
Adaptive Quantization for Hashing:
An Information-Based Approach to Learning Binary Codes

Caiming Xiong∗ Wei Chen∗ Gang Chen∗ David Johnson∗ Jason J. Corso∗

Abstract

Large-scale data mining and retrieval applications have
increasingly turned to compact binary data representa-
tions as a way to achieve both fast queries and efficient
data storage; many algorithms have been proposed for
learning effective binary encodings. Most of these algo-
rithms focus on learning a set of projection hyperplanes
for the data and simply binarizing the result from each
hyperplane, but this neglects the fact that informative-
ness may not be uniformly distributed across the pro-
jections. In this paper, we address this issue by propos-
ing a novel adaptive quantization (AQ) strategy that
adaptively assigns varying numbers of bits to different
hyperplanes based on their information content. Our
method provides an information-based schema that pre-
serves the neighborhood structure of data points, and
we jointly find the globally optimal bit-allocation for
all hyperplanes. In our experiments, we compare with
state-of-the-art methods on four large-scale datasets
and find that our adaptive quantization approach sig-
nificantly improves on traditional hashing methods.

1 Introduction

In recent years, methods for learning similarity-
preserving binary encodings have attracted increasing
attention in large-scale data mining and information re-
trieval due to their potential to enable both fast query
responses and low storage costs [1–4]. Computing op-
timal binary codes for a given data set is NP hard [5],
so similarity-preserving hashing methods generally com-
prise two stages: first, learning the projections and sec-
ond, quantizing the projected data into binary codes.

Most existing work has focused on improving the
first step, attempting to find high-quality projections
that preserve the neighborhood structure of the data
(e.g., [6–15]). Locality Sensitive Hashing (LSH) [6] and
its variants [8,10,16,17] are exemplar data-independent
methods. These data-independent method produce
more generalized encodings, but tend to need long codes
because they are randomly selected and do not con-

∗Department of Computer Science and Engineering,

SUNY at Buffalo. {cxiong, wchen23, gangchen, davidjoh,

jcorso}@buffalo.edu

CIFAR image set

Projection Variant-Bit Allocation

4 bits

3 bits

1 bits

Figure 1: Example of our Adaptive Quantization (AQ)
for binary codes learning. Note the varying distribu-
tions for each projected dimension (obtained via PCA
hashing). Clearly, the informativeness of the different
projections varies significantly. Based on AQ, some of
the projections are allocated multiple bits while others
are allocated fewer or none.

sider the distribution of the data. In contrast, data-
dependent methods that consider the neighbor struc-
ture of the data points are able to obtain more com-
pact binary codes (e.g., Restricted Boltzmann Ma-
chines (RBMs) [7], spectral hashing [5], PCA hash-
ing [18], spherical hashing [11], kmeans-hashing [13],
semi-supervised hashing [19, 20], and iterative quanti-
zation [21,22]).

However, relatively little attention has been paid to
the quantization stage, wherein the real-valued projec-
tion results are converted to binary. Existing methods
typically use Single-Bit Quantization (SBQ), encoding
each projection with a single-bit by setting a thresh-
old. But quantization is a lossy transformation that
reduces the cardinality of the representation, and the
use of such a simple quantization method has a signifi-
cant impact on the retrieval quality of the obtained bi-
nary codes [23,24]. Recently, some researchers have re-
sponded to this limitation by proposing higher-bit quan-
tizations, such as the hierarchical quantization method
of Liu et al. [25], the double-bit quantization of Kong

jcorso
Typewritten Text
SDM 2014



et al. [23] (see Section 2 for a thorough discussion of
similar methods).

Although these higher-bit quantizations report
marked improvement over the classical SBQ method,
they remain limited because they assume that each pro-
jection requires the same number of bits. To overcome
these limitation, Moran et al. [26] first propose variable-
bit quantization method with adaptive learning based
on the score of the combination of F1 score and regu-
lation term, but the computational complexity is high
when obtaining the optimal thresholds and the objec-
tive score in each dimension with variable bits. From an
information theoretic view, the optimal quantization of
each projection needs to consider the distribution of the
projected data: projections with more information re-
quire more bits while projections with less require fewer.

To that end, we propose a novel quantization stage
for learning binary codes that adaptively varies the
number of bits allocated for a projection based on the in-
formativeness of the projected data (see Fig. 1). In our
method, called Adaptive Quantization (AQ), we use a
variance criterion to measure the informativeness of the
distribution along each projection. Based on this uncer-
tainty/informativeness measurement, we determine the
information gain for allocating bits to different projec-
tions. Then, given the allotted length of the hash code,
we allocate bits to different projections so as to max-
imize the total information from all projections. We
solve this combinatorial problem efficiently and opti-
mally via dynamic programming.

In the paper, we fully develop this new idea with an
effective objective function and dynamic programming-
based optimization. Our experimental results indicate
adaptive quantization universally outperforms fixed-
bit quantization. For example, for the case of PCA-
based hashing [18], it performs lowest when using fixed-
bit quantization but performs highest, by a significant
margin, when using adaptive quantization. The rest of
the paper describes related work (Sec. 2), motivation
(Sec. 3), the AQ method in detail (Sec. 4), and
experimental results (Sec. 5).

2 Related Work

Some of previous works have explored more sophisti-
cated multi-bit alternatives to SBQ. We discuss these
methods here. Liu et al. [25] propose a hierarchi-
cal quantization (HQ) method for the AGH hashing
method. Rather than using one bit for each projec-
tion, HQ allows each projection to have four states by
dividing the projection into four regions and using two
bits to encode each projection dimension.

Kong et al. [23] provide a different quantization
strategy called DBQ that preserves the neighbor struc-

ture more effectively, but only quantizes each projection
into three states via double bit encoding, rather than
the four double bits can encode. Lee et al. [27] present
a similar method that can utilize the four double bit
states by adopting a specialized distance metric.

Kong et al. [28] present a more flexible quantiza-
tion approach called MQ that is able to encode each
projected dimension into multiple bits of natural binary
code (NBC) and effectively preserve the neighborhood
structure of the data under Manhattan distance in the
encoded space. Moran et al. [24] also propose a simi-
lar way with F-measure criterion under Manhattan dis-
tance.

The above proposed quantization methods have all
improved on standard SBQ, yielding significant perfor-
mance improvements. However, all of these strategies
share significant limitation that they adopt a fixed k-
bit allowance for each projected dimension, with no al-
lowance for varying information content across projec-
tions.

Moran et al. [26] propose variable-bit quantization
method to address the limitation based on the score
of the combination of F-measure score and regulation
term. Since the computational complexity is high when
obtaining the optimal thresholds and the objective score
in each dimension with variable bits, they propose an
approximation method, but without optimal guarantee.

Our proposed adaptive quantization technique ad-
dresses both of these limitations, proposing an effective
and efficient information gain criterion that account for
the number of bits allocated in each dimension and solve
the allocation problem with dynamic programming.

3 Motivation

Most hash coding techniques, after obtaining the projec-
tions, quantize each projection with a single bit without
considering the distribution of the dataset in each pro-
jection. The success of various multi-bit hashing meth-
ods (Section 2) tells us that this is insufficient, and in-
formation theory [29] suggests that standard multi-bit
encodings that allocate the same number of bits to each
projection are inefficient. The number of bits allocated
to quantize each projection should depend on the in-
formativeness of the data within that projection. Fur-
thermore, by their very nature many hashing methods
generate projections with varying levels of informative-
ness. For example, PCAH [18] obtains independent pro-
jections by SVD and LSH [6] randomly samples projec-
tions. Neither of these methods can guarantee a uniform
distribution of informativeness across their projections.
Indeed, particularly in the case of PCAH, a highly non-
uniform distribution is to be expected (see the variance
distributions in Figure 2, for example).



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PCA
PCA AQ

PCA

(a)

(b) (c)

SH

0 5 10 15 20 25 30 35 40 45

projection

va
ria

nc
e

bi
ts

projection

0 5 10 15 20 25 30 35 40 45

projection

projection

PCA 48 bits

Pr
ec

is
io

n

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Recall

SH
SH AQ

SH 48 bits

Figure 2: Illustrating the adaptive quantization process
on real data for two different hashing methods. (a-c) is
an example of projection informativeness/uncertainty,
corresponding bit allocation and its Precision-Recall
Curve for PCA hashing and SH with 48 bit length of
binary code in NUS [30] image dataset. Best viewed in
color.

To address this problem, we define a simple and
novel informativeness measure for projections, from
which we can derive the information gain for a given
bit allocation. We also define a meaningful objective
function based on this information gain, and optimize
the function to maximize the total information gain
from a given bit allocation.

Given the length of the hash code L, fixed k-bit
quantizations require L

k projections from the hashing
methods, since each projection must be assigned k bits.
However, with our variable bit allocation, the number of
projections obtained from hashing methods can be any
number from 1 to L or larger, since our method is as
capable of allocating zero bits to uninformative projec-
tions as multiple bits to highly informative projections.
Therefore, our AQ method also includes implicit projec-
tion selection. Figure 2 illustrates the ideas and outputs
of our method, showing the informativeness and bit al-
location for each projection on the NUS [30] image set
for PCAH [18] and SH [5], as well as the resulting sig-
nificant increase in retrieval accuracy.

4 Adaptive Quantization

Assume we are given m projections
{f1(·), f2(·), · · · , fm(·)} from some hashing method,
such as PCAH [18] or SH [5]. We first define a measure
of informativeness/uncertainty for these projections. In
information theory, variance and entropy are both well-
known measurements of uncertainty/informativeness,
and either can be a suitable choice as an uncertainty
measurement for each projection. For simplicity and
scalability, we choose variance as our informativeness
measure. The informativeness of each projection fi(x)
is then defined as:

Ei(X) =

∑n
j=1(fi(xj)− µi)2

n
(4.1)

where µi is the center of the data distribution within
projection fi(x). Generated projections are, by na-
ture of the hashing problem, independent, so the to-
tal informativeness of all projections is calculated via
E{1,2,··· ,m} =

∑
iEi(X).

Allocating k bits to projection fi(x) yields 2k dif-
ferent binary codes for this projected dimension. Thus,
there should be 2k centroids in this dimension that par-
tition it into 2k intervals, or clusters. Each data point is
assigned to one of these intervals and represented via its
corresponding binary code. Given a set of 2k clusters,
we define the informativeness of the projected dimen-
sion as:

E
′

i(X, k) =
2k∑
l=1

∑
j Zjl(fi(xj)− µl)2∑

j Zjl
(4.2)

where Zjl ∈ {0, 1} indicates whether data point xj
belongs to cluster l and µl is the center of cluster l.

Ei(X) in Eq. 4.1 can be thought of as the infor-
mativeness of the projection when 0 bits have been al-
located (i.e. when there is only one center). Therefore
we can define E

′

i(X, 0) = Ei(X). Based on this defini-
tion of E

′

i(X, k), we propose a measure of “information
gain” from allocating k-bits to projection fi(x) which is
the difference between E

′

i(X, 0) and E
′

i(X, k):

Gi(X, k) = E
′

i(X, 0)− E
′

i(X, k)(4.3)

The larger Gi(X, k), the better this quantization cor-
responds to the neighborhood structure of the data in
this projection.

E
′

i(X, 0) is fixed, so maximizing Gi(X, k) is same
as choosing values of {Zjl} and {µl} that minimize
E

′

i(X, k). This problem formulation is identical to
the objective function of single-dimensional K-means,
and can thus be solved efficiently using that algorithm.
Therefore, when allocating k bits for a projection, we



can quickly find 2k centers (and corresponding cluster
and binary code assignments) that maximize our notion
of information gain (Eq. 4.3). In our experiments,
the maximum value of k is 4. One expects that, for
a given data distribution, the information gain gradient
will decrease exponentially with increasing k; hence the
optimal k will typically be small.

4.1 Joint Optimization for AQ We propose an
objective function to adaptively choose the number
of bits for each projection based on resulting in-
formation gains. Assume there are m projections
{f1(x), f2(x), · · · , fm(x)} and corresponding informa-
tion gain Gi(X, k) for k bits. The goal of the objective
function is to find an optimal bit allocation scheme that
maximizes the total information gain from all projec-
tions for the whole data set. Our objective function can
be formulated:

{k∗1 , k∗2 , · · · , k∗m} = argmax
{k1,k2,··· ,km}

m∑
i=1

G
′

i(X, ki)

s.t. ∀i ∈ {1 : m}, ki ∈ {0, 1, · · · , kmax}
m∑
i=1

ki = L(4.4)

G
′

i(X, ki) = max
Z,µ

Gi(X, ki)

= E
′

i(X, 0)− E
′

i(X, ki),

where ki is the number of bits allocated to projection
fi(x) and L is the total length of all binary codes.∑m
i=1G

′

i(X, ki) is the total information gain from all
projections, and G

′

i(X, ki) is the corresponding max-
imal information gain Gi(X, ki) for ki bits in projec-
tion fi(x) (easily computed via single-dimensional K-
means). Again, because the projections are indepen-
dent, we can simply sum the information gain from each
projection.

With m projections {f1(x), f2(x), · · · , fm(x)} and
corresponding information gains G

′

i(X, k) for k bits, we
can find the optimal bit allocation for each projection
by solving Eq. 4.4, which maximizes total information
gain from the L bits available. However, optimizing Eq.
4.4 is a combinatorial problem—the number of possible
allocations is exponential, making a brute force search
infeasible.

We thus propose an efficient dynamic-
programming-based [31] algorithm to achieve the
optimal bit allocation for our problem (kmax is a
parameter controlling the maximum number of bits
that can be allocated to a single projection). Given
the binary hash code length L and m projections such
that L ≤ m · kmax, denote total information gain with

length L and m projections as Jm(L) =
∑m
i=1G

′

i(X, ki)
s.t.

∑m
i=1 ki = L. We can then express our problem via

a Bellman equation [31]:

J∗m(L) = max
L−kmax≤vm≤L

(J∗m−1(vm) +G
′

m(X,L− vm))
(4.5)

where J∗m(L) is the optimal cost (maximal total infor-
mation gain) of the bit allocation that we seek. Based
on this setup, each subproblem (to compute some value
J∗i (vm)) is characterized fully by the values 1 ≤ i ≤ m
and 0 ≤ vm ≤ L, leaving only O(mL) unique subprob-
lems to compute. We can thus use dynamic program-
ming, to quickly find the globally optimal bit allocation
for the given code length and projections.

4.2 Adaptive Quantization Algorithm Given a
training set, an existing projection method with m
projections, a fixed hash code length L and a parameter
kmax, our Adaptive Quantization (AQ) for hashing
method can be summarized as follows:

1. Learn m projections via an existing projection
method such as SH, PCAH.

2. For each projection fi(x) calculate the correspond-
ing maximal information gain G

′

i(X; k) for each
possible k (0 ≤ k ≤ kmax).

3. Use dynamic programming to find the optimal bit
allocation that maximizes total information gain
(as formulated in Eq. 4.4).

4. Based on the optimized bit allocation and corre-
sponding learned centers for each projection, quan-
tize each projected dimension into binary space and
concatenate them together into binary codes.

4.3 Complexity analysis During training, the
method will run K-means kmax times for each projection
to acquire different information gain scores for different
numbers of bits. The complexity cost of computing each
projection’s information gain is thus O(nkmax). Given
that there are m projections, the total cost of comput-
ing all of the G

′

i(X, ki) values is O(mnkmax). These val-
ues are then used in dynamic programming to find the
optimal bit allocation, costing O(mLkmax) time. This
yields a total complexity of O(mkmax(n+L)), which is
effectively equivalent to O(mnkmax), since we assume
L << n. Further, in typical cases kmax << m (indeed,
in our experiments we use kmax = 4), so it is reasonable
to describe the complexity simply as O(mn).

Obviously, the most time-consuming part of this
process is K-means. We can significantly reduce the
time needed for this part of the process by obtaining



K-means results using only a subset of the data points.
Indeed, in our experiments, we run K-means on only
10,000 points in each dataset (note that this is only
about 1% of the data on the Gist-1M-960 dataset). For
each projection, we run K-means four times (since we
allocate at most four bits for each projection). For the
64-bit case, using typical PC hardware, it takes less than
9 minutes to compute all of our information gain values,
and less than 2 seconds to assign bits using dynamic
programming. Using a larger sample size may poten-
tially increase performance, at the cost of commensu-
rately longer run times, but our experiments (Section
5) show that a sample size of only 10,000 nonetheless
yields significant performance increases, even on the
larger datasets.

5 Experiments

5.1 Data We test our method and a number of
existing state-of-the-art techniques on four datasets:

• CIFAR [22, 32]: a labeled subset of the 80 million
tiny images dataset, containing 60,000 images, each
described by 3072 features (a 32x32 RGB pixel
image).

• NUS-WIDE [30]: composed of roughly 270,000
images, with 634 features for each point.

• Gist-1M-960 [1]: one million images described by
960 image gist features.

• 22K-Labelme [14,33]: 22,019 images sampled from
the large LabelMe data set. Each image is repre-
sented with 512-dimensional GIST descriptors as
in [33].

5.2 Evaluation Metrics We adopt the common
scheme used in many recent papers which sets the aver-
age distance to the 50th nearest neighbor of each point
as a threshold that determines whether a point is a true
“hit” or not for the queried point. For all experiments,
we randomly select 1000 points as query points and the
remaining points are used for training. The final re-
sults are the average of 10 such random training/query
partitions. Based on the Euclidean ground-truth, we
measure the performance of each hashing method via
the precision-recall (PR) curve, the mean average pre-
cison (mAP) [34, 35] and the recall of the 10 ground-
truth nearest neighbors for different numbers of re-
trieved points [1]. With respect to our binary encoding,
we adopt the Manhattan distance and natural multi-bit
binary encoding method suggested in [28].

5.3 Experimental Setup Here we introduce the
current baseline and state-of-the-art hashing and quan-

tization methods.
Baseline and state-of-the-art-hashing meth-

ods

• LSH [6]: obtains projections by randomly sampling
from the Standard Gaussian function.

• SKLSH [9]: uses random projections approximat-
ing shift-invariant kernels.

• PCAH [18]: uses the principal directions of the data
as projections.

• SH [5]: uses the eigendecomposition of the data’s
similarity matrix to generate projections.

• ITQ [21]: an iterative method to find an orthogonal
rotation matrix that minimizes the quantization
loss.

• Spherical Hashing (SPH) [11]: a hypersphere-based
binary embedding technique for providing compact
data representation.

• Kmeans-Hashing (KMH) [13]: a kmeans-based
affinity-preserving binary compact encoding
method.

In order to test the impact of our quantization strategy,
we extract projections from the above hashing methods
and feed them to different quantization methods.

Baseline and state-of-the-art quantization
methods

In this paper, we compare our adaptive quantiza-
tion method against three other quantization methods:
SBQ, DBQ and 2-MQ:

• SBQ: single-bit quantization, the standard tech-
nique used by most hashing methods.

• DBQ [23]: double-bit quantization.

• 2-MQ [28]: double bit quantization with Manhat-
tan distance.

We use 2-MQ as the baseline, because it generally per-
forms the best out of the existing methods [28]. We test
a number of combinations of hashing methods and quan-
tization methods, denoting each ’XXX YYY’, where
XXX represents the hashing method and YYY is the
quantization method. For example ’PCA DBQ’ means
PCA hashing (PCAH) [18] with DBQ [23] quantization.

5.4 Experimental Results To demonstrate the
generality and effectiveness of our adaptive quantization
method, we present two different kinds of results. The
first is to apply our AQ and the three baseline quanti-
zation methods to projections learned via LSH, PCAH,



SH and ITQ and compare the resulting scores. The
second set of results uses PCAH as an examplar hash-
ing method (one of the simplest) and combines it with
our AQ method; then compares it with current state-
of-the-art hashing methods. We expect that by adding
our adaptive quantization, the “PCA AQ” method will
achieve performance comparable to or or even better
than other state-of-the-art algorithms.

Comparison with state-of-the-art quantiza-
tion methods

The mAP values are shown in Figures 3, 4 and 5
for the GIST-1M-960, NUS-WIDE and CIFAR image
datasets, respectively. Each element in these three
tables represents the mAP value for a given dataset,
hash code length, hashing method and quantization
technique. For any combination of dataset, code length
and projection algorithm, our adaptive quantization
method performs on-par-with or better-than the other
quantization methods, and in most cases is significantly
better than the next-best algorithm.

This pattern can also be seen in the PR curves
shown in Figure 6, where once again our quantization
method never underperforms, and usually displays sig-
nificant improvement relative to all other methods. Due
to space restrictions, we only included the PR curves for
the CIFAR dataset, but we observed similarly strong PR
curve performance on both of the other datasets.

Comparison with state of the art hashing
methods According to typical experimental results
[13, 21] PCAH generally performs worse than other
state-of-the-art hashing methods such as ITQ, KMH
and SPH.

To demonstrate the importance of the quantization
stage, we add our AQ method to PCAH and compare
the resulting “PCA AQ” method with other state-of-
the-art techniques. Running the experiment on the 22K
Labelme dataset, we evaluate performance using mean
average precison (mAP) [34,35] and recall of the 10-NN
for different numbers of retrieved points [1].

In Figure 7 (a) and (b), we show that, while the
standard PCAH algorithm is consistently the worst-
performing method, simply replacing its default quan-
tization scheme with our AQ method produces results
significantly better than any of the other state-of-the-
art hashing methods.

6 Conclusion

Existing hashing methods generally neglect the impor-
tance of learning and adaptation in the quantization
stage. In this paper we propose an adaptive learning to
the quantization step produced hashing solutions that
were uniformly superior to previous algorithms. This
promises to yield immediate and significant benefits to

existing hashing applications, and also suggests that
quantization learning is a promising and largely unex-
plored research area, which may lead to many more im-
provements in data mining and information retrieval.

Acknowledgements This work was funded partially
by NSF CAREER IIS-0845282 and DARPA CSSG
D11AP00245 and D12AP00235.

References

[1] Herve Jegou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search.
TPAMI, 33(1):117–128, 2011.

[2] Zeehasham Rasheed and Huzefa Rangwala. Mc-minh:
Metagenome clustering using minwise based hashing.
In SIAM SDM, 2013.

[3] Mingdong Ou, Peng Cui, Fei Wang, Jun Wang, Wenwu
Zhu, and Shiqiang Yang. Comparing apples to oranges:
a scalable solution with heterogeneous hashing. In
Proceedings of the 19th ACM SIGKDD, pages 230–238.
ACM, 2013.

[4] Yi Zhen and Dit-Yan Yeung. A probabilistic model for
multimodal hash function learning. In Proceedings of
the 18th ACM SIGKDD, pages 940–948. ACM, 2012.

[5] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. NIPS, 2008.

[6] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. In IEEE FOCS 2006.

[7] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[8] O. Chum, J. Philbin, and A. Zisserman. Near duplicate
image detection: min-hash and tf-idf weighting. In
Proceedings of BMVC, 2008.

[9] M. Raginsky and S. Lazebnik. Locality-sensitive bi-
nary codes from shift-invariant kernels. NIPS, 22,
2009.

[10] D. Gorisse, M. Cord, and F. Precioso. Locality-
sensitive hashing scheme for chi2 distance. IEEE
TPAMI, (99):1–1, 2012.

[11] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu
Chang, and Sung-Eui Yoon. Spherical hashing. In
Proceedings of CVPR, pages 2957–2964. IEEE, 2012.

[12] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and
Shih-Fu Chang. Supervised hashing with kernels. In
Proceedings of CVPR, pages 2074–2081. IEEE, 2012.

[13] Kaiming He, Fang Wen, and Jian Sun. K-means
hashing: an affinity-preserving quantization method
for learning binary compact codes. In Proceedings of
CVPR. IEEE, 2013.

[14] Zhao Xu, Kristian Kersting, and Christian Bauckhage.
Efficient learning for hashing proportional data. In
Proceedings of ICDM, pages 735–744. IEEE, 2012.

[15] Junfeng He, Wei Liu, and Shih-Fu Chang. Scalable
similarity search with optimized kernel hashing. In



#bits
SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ

ITQ 0.2414 0.2391 0.2608 0.2824 0.2642 0.2866 0.3021 0.3619 0.2837 0.3216 0.3457 0.3941
LSH 0.1788 0.1651 0.1719 0.1897 0.2109 0.2011 0.2298 0.2311 0.2318 0.2295 0.2663 0.2558
PCA 0.1067 0.1829 0.1949 0.2726 0.1179 0.2151 0.2325 0.3052 0.1196 0.2292 0.2281 0.3341
SH 0.1135 0.1167 0.2158 0.2554 0.1473 0.1435 0.2473 0.2842 0.1648 0.1670 0.2725 0.3278
SKLSH 0.1494 0.1309 0.1420 0.1671 0.1718 0.1485 0.1974 0.2025 0.1911 0.1840 0.2202 0.2284
#bits

SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ
ITQ 0.3130 0.4063 0.4701 0.5165 0.3245 0.4589 0.5074 0.5900 0.3340 0.4926 0.5700 0.6321
LSH 0.2791 0.2996 0.3064 0.3270 0.3030 0.3493 0.3625 0.3846 0.3191 0.3904 0.4232 0.4314
PCA 0.1209 0.2447 0.2408 0.3769 0.1183 0.2457 0.2650 0.3815 0.1168 0.2442 0.2621 0.3673
SH 0.2028 0.2258 0.3464 0.3774 0.2377 0.2622 0.3832 0.4240 0.2440 0.2743 0.3761 0.4689
SKLSH 0.2541 0.2359 0.2706 0.2955 0.3011 0.2797 0.3536 0.3480 0.3456 0.3033 0.3683 0.3872

32

128

48

192

64

256

Figure 3: mAP on Gist-1M-960 image dataset. The mAP of the best quantization method for each hashing
method is shown in bold face.

#bits
SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ

ITQ 0.1786 0.1939 0.2107 0.2404 0.2142 0.2378 0.2722 0.3022 0.2382 0.2903 0.3873 0.3493
LSH 0.1005 0.0976 0.1089 0.1126 0.1299 0.1293 0.1558 0.1533 0.1531 0.1606 0.1867 0.1871
PCA 0.1021 0.1534 0.1960 0.2265 0.1082 0.1816 0.2110 0.2980 0.1094 0.2036 0.2334 0.3316
SH 0.0815 0.1225 0.1823 0.2173 0.0963 0.1307 0.2371 0.2621 0.1101 0.1425 0.3314 0.2989
SKLSH 0.0689 0.0725 0.0734 0.0911 0.1066 0.0810 0.0997 0.1211 0.1282 0.0982 0.1526 0.1452
#bits

SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ
ITQ 0.3010 0.3992 0.4530 0.5175 0.3270 0.4668 0.5788 0.6260 0.3444 0.5149 0.6158 0.6774
LSH 0.2259 0.2664 0.3103 0.3099 0.2705 0.3408 0.3741 0.3979 0.3028 0.4008 0.4605 0.4602
PCA 0.1003 0.2359 0.2842 0.4242 0.0965 0.2321 0.2837 0.4485 0.0938 0.2177 0.2673 0.4547
SH 0.1405 0.1978 0.3936 0.4395 0.1539 0.2216 0.3872 0.4787 0.1539 0.2456 0.3694 0.5303
SKLSH 0.1988 0.1821 0.2673 0.2660 0.2785 0.2421 0.3373 0.3404 0.3295 0.2809 0.4080 0.4001

32

128

48

192

64

256

Figure 4: mAP on NUS-WIDE image dataset. The mAP of the best quantization method for each hashing
method is shown in bold face.

#bits
SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ

ITQ 0.1591 0.2054 0.2346 0.3051 0.1821 0.2469 0.2884 0.3907 0.1984 0.2914 0.3374 0.4437
LSH 0.0985 0.1160 0.1221 0.1429 0.1273 0.1499 0.1721 0.1882 0.1485 0.1816 0.2219 0.2239
PCA 0.0638 0.1537 0.1508 0.2557 0.0672 0.1683 0.1822 0.3043 0.0654 0.1732 0.1833 0.3316
SH 0.1107 0.1718 0.2188 0.2423 0.1164 0.1860 0.2727 0.2929 0.1328 0.2345 0.3189 0.3369
SKLSH 0.1089 0.0852 0.1045 0.1171 0.1455 0.1134 0.1507 0.1693 0.1441 0.1493 0.1836 0.1985
#bits

SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ SBQ DBQ 2-MQ AQ
ITQ 0.2355 0.3841 0.4481 0.5849 0.2506 0.4263 0.5393 0.6590 0.2594 0.4612 0.5850 0.7065
LSH 0.2163 0.2893 0.3348 0.3568 0.2538 0.3697 0.4193 0.4576 0.2809 0.4269 0.4702 0.5245
PCA 0.0619 0.1691 0.1652 0.3519 0.0606 0.1584 0.1634 0.3344 0.0599 0.1493 0.1501 0.3101
SH 0.1797 0.2974 0.3844 0.4442 0.1942 0.3506 0.4381 0.4747 0.1951 0.3617 0.4334 0.4587
SKLSH 0.2527 0.2166 0.2781 0.3272 0.3606 0.2988 0.3917 0.4228 0.4059 0.3478 0.4652 0.4887

32

128

48

192

64

256

Figure 5: mAP on CIFAR image dataset. The mAP of the best quantization method for each hashing method is
shown in bold face.



0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

ITQ 32 bits

 

 

ITQ SBQ
ITQ DBQ
ITQ 2−MQ
ITQ AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SH 32 bits

 

 

SH SBQ
SH DBQ
SH 2−MQ
SH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

PCA 32 bits

 

 

PCA SBQ
PCA DBQ
PCA 2−MQ
PCA AQ

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

Pr
ec

is
io

n

SKLSH 32 bits

 

 

SKLSH SBQ
SKLSH DBQ
SKLSH 2−MQ
SKLSH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

ITQ 48 bits

 

 

ITQ SBQ
ITQ DBQ
ITQ 2−MQ
ITQ AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall
Pr

ec
is

io
n

SH 48 bits

 

 

SH SBQ
SH DBQ
SH 2−MQ
SH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

PCA 48 bits

 

 

PCA SBQ
PCA DBQ
PCA 2−MQ
PCA AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SKLSH 48 bits

 

 

SKLSH SBQ
SKLSH DBQ
SKLSH 2−MQ
SKLSH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall
Pr

ec
is

io
n

ITQ 64 bits

 

 

ITQ SBQ
ITQ DBQ
ITQ 2−MQ
ITQ AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SH 64 bits

 

 

SH SBQ
SH DBQ
SH 2−MQ
SH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

PCA 64 bits

 

 

PCA SBQ
PCA DBQ
PCA 2−MQ
PCA AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SKLSH 64 bits

 

 

SKLSH SBQ
SKLSH DBQ
SKLSH 2−MQ
SKLSH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

ITQ 128 bits

 

 

ITQ SBQ
ITQ DBQ
ITQ 2−MQ
ITQ AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SH 128 bits

 

 

SH SBQ
SH DBQ
SH 2−MQ
SH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

PCA 128 bits

 

 

PCA SBQ
PCA DBQ
PCA 2−MQ
PCA AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SKLSH 128 bits

 

 

SKLSH SBQ
SKLSH DBQ
SKLSH 2−MQ
SKLSH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

ITQ 256 bits

 

 

ITQ SBQ
ITQ DBQ
ITQ 2−MQ
ITQ AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SH 256 bits

 

 

SH SBQ
SH DBQ
SH 2−MQ
SH AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

PCA 256 bits

 

 

PCA SBQ
PCA DBQ
PCA 2−MQ
PCA AQ

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

SKLSH 256 bits

 

 

SKLSH SBQ
SKLSH DBQ
SKLSH 2−MQ
SKLSH AQ

Figure 6: Precision-Recall curve results on CIFAR image dataset.



(a) 
100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Labelme 32 bit

R

R
ec

al
l@

R

 

 

PCA AQ
PCA
ITQ
KMH
SPH

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Labelme 64 bit

R

R
ec

al
l@

R

 

 

PCA AQ
PCA
ITQ
KMH
SPH

100 101 102 103 104
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Labelme 128 bit

R

R
ec

al
l@

R

 

 

PCA AQ
PCA
ITQ
KMH
SPH

PCAH KMH ITQ SPH PCA AQ
32 bit 0.0539 0.1438 0.2426 0.1496 0.2700
64 bit 0.0458 0.1417 0.2970 0.2248 0.4615
128 bit 0.0374 0.1132 0.3351 0.2837 0.6241

(b) 

Figure 7: (a) Euclidean 10-NN recall@R (number of items retrieved) at different hash code lengths; (b) mAP on
22K Labelme image dataset at different hash code lengths.

Proceedings of the 16th ACM SIGKDD, pages 1129–
1138. ACM, 2010.

[16] Kave Eshghi and Shyamsundar Rajaram. Locality
sensitive hash functions based on concomitant rank
order statistics. In Proceedings of the 14th ACM
SIGKDD, pages 221–229. ACM, 2008.

[17] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós.
Fast locality-sensitive hashing. In Proceedings of the
17th ACM SIGKDD, 2011.

[18] Xin-Jing Wang, Lei Zhang, Feng Jing, and Wei-Ying
Ma. Annosearch: Image auto-annotation by search.
In Proceedings of CVPR, volume 2, pages 1483–1490.
IEEE, 2006.

[19] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-
supervised hashing for scalable image retrieval. In
Proceedings of CVPR, pages 3424–3431. IEEE, 2010.

[20] Saehoon Kim and Seungjin Choi. Semi-supervised
discriminant hashing. In Proceedings of ICDM, pages
1122–1127. IEEE, 2011.

[21] Yunchao Gong and Svetlana Lazebnik. Iterative quan-
tization: A procrustean approach to learning binary
codes. In CVPR, pages 817–824. IEEE, 2011.

[22] Jeong-Min Yun, Saehoon Kim, and Seungjin Choi.
Hashing with generalized nyström approximation. In
Proceedings of ICDM, pages 1188–1193. IEEE, 2012.

[23] Weihao Kong and Wu-Jun Li. Double-bit quantization
for hashing. In Proceedings of the Twenty-Sixth AAAI,
2012.

[24] Sean Moran, Victor Lavrenko, and Miles Osborne.
Neighbourhood preserving quantisation for LSH. In
36th Annual International ACM SIGIR, 2013.

[25] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu
Chang. Hashing with graphs. In Proceedings of the
28th ICML, pages 1–8, 2011.

[26] Sean Moran, Victor Lavrenko, and Miles Osborne.
Variable bit quantisation for LSH. In Proceedings of
ACL, 2013.

[27] Youngwoon Lee, Jae-Pil Heo, and Sung-Eui Yoon.
Quadra-embedding: Binary code embedding with low
quantization error. In Proceedings of ACCV, 2012.

[28] Weihao Kong, Wu-Jun Li, and Minyi Guo. Manhattan
hashing for large-scale image retrieval. In Proceedings
of the 35th international ACM SIGIR, pages 45–54.
ACM, 2012.

[29] David JC MacKay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.

[30] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie
Li, Zhiping Luo, and Yantao Zheng. Nus-wide: a real-
world web image database from national university of
singapore. In Proceedings of ACM ICIVR, page 48.
ACM, 2009.

[31] Richard Bellman. On the theory of dynamic program-
ming. Proceedings of the National Academy of Sciences
of the United States of America, 38(8):716, 1952.

[32] Alex Krizhevsky and Geoffrey Hinton. Learning multi-
ple layers of features from tiny images. Master’s thesis,
2009.

[33] Antonio Torralba, Robert Fergus, and Yair Weiss.
Small codes and large image databases for recognition.
In Proceedings of CVPR, pages 1–8. IEEE, 2008.

[34] Albert Gordo and Florent Perronnin. Asymmetric
distances for binary embeddings. In Proceedings of
CVPR, pages 729–736. IEEE, 2011.

[35] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and
Patrick Pérez. Aggregating local descriptors into
a compact image representation. In Proceedings of
CVPR, pages 3304–3311. IEEE, 2010.




