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Abstract— We present a novel plane tracking algorithm
based on the direct update of surface parameters from
two stereo images. The plane tracking algorithm is posed
as an optimization problem, and maintains an iteratively
re-weighted least squares approximation of the plane’s
orientation using direct pixel measurements. To facilitate
autonomous operation, we include an algorithm for robust
detection of significant planes in the environment. The
algorithms have been implemented in a robot navigation
system.

I. INTRODUCTION

Inferring properties of the real-world through one or
many images is fundamental to the field of computer
vision. Often it is beneficial to have knowledge of a
significant surface or set of surfaces during the inference
process. An example of such a surface is a plane.

Many methods have been proposed to solve the problem
of planar-surface tracking for monocular [9], [10] and
binocular [13], [14], calibrated and uncalibrated cameras
(similar to using sequences of images [2], [3], [5]). A
common solution involves a disparity map computation.
A disparity map is a matrix of correspondence offsets
between two images [16]. The disparity map calculation
employs expensive neighborhood correlation routines that
often yield sparse maps for typical scenes. However, the
method makes no assumptions about the environment and
has been widely used for the case of general stereo vision.

In contrast to the general solution discussed above, our
method exploits a property that planar surfaces exhibit
when viewed through a non-verged stereo camera. The
disparity is a linear function with coefficients derived
from the plane parameters. We use a direct method to
perform the tracking. Direct methods use quantities that
are calculated directly from image values as opposed to
feature-based methods discussed earlier [8], [14]. Our
method has descended from earlier image registration and
enhancement techniques [11], [12] and from visual track-
ing [6]. Similarly, it poses the tracking problem as one
of objective function minimization. Doing so incorporates
a vote from many pixels in the image and computes a
least-squares estimate of the global motion parameters in
question to sub-pixel levels.

The planar tracking algorithm is applied to robot nav-
igation. Multiple tasks on a mobile robot require knowl-

edge about the incremental changes in position during the
operation. The task of self-localization in an environment
can be divided into two major areas: global localization
and local position tracking. While the first deals with the
absolute localization in a predefined coordinate system and
can be used for initial pose estimation [4], the second
computes the relative changes in the position due to
the movement of the mobile system. For most purposes
(e.g. map generation) the tracking of the local position is
enough to guarantee a correct fusion of consecutive sensor
readings.

II. ALGORITHM DESCRIPTION

The key component of our work is the plane tracking
algorithm that operates directly in the image domain of
the acquired images [1]. In the following discussion, let
(x, y, z) be a point in world coordinates and (u, v) be a
point in pixel coordinates. In Section II-B, the plane track-
ing algorithm is discussed followed by the approach used
to seed the tracking algorithm (II-C). A brief discussion
on localization (II-D) is then presented.

A. Planar Disparities

To efficiently track a plane, we can make use of a
property that planar surfaces exhibit when viewed from
non-verged stereo cameras. Namely, a plane becomes a
linear function that maps pixels in one image to the
corresponding pixels on the plane in the other image.
Indoor environments have many surfaces that can be
approximated with planes E .

E : ax + by + cz = d (1)

In a stereo system with non-verged, unit focal length (f=1)
cameras, the image planes are coplanar. In this case, the
disparity value D(u, v) of a point (u,v) in the image can
be estimated from its depth z with

D(u, v) =
B

z
, (2)

with B describing the distance between the cameras of the
stereo system [16].

We estimate the disparity D(u, v) of the plane E at an
image point (u, v) using the unit focal length camera (f=1)
projection as
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The vector n = (a b c)T is normal to the plane E
and describes the orientation of the plane relative to the
camera.

Equation (3) can be written in the form
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with ρ1 =
a

k
, ρ2 =

b

k
, ρ3 =

c

k

This form uses modified parameters {ρ1, ρ2, ρ3} of the
plane E relating the image data (u, v) to D(u, v).

B. Plane Tracking

From the observation made in Section II-A, we see
that tracking the parameters p = {ρ1, ρ2, ρ3} of the linear
map (4) is equivalent to tracking the planar surface. Thus,
assuming inter-frame motion is relatively small and both
brightness and contrast shifts can be removed, we pose
this problem as one of optimization.

1) Parameter Update: Consider a rectified pair of
stereo images: L and R. Based on (4), we relate the images
with the following formula. Let D(u, v) = ρ1u+ρ2v+ρ3.

L(u, v) = R(u − D(u, v), v) (5)

The plane parameters for the current pair are estimated
through the minimization of the following least-squares
objective function. To enforce the brightness constancy
constraint [7], we zero-mean the images: given an image
I , I = I −

∑

u

∑

v I(u, v).

E(p) =
∑

(L(u, v) − R(u − D(u, v), v))2 (6)

Let δp represent the set of offsets, i.e. at iteration i,
pi+1 = pi + δp. Assuming a small magnitude for δp we
can solve the minimization by linearizing the expression
through a Taylor expansion about p.

E(δp) ≈
∑

(L(u, v) − R(u − D(u, v), v)

+uIxδρ1 + vIxδρ2 + Ixδρ3)
2 (7)

Here, Ix refers to the spatial gradient of the right image.
We neglect the higher order terms of the Taylor series. We
solve the system with the Singular-Value Decomposition
(SVD) [15]. It is first convenient to define the error term:
e(u, v) = R(u − D(u, v), v) − L(u, v).
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2) The Weighting Matrix: Thus far, we have shown

how to optimize the parameters of a plane in a static
scene. To extend the approach to a dynamic scene, we
incorporate a mask into the framework. The mask is a
binary weighting matrix with an entry per-pixel denoting
the pixel’s inclusion or exclusion from the current tracked
plane. Such a mask removes inaccurate and poor pixel
matches from the SVD solution, which decreases its
processing demand and increases its stability. We note that
no explicit plane-boundary is maintained. Equation (7)
is extended to (9) incorporating such a mask; W (u, v)
corresponds to the value of the mask at (u, v).

E(δp) ≈
∑

δW (u,v)=1[(L(u, v) − R(u − D(u, v), v)

+uIxδρ1 + vIxδρ1 + Ixδρ2)
2] (9)

In each frame, we fully recompute the mask matrix
based on the current parameters (12). We employ two
metrics in this computation: a normalized cross-correlation
(�) and horizontal variance.

ηu,v = L(u, v) � R(u − D(u, v), v) (10)

Since (9) is only sensitive to pixels that demonstrate
horizontal gradients, we also mask pixels with low hori-
zontal variance by sampling the correlation response along
the epipolar line.

αu,v =
L(u, v) � R(u − D(u, v) + δ, v)

ηu,v

βu,v =
L(u, v) � R(u − D(u, v) − δ, v)

ηu,v

(11)

W (u, v) = (ηu,v > τ) ∧ (αu,v > ε) ∧ (βu,v > ε) (12)

In (12), 0 < τ < 1 and ε > 1. In (11,12), the selection
of δ,τ , and ε is dependent on the imaging properties of
the system and the scene. To increase the robustness of
the mask generated in this manner, we also perform a
morphological dilation followed by an erosion [6]. This
has the effect of removing noisy correlation responses and
joining contiguous regions.



C. Identification of Significant Planes

The tracking algorithm discussed in the previous section
requires a set of initial guesses for the plane parameters.
These estimates are generated from disparity images. It is
not prohibitive to include disparity-based seed generation
because this module is seldom executed.

Equation (3) shows a linear dependency of the disparity
values D(u, v) on the image coordinates (u, v). Therefore,
the plane boundaries can be detected as discontinuities
in the disparity values Dt along the u and v axes. We
use the sum of the absolute values of the horizontal δxD

t

and vertical δyD
t gradient images to calculate a contour

image Gt that approximates the gradient magnitude in the
disparity image to

|∇Dt| ≈ Gt = |δxD
t| + |δyD

t|. (13)

Equation (13) gives a good approximation of the gradi-
ent magnitude |∇Dt| and has the advantage of easy im-
plementation with accelerated image processing routines.
The result of this operation is shown in Figure 1.

Fig. 1. Contour detection similar to conventional image processing:
(top) original disparity image, (bottom) resulting contour image Gt.

The goal of these routines is to find regions in the image
representing large uniform planes. Therefore, the resulting
image Gt is thresholded and all values above a disparity
value of 4 pixels are considered to be on a boundary and

set to a significant negative value nedge proportional to
the area σx × σy covered by the kernel σ. All gradient
values in Gt resulting from invalid reconstructions in Dt

are set to the same negative value nedge.
The entire image is convolved with a signum kernel σ

counting valid gradient values in Gt.

Σt = σ ∗ Gt(u, v) =

v+
σy

2
∑

y=v−
σy

2

u+ σx
2

∑

x=u−
σx
2

sgn(Gt(x, y) + 1)

(14)
During the computation of Σt the position (uΣ, vΣ)

of the maximum value is estimated. It defines a seed
for a new plane. The area σx × σy defines the preferred
minimum plane size in the image.

1) Estimation of the Plane Parameters: We estimate
the plane parameters in 3D space. A set of valid 3D points,
Sv , is reconstructed from the disparity image. In the ideal
case the set should represent a compact disparity region
surrounding the estimated seed (uΣ, vΣ) from section II-
C. To simplify the search for the points we approximate
the circle with a simple cross extending from this point
in all directions to the boundary of Gt or until a negative
nedge entry is found. The N resulting 3D-points Pi =
(xi, yi, zi)

T are stored in Sv .
We fit an optimal plane through this dataset using the

eigenvectors of the covariance matrix:
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with m =
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The cross-product of the eigenvectors {X1, X2} asso-
ciated with the two biggest eigenvalues {λ1, λ2} defines
the norm vector n = (a, b, c)T of the reconstructed plane
(1). The inner product between this norm vector and the
mean, m, on the plane defines the distance d to the plane.

n =
X1 × X2

|X1 × X2|
and d = n · m (16)

The ratio of the third eigenvalue λ3 to the other
eigenvalues describes how well the reconstructed plane
represents the cloud of the used 3D points. A smaller value
represents a better approximation.



D. Localization

The relative localization between consecutive camera
acquisitions is based on localization relative to significant
planes in the field of view of the camera. Each plane
allows the estimation of three out of the six possible
parameters of the pose. A set of two non-coplanar planes
Lt = {Ei, Ej | ∀i,j |ni · nj | > 0} at time step t allows the
estimation of the 2D position in the ground plane of the
local area and all rotation angles of the robot. Therefore,
relative localization is possible when at least two planes
are tracked between frames, ||Lt+1 ∩ Lt|| ≥ 2.

1) Estimation of Multiple Planes: For complete local-
ization, we include the estimation of multiple planes in
our approach. We extend the significant-plane extraction
by using the parameters of the known planes to remove
their representation from the disparity image Dt used in
the processing step described in Section II-C.

∆d = Dt(u, v) − (ρ1u + ρ2v + ρ3)

Dt(u, v) :=

{

0, ∆d < ε · Dt(u, v)

Dt(u, v), else
(17)

The disparity value Dt(u, v) is deleted from the dispar-
ity image if it matches the expectation calculated from
Equation (3) within an uncertainty band ε around the
reconstructed value. During processing, whenever ||Lt+1∩
Lt|| < 2, a significant plane search is executed to re-seed
the plane tracking algorithm.

III. RESULTS

Our algorithm has been implemented on a Pentium
III 700MHz PC running Linux with an IEEE 1394
stereo camera head. The stereo vision system provides
a rectified stream of images at a maximum of 26[Hz].
Our implementation operates in the range of 20-26[Hz]
for plane updates. We employ both the XVision2 and
Intel Integrated Performance Primitives libraries for video
and image processing. For the experiments discussed in
this section, we are using a stereo head with 5.18mm
lenses, a 92mm baseline, and square pixels 0.12mm wide.
The plane being observed, unless otherwise specified, is
roughly orthogonal to the viewing axis and at a depth of
one-meter.

A. Quality of the Plane Tracking

We analyze the algorithm for maximum guaranteed con-
vergence. Equation (7) was derived under the assumption
that inter-frame parameter offsets (δp) would be small in
magnitude. In discrete terms, we are restricted to changes
of ±1 disparity. To facilitate analysis, we assume an
infinite plane. Under lateral translation, the depth and the
disparity are constant and the algorithm is guaranteed to
converge.

However, under orthogonal translation, the convergence
radius is dependent on the current depth; the closer to the
camera, the smaller the convergence radius. This is due
to the inverse relationship between disparity and depth
(D = Bf

z
). Let ζ be the change in depth for guaranteed

convergence.

Bf

D ± 1
− z = ζ (18)

Rotations in the plane are also dependent on the current
depth. Assuming a uni-axis rotation about the center of
projection in the unit focal length camera, the maximum
angle of rotation, θ, follows. Figure 2 depicts this formula
in a 2D example. We relate the rotation angle to the depth
of a projected point, P, in the image ∆ pixels away from
the optical center.

θ = arctan (
B∆

D ± 1
−

z

∆
) (19)

∆

z

Θ ζ

Image Plane

Plane In World

p

P

Fig. 2. Depiction of the formula for convergence radius under uni-axis
rotation.

In the following sections, experiment results are pre-
sented and discussed.

1) Convergence Radius: For a controlled environment
with a stationary plane and robot, we calculated an initial
guess for the plane parameters and then varied this guess
to test the robustness of the tracking algorithm.

In Figure 3, we show the time to convergence when
we shift the seed’s depth closer to the camera at varying
levels. The convergence speed is directly proportional to
the magnitude of the introduced error. We note that the
convergence speed is only about 5 frames for an error of
10%. In Figure 4, we show the convergence speed while
altering the plane’s normal about a single axis. We see
similar convergence rates to those observed while altering
seed depth.

2) Accuracy of Parameter Estimation: Assuming a
suitably textured scene, the algorithm estimates a plane’s
parameters with sub-pixel accuracy. However, this esti-
mation accuracy varies with the depth of the plane being
tracked. Because the depth-per-disparity increases as the
distance to the plane increases, the estimation accuracy
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Fig. 3. Graph for convergence while introducing error into the seed’s
depth by 2, 5 and 10 percent toward the camera.
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Fig. 4. Convergence rates for error in seed normal.

degrades with depth. Table I shows the statistics for the
plane.

For a non-stationary scene, we show the accuracy of
our system against the robots internal odometry. Figure 5
shows the robot performing oscillatory rotations in front
of a plane (700 mm distance), and Figure 6 show the
robot orthogonally translating in a back-and-forth mo-
tion. We see that the algorithm performs extremely well
for the rotational motion. The estimated orientation lags
minimally behind the odometric values; the length of the
lag is proportional to the convergence speed. During the

TABLE I

PARAMETER ESTIMATION ACCURACY FOR A PLANE AT A DISTANCE

OF ONE METER.

Z Mean Z Std Dev Normal Error Std Dev
1 1064.8mm 2.2359mm 0.2947

◦

2 1065.3mm 1.7368mm 0.2673
◦

3 1065.2mm 1.5958mm 0.2258
◦

translational motion, the algorithm oscillates about the
control value during motion. As expected, it is apparent
from the figure that the tracking does perform better when
the robot is closer to the plane.
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Fig. 5. Accuracy of robot orientation.
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IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel plane-tracking
algorithm that maintained an iteratively re-weighted least-
squares approximation of the plane parameters with sub-
pixel accuracy. The method has been applied to the task
of mobile navigation. Our implementation of the approach
typically executes at or near frame rate and maintains
accurate parameter estimate.1 We presented a set of exper-
iments that analyzed the algorithm’s convergence radius
and the accuracy of the parameter estimation: these results
extend to multiple planes because each plane is tracked
independently.

1The implementation executes two iterations of the optimization
routine every frame. This operating rate is in contrast to a disparity
calculation based system which typically runs at half frame-rate on the
same system.



Accurate estimation is highly dependent on the optics of
the imaging system and the environment. These dependen-
cies are fundamental to the set of approaches employed
in stereo vision, however, not specifically our approach.
Currently the parameters of our algorithm are chosen on an
environment basis. For instance, the δ in (11) is dependent
on the texture frequency. However, the imaged texture fre-
quency may vary from one plane to another and will vary
with large depth changes. Such operation is considered
passive in nature. The exploration of algorithms that take
more active approaches (i.e. projecting a suitable pattern
depending on the current environment) or more intelligent
approaches (i.e. altering operating parameters and thresh-
olds autonomously by analyzing important scene qualities)
are needed for further advancement of the field.
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