

actom, Yi = [xsi , · · · , xsi+1−1] = xsi:si+1 is composed of
frames that begin at frame si and end at si+1 − 1 frame.
We constrain the length of each actom to be less than nmax.
ACA combines kernel kmeans with DTAK to pursue tem-
poral clustering by minimizing

JACA(G,M, s) = ||ψ(xsi:si+1)−MG||2F . (6)

The objective function of ACA is very similar to kernel
kmeans’ except for the variable s which determines the start
and end of each actom. In the objective function, G ∈
{0, 1}p×m is an indicator matrix that assign each actom to a
cluster; gci = 1 if Yi belongs to cluster c. The columns of M
represent the cluster centroids, but in the kernel-based ACA,
typical M can not be computed explicitly, ψ(·) is a non-linear



mapping for the actom that, τij = τ(Yi, Yj) = ψ(Yi)
Tψ(Yj)

is the Dynamic Time Alignment Kernel (DTAK). The DTAK
is defined as:

τ(Y1, Y2) = max
Q

(7)

lX
c=1

1

nY1 + nY2

(q1c − q1c−1 + q2c − q2c−1)KY1Y2
q1cq2c

,

where KY1Y2
ij = φ(Y1i)

Tφ(Y2j) represents the kernel simi-

larity between frame Y1i and Y2j . Q ∈ R2×l is an inte-
ger matrix that contains indexes to the alignment path be-
tween two actom. l is the number of steps needed to align
both actoms. DTAK finds the path that maximizes the
weighted sum of the similarity between actoms. For con-
venience, we denote the matrix WY1Y2 ∈ RnY1×nY2 , that
wY1Y2
ij = 1

nY1+nY2
(q1c−q1c−1 +q2c−q2c−1) if there is q1c = i

and q2c = j for some c in the Q, otherwise 0. Then the
DTAK can be rewritten as

τ(Y1, Y2) = ψ(Y1)Tψ(Y2) = tr(KY1Y2TWY1Y2) . (8)

There is now an actom-based DTAK kernel matrix T ∈
Rm×m that can be expressed by rearranging the m × m
blocks of Wij ∈ Rni×nj into a global correspondence matrix
W ∈ Rn×n:

T = [τij ]m×m = [tr(KT
ijWij ]m×m = H(K ◦W )HT , (9)

where H ∈ {0, 1}m×m is the actom-frame indicator matrix:
hij = 1 if jth frame belongs to ith actom. Then, after re-
placing the optimal value of M, the JACA is

JACA(G, s) = tr((L ◦W )K) , (10)

where L = In −HTGT (GGT )−1GH. Obviously, the objec-
tive function of ACA is a non-convex function. We alterna-
tive optimizing for G and s. Given the s, obtaining G is by
kernel kmeans; given G, with the video V of length n, the
possible number of s is exponential, which is impossible by
brute force; here, we adopt dynamic programming to solve
the problem efficiently. More details are in [21].

2.4 Discriminative Clustering for Coactions
The unsupervised actom discovery will reduce a video of,

say, 500 frames, to a small set of actom clips. First, this will
decrease the time complexity for coaction discovery; second,
it is more natural to make the discovered coaction composed
of actoms than frames. We consider the actoms as a mid-
dle layer between the video frames and longer term actions,
and, for this final step of the algorithm, we only consider the
sequence of actoms for each video, and are, hence, above to
leverage the discriminative clustering ideas from the coseg-
mentation literature [7], to which we add a notion of tem-
poral coherence.

Given the action-based representation of videos, each video
Vi is reduced to a few number of ci actom clips. Assume
there are total c =

P
i ci actom clips. Our goal is to par-

tition all of the clips from all videos into only two classes,
the coaction class and the background class. We denote by
y the c-dimensional vector that:

|yi| =


1 if the ith clip is the coaction;
−1 otherwise.

(11)

We aim to find y ∈ {−1, 1}c, given the actoms of videos.
Discriminative Clustering. Our discriminative clus-

tering framework is based on the Dynamic Time Alignment
Kernel (Eq.7). However, because the DTAK can not promise
the property of positive semidefiniteness (PSD), we make
τ = τ + σI, σ is the smallest negative eigenvalue of kernel
matrix. The PSD kernel τ can be considered as mapping
each actom clip ci into a high dimensional Hilbert space F
through a feature space ψ. The method then aims to learn
a classifier through minimizing the objective function with
respect to w ∈ F and b ∈ R such that:

λ‖|w‖|2 +
1

c

cX
i=1

loss(yi, w
Tψ(xi) + b) , (12)

where yi ∈ {−1, 1} is the associated label of ith clip and
loss(·) is a loss function; we consider the squared loss func-
tion such that loss(a, b) = (a− b)2. Given the kernel matrix
τ and unknown y, we can rewrite the Equ.12 into a func-
tion g(y) with y as its variable and the optimal value g(y)
is a measure of the separability of the two classes {−1, 1}.
According to [1], we can compute g(y) = yTAy, where
A = λ(Ic − 1

c
1c1

T
c )(cλIc + τ)−1(Ic − 1

c
1c1

T
c ). In order to

adapt the discriminative clustering to the coaction discovery
task, we add the local temporal consistency by incorporat-
ing a term based on the normalized Laplacian matrix, which
is regularly used in spectral clustering.

Local temporal consistecy. Temporal consistency within
an video Vi is enforced by the similarity matrix Wi based on
clip position cj and DTAK kernel which lead to high sim-
ilarity for nearby clips with high similarity. Thus for any
pair (k, l) of clips that belongs to the i-th video, Wi(l, k) =
exp(−χ2(h(l), h(k))2), where h(l) is the histogram of spa-
tially weighted bag of words for lth clip, we calculate the
similarity for temporal consistency based on the χ2 distance
of the histogram of two clips.

We can compute separate similarity matrices Wi, and put
them on the diagonal of larger matrix. Then we will get a
block-diagonal matrix W ∈ Rc×c. Now we consider the nor-
malized Laplacian matrix L of the block-diagonal matrix W ,
that L = Ic −D−1/2WD−1/2, where D is the diagonal ma-
trix consisting of the row sums of W , Ic is the c-dimensional
identity matrix. Based on normalized cut [16], we only need
consider the second smallest eigenvector of L that minimize
yTLy. And, since the L is also block-diagonal matrix, the
solution of minimize objective function equals to cluster each
video independently into two class. Thus we add the term
yTLy into the objective function of discriminative cluster-
ing, that enforce local consistency.

Discriminative cluster for Coaction Discovery. There-
fore, combining the discriminative cost through the matrix
A and the local temporal consistency through the matrix L,
we can obtain that:

min
y∈{−1,1}c

yT (A+ αL)y (13)

s.t. µ01c ≤ (yyT + 1c1
T
c )γi ≤ µ11c .

The constraint is about the lower bound µ0 and upper bound
µ1 of number of each class in each video. The γi ∈ Rc is an
indicator vector, that γji = 1 if the jth clip belongs to the
video i, otherwise 0. Equation 13 is NP-hard, but we can
relax it into a convex optimization problem similar to the
original formulation [7].



3. EXPERIMENTS
In order to show the advantage of our approach, we con-

struct a dataset for coaction discovery based on the UCF
Sports dataset [12] and compare with the results of some
baseline methods. We also test our methods on novel data
downloaded from YouTube and show qualitative results on
it, with promising findings.

3.1 Dataset
Since coaction discovery is a new problem and there is no

available test dataset, we have built a dataset of 100 long
videos. Each video consists of 5 different videos from the
UCF Sports data set [12] that are concatenated together
to allow for quantitative evaluation. Then, based on these
long-term multiple action videos, we randomly choose 48
pairs of videos each of which at least has one common ac-
tion between the pair of videos. We run our approach and
baseline methods on these 48 pairs of videos. This dataset
of 48 pairs of long videos is named as CA-UCF Sports video
dataset.

3.2 Baseline methods and Evaluation metric
For comparison, we propose the three baseline methods:

• Frame-based (Frame) that considers each frame as an
actom (and does not use ACA to obtain actoms) and
discover coactions directly based on frame. Hence, the
time-series clustering part is not used.
• Kmeans-based (KKM) that replaces the ACA (Section

2.3) method by kernel kmeans.
• Without Temporal coherence (Tempo) that adopts the

discriminative clustering for coaction discovery but does
not use the proposed temporal coherence term.

To estimate the quantitative accuracy of the output of the
methods, we define the following accuracy term:

Accuracy(C,C) =
|C
T
C|

|C
S
C|

, (14)

where C is the groundtruth of coactions for videos, and C
is the output of approaches.

3.3 Results
We first present and discuss our results on the CA-UCF

Sports dataset. We use two cases for the static appear-
ance proposal score map: (1) testing on videos generated
from the extracted bounding box of the human in the frame,
given a manually annotated human bounding box and action
proposal map beforehand; and (2) testing on original video
without any supervised information, automatically obtain-
ing the action proposal map.

The coaction discovery results over two variations of coac-
tion datasets are shown in Table 1. Our approach outper-
forms all of the other baseline methods each of which have
only one different component from ours in both cases (when
the human bounding boxes are given and are not given).

In Figure 5, we show some qualitative results. We see
the deficiency of the frame-based method highlighted here
because it is grouping the frames based only on appearance
(here, red clothing and red image parts). Kernel kmeans
is the second best performing method; the only difference
between KKM and our approach is that the ACA method
we uses extends KKM to time-series data. The result hence
indicates the usefulness of emphasizing the temporal nature
of video in this problem.

Frame KKM Tempo Ours

Manual

Auto

66.81% 69.37% 65.93% 71.12%

59.15% 60.72% 59.87% 62.51%

Table 1: Accuracy of our proposed method against
the three baselines with and without manual human
annotations on the CA-UCF sports dataset.
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Figure 4: Result of coaction discovery on the full
CA-UCF dataset using our approach. We gener-
ated 48 pairs of videos, and for each pair generated
labels indicating what sections of the videos repre-
sented a coaction. The upper bar for each pair dis-
plays the ground truth for the two videos (as if they
were concatenated together), with red indicating the
coaction segments and blue indicating background.
The bottom bar shows the results of our coaction
discovery in the same format.
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Figure 5: Example of qualitative comparison for CA-UCF Sports dataset.
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Figure 6: Example results on novel data taken for board-sports in varying settings from Youtube.

In Figure 4, we show the coaction discovery results for the
whole CA-UCF Sports dataset. The image in the figures
shows each of the 48 clips row wise, the coaction segments
rendered as red and the background segments rendered as
blue. A perfect coaction result is when the red and blue
segments are aligned for the two rows of each video (e.g., 3
is near-perfect). The result is quite good and demonstrates
a robustness to different types of actions in the coaction set
(UCF Sports is comprised of 10 raw actions).

We have also experimented with the generalizability of our
method to more challenging data in which the action across
the videos is similar but the actual setting in the video is
quite different. For these experiments, we selected videos
from board-sports on YouTube. In Figure 6, we show two
example results from our experiment. On the left side, we
see the method correctly joins a sequence of jumping off a
ramp (and losing the skateboard) and jumping down a flight
of stairs on a skateboard. The full sequence of the jump has
correctly been extracted as a coaction. In the right side, we
find a similar outcome where a skateboarder doing a rail-
slide is in the same coaction as a snowboarder doing one.
These results demonstrate the adaptability of our coaction
method to cases of varying video appearance and motion
dynamics.

4. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new idea called coaction

discovery and developed an approach that automatically dis-

covers the coactions between videos. We proposed an action
proposal score map, and extracted a spatially-weighted bag
of words to represent the frames of video. We then ex-
tended time series and discrimative clustering to compute
the coaction segmentation for video pairs. We built a coac-
tion dataset based on the UCF sports dataset and showed
the comparative quantitative results against three baseline
methods as well as visual results on novel challenging data.
In the future, we will test the potential applications of coac-
tion discovery, such as the video distance for retrieval, video
editing and video clustering.
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