
Segmentation of 2D Gel Electrophoresis Spots Using a
Markov Random Field

Christopher S. Hoeflich and Jason J. Corso
csh7@cse.buffalo.edu, jcorso@cse.buffalo.edu

Computer Science and Engineering
University at Buffalo, Buffalo, NY, USA

ABSTRACT

We propose a statistical model-based approach for the segmentation of fragments of DNA as a first step in the
automation of the primarily manual process of comparing two or more images resulting from the Restriction
Landmark Genomic Scanning (RLGS) method. These 2D gel electrophoresis images are the product of the
separation of DNA into fragments that appear as spots on X-ray films. The goal is to find instances where a
spot appears in one image and not in another since a missing spot can be correlated with a region of DNA that
has been affected by a disease such as cancer. The entire comparison process is typically done manually, which is
tedious and very error prone. We pose the problem as the labeling of each image pixel as either a spot or non-spot
and use a Markov Random Field (MRF) model and simulated annealing for inference. Neighboring spot labels
are then connected to form spot regions. The MRF based model was tested on actual 2D gel electrophoresis
images.
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1. INTRODUCTION

Figure 1: RLGS Image

Automatic matching of 2D gel electrophoresis images resulting from the Re-
striction Landmark Genomic Scanning (RLGS) method, first developed by
Hatada, et. al.,1 is a very challenging yet practical problem. A sample of
DNA is separated in a gel-like material based on two different properties,
such as molecular composition and molecular weight, and an X-ray film is
placed over these gels to capture the resulting separated fragments of DNA.
Two different images, one corresponding to a normal sample of DNA and
another corresponding to an abnormal sample of DNA, are typically com-
pared to one another. The task is to first detect and segment spots within
each image that correspond to fragments of DNA and then perform match-
ing, ultimately determining which spots appear in one image and not in the
other. Missing spots correspond to specific fragments of DNA that have
been methylated as the result of exposure to a disease such as cancer. In
this paper, we propose a method to solve the problem of spot detection and
segmentation using a Markov Random Field (MRF) model and simulated
annealing.

The entire process of matching 2D gel electrophoresis images is widely
done completely manually, in which a technician sits at a light table and
visually detects spots that occur in one image and not in the other. As
seen in Figure 1, there are typically hundreds of spots contained in a single
image, and it is not possible to directly overlay images due to non-linear
distortions and variations in corresponding spots. Automatic segmentation
of these spots is problematic because the intensity of spots across a single
image varies greatly, so basic thresholding techniques can not be employed.
Furthermore, a single spot is typically composed of a wide range of pixel intensities because these images are
created by placing an X-ray film over the gels, and not every spot fully saturates the film.



2. PREVIOUS WORK

Previous developments in this area have employed a wide range of techniques, and a majority of applications
address the matching of 2D gel electrophoresis images for proteins as opposed to DNA. This is because 2D gel
electrophoresis images for proteins have a relatively more uniform background and are somewhat easier to work
with than the 2D gel electrophoresis images for DNA. Kim et. al.2 proposed a hierarchical segmentation based
on thresholding and the detection of watersheds. They first pre-process the images to remove noise and enhance
contrast, then thresholding is applied which produces large regions. A watershed detection algorithm is then
applied recursively on these regions until only a single blob is detected which is considered to be a spot. Their
method relies on setting several parameters and is sensitive to noise, and 2D gel electrophoresis images typically
contain noise.

Sugahara et. al.4 smoothed image regions by averaging pixel intensities using an m×m window and performed
a thresholding operation which ultimately subtracted the background, and then created a binary image for spot
detection. This method relies heavily on the selection of a proper threshold value which can cause either an
over-segmentation of spots in some regions as well as an under-segmentation of spots in other regions. Takahashi
et. al.5 performed image enhancement and smoothing before defining local maxima in order to label the spots.
This method also relies on the definition of threshold values in order to function properly.

More recently, Morris et. al.3 developed a very accurate and robust method of detecting spots in 2D gel
electrophoresis images. Their process involves an “average gel” which is created by first using registration
software to create an alignment of all gels being used. The pixel intensities are then averaged across the aligned
gels. The gels are each de-noised using the average gel, and pinnacles (regions that are a local maximum in
both the horizontal and vertical directions and above a certain threshold) are detected which denote the spot
locations. A disadvantage of this method is the need to perform image registration as a pre-processing step and
the need to define a threshold in order to determine which regions are pinnacles.

3. METHODS

In order to automatically segment the DNA fragments in 2D gel electrophoresis images, we propose a Markov
Random Field (MRF) based segmentation that uses simulated annealing for inference in order to label each pixel
in the image as either a spot or non-spot. The simulated annealing process introduces a temperature term to a
Gibbs distribution:

p(y) =
1
Z

exp
(
−H(y)
T

)
, (1)

where Z is a normalizing constant, y are the MRF variables, H(y) is an energy function, and T is the temperature.
T is typically referred to as the inverse temperature because the energy function is being multiplied by 1

T . Note
that as T → 0, 1

T →∞. Winkler7 shows that given an energy function H(y), as T → 0 a Gibbs distribution will
converge to its maximal modes. Thus, sampling from a Gibbs distribution that slowly decreases T will eventually
yield maximal modes with high probability.

3.1 MRF Model
Our goal is to assign a single label of either spot of non-spot to each pixel location. An image I consists of N
pixels such that I = {i|i = 1, . . . , N}, and xi denotes the intensity of pixel i such that xi = {0, . . . , 255}. We
define the set of possible labels as γ = {−1,+1} where −1 represents the location of a non-spot pixel and +1
represents the location of a spot pixel. The label assigned to each pixel location of the image is that label which
maximizes the probability p(γ|I). Brute force maximization of this probability is computationally intractable
since for N pixels there are 2N possible label assignments. As a result, we model this maximization problem
using a Gibbs distribution:

p(γ|I) =
1
Z

exp

(
−β1

∑
i∈I

UV (N(i), γi) − β2

∑
i∈I

UI(xi, γi) −β3

∑
i∼t
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)
.

The variables β1, β2, and β3 are tunable model parameters, N(i) denotes the first-order and second-order neigh-
bors of pixel i, and i ∼ t denotes the first-order neighbors of pixel i. Our model takes into consideration local



Figure 2: Spot Regions Have Higher Variance

variance of pixel intensities, the intensity value of each pixel, and the labels assigned to neighboring pixels through
the use of the following terms.

Variance. The term UV (N(i), γi) models the variance of pixel i and its eight-connected neighbors N(i) and
is given by:

UV (N(i), γi) = γi
1

|{i,N(i)}| − 1

N∑
j={i,N(i)}

(xj − µi)2 . (2)

In this equation, µi is the local mean of the intensity values of pixel i along with its eight neighbors N(i). Our
model encourages a lower energy when the variance is high and the label is +1 for a spot region and encourages
a higher energy when the label is assigned to be −1 for a non-spot region. Spot regions have a much higher
variance of pixel intensity than the non-spot regions surrounding them. Figure 2 shows a three-dimensional plot
of a typical spot region and a typical non-spot region on the same set of axis. The (x, y, z) values correspond to
the (row, column, intensity) values of the spot and the non-spot regions, with the spot intensities appearing as
an inverted peak and the background intensities appearing as a relatively smooth sheet above the inverted peak.
The graph on the right shows a plot of the local variance as a 3x3 window is moved over a spot region and then
a non-spot region. The average local spot variance of the intensity was found to be 21.48 and the average local
non-spot variance of the intensity was found to be 0.69. It is therefore evident that spot regions have a higher
variance of intensity than the variance of intensity of non-spot regions.

Intensity. The term UI(xi, γi) models the the intensity of a pixel i given its intensity xi and its current
label γi. This term is given by:

UI(xi, γi) =

{
(xi−µ)2

2σ2 if γi = +1
− log

(
1− exp

[
− (xi−µ)2

2σ2

])
if γi = −1

. (3)

We model the intensity term as the negative log probability of a Gaussian (see Figure 3 for justification). The
normalizing term 1√

2πσ2 is not used because it does not rely on the intensity of the pixel. The parameters of the
Gaussian {µ, σ2} were learned from actual data by manually segmenting spots and calculating the mean and
variance of their intensities.

Smoothing. The term US(γi, γt) promotes the labeling of pixels that are similar to the labels of their
neighboring pixels. This term is given by a standard Ising model:

US(γi, γt) = γiγt . (4)

This smoothing term is used to make the model more robust to noise that commonly occurs throughout 2D gel
electrophoresis images.

Cooling Schedule. The simulated annealing process prefers a cooling schedule that starts with a high
temperature T that slowly decreases to a temperature with a relatively small value. We model the cooling



Figure 3: Spot Intensity Distribution

schedule as an inverse logarithm using the equation:

T (t) = T (0)

(
T (K)

T (0)

) t
K

, (5)

where T (t) is the temperature at time t, T (0) is the initial temperature, T (K) is the final temperature, and K
is the desired number of temperature values that T (t) should have. K is the number of sweeps of the Gibbs
sampler that are performed.

3.2 Simulated Annealing

Figure 4 is a representation of the simulated annealing process. The general procedure begins as labels are
randomly assigned to each pixel location and a suitable cooling schedule is created which has a high initial
starting temperature which lowers slowly to a relatively low, final temperature. One sweep of the Gibbs sampler
is then performed for each pixel location with the current value of the temperature T , which in turn updates
all pixel labels. If T has not yet reached its final value then T is slightly decreased and another sweep of the
Gibbs sampler is performed for each pixel location. The entire process continues until T is at its final and lowest
value, at which point each pixel has been assigned a label which is a good approximation of a globally optimum
labeling. The claim of globally optimal labeling is based on proofs of the simulated annealing process provided
in Image Analysis, Random Fields and Markov Chain Monte Carlo Methods.7

3.3 Connected Components

The result of the simulated annealing process in conjunction with the underlying MRF model is a set of labels
for each pixel location in the image. The last step in the segmentation process is to use the two-pass connected
components algorithm in order to connect all of the +1 labels which denote spot regions such that each individual
pixel is associated with a connected spot region.

Figure 4: Simulated Annealing Process



4. RESULTS

We implemented the proposed model and tested it on actual 2D gel electrophoresis images. We learned the
parameters of the Gaussian distribution used in the second term of the Gibbs distribution, {µ, σ2}, off-line from
sample images, and we set the model parameters β1, β2, and β3 by hand to 0.2, 0.8, and 0.3, respectively. We
performed a total of 100 iterations in the simulated annealing process, setting the parameters of the cooling
schedule to T (0) = 1000, T (K) = 0.1, and K = 100. The sample image selected has dimensions 346× 346.

Figure 5 is a graphical representation of our entire proposed process. 5a shows the original image, and 5b
shows the initial randomly assigned labels, where white denotes a spot pixel and black denotes a non-spot pixel.
5c through 5g show the eventual convergence of the simulated annealing process. The current sweep number
and temperature which resulted in the labeling shown are found below each respective image. 5h shows the final
labeling of pixels as spots and non-spots superimposed on the original image, with the yellow color showing which
pixels have been labeled as spots. The final image 5i shows the result of connecting neighboring spot pixels in
order to form small blobs. A different color has been assigned to each spot in order to show a distinct labeling
of spots. The labels undergo a “burning in” process up to approximately iteration 50 in which the assigned
labels are more sporadic due to the higher values of T . The initially sporadic labeling helps to insure that the
likelihood of the labels assigned avoids local minima. By approximately iteration 60 it becomes evident that the
labeling is beginning to converge to the locations of the spot pixels. Then, through iterations 80 and 100, the
noisy labeling along the right hand side of the image is removed as the temperature reaches its lowest, stable
value.

(a) Original Im-
age

(b) Random La-
bels

(c) 20 iter; T =
173.78

(d) 40 iter, T =
27.54

(e) 60 iter, T =
4.37

(f) 80 iter, T =
0.69

(g) 100 iter, T =
0.01

(h) Final Labels (i) Connected
Blobs

Figure 5: Convergence Process



5. CONCLUSION

We have developed a model that segments and labels regions of high variance of intensity as belonging to the
same class of spot pixels. We have proposed a model for a Gibbs distribution that characterizes a spot of a 2D
gel electrophoresis image by taking into account local variance of pixel intensities, the intensity of each individual
pixel, and the labels of neighboring pixels. By incorporating this Gibbs distribution into the simulated annealing
process along with an appropriately chosen cooling schedule, each pixel is assigned a label the contributes the
least amount of energy to the image as a whole.

As seen in Figure 5, nearly all spots have been properly labeled and independently grouped together as small
blobs. A problem with the independent blobs is that spot regions that touch one-another have been labeled as
one single spot. A post processing step thus needs to be incorporated which separates touching spots into two
or more distinct spots. We can accomplished this using a shape model since each spot can be represented by an
ellipse.

In our future work, we are investigating the second step of the process: matching DNA spots across two
images. We plan to use Grauman and Darrel’s Pyramid Match Kernel.6 The addition of the matching process
would automate the matching of 2D gel electrophoresis images.

6. ACKNOWLEDGMENTS

The authors wish to thank Dr. Hiroki Nagase and his research laboratory of Roswell Park Cancer Institute
for providing the RLGS images used in this research. Christopher Hoeflich was funded through the Integrative
Graduate Education and Research Training (IGERT) Fellowship Program of the University at Buffalo.

REFERENCES
1. Hatada et. al. A genomic scanning method for higher organisms using restriction sites as landmarks. Pro-

ceedings of the National Academy of Sciences of the USA, 88(21):9523–9527, 1991.
2. Kim et. al. Segmentation of protein spots in 2d gel electrophoresis images with watersheds using hierarchical

threshold. LNCS - Computer and Information Sciences - ISCIS 2003, 2869:389–396, 2003.
3. Morris et. al. Pinnacle: a fast, automatic and accurate method for detecting and quantifying protein spots

in 2-dimensional gel electrophoresis data. Bioinformatics, 24(4):529–536, 2008.
4. Sugahara et. al. An automatic image analysis system for rlgs films. Mammalian Genome, 9:643–651, 1998.
5. Takahashi et. al. Dnainsight: An image processing system for 2-d gel electrophoresis of genomic dna. Genome

Informatics, 8:135–146, 1997.
6. Kristen Grauman and Trevor Darrell. The pyramid match kernel: Efficient learning with sets of features.

Journal of Machine Learning Research, 8:725–760, 2007.
7. Gerhard Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Springer, Berlin,

2nd edition, 2003.


