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Abstract. Recent work in human activity recognition has focused on
bottom-up approaches that rely on spatiotemporal features, both dense
and sparse. In contrast, articulated motion, which naturally incorporates
explicit human action information, has not been heavily studied; a fact
likely due to the inherent challenge in modeling and inferring articulated
human motion from video. However, recent developments in data-driven
human pose estimation have made it plausible. In this paper, we ex-
tend these developments with a new middle-level representation called
dynamic pose that couples the local motion information directly and in-
dependently with human skeletal pose, and present an appropriate dis-
tance function on the dynamic poses. We demonstrate the representative
power of dynamic pose over raw skeletal pose in an activity recognition
setting, using simple codebook matching and support vector machines
as the classifier. Our results conclusively demonstrate that dynamic pose
is a more powerful representation of human action than skeletal pose.

Keywords: Human Pose, Activity Recognition, Dynamic Pose

1 Introduction

Bottom-up methods focusing on space-time motion have dominated the activity
recognition literature for nearly a decade, e.g., [1–3], and have demonstrated
good performance on challenging and realistic data sets like UCF Sports [4]. Al-
though human activity is essentially articulated space-time motion, these meth-
ods avoid any need to explicitly model the articulated motion and rather focus
on low-level processing to indirectly model the articulated space-time motion.
Examples include local space-time interest points (STIP) [1], dense 3D gradi-
ent histograms (HOG) [2], and point trajectories [3], among many. More recent
efforts have focused on mid-level representations that build on top of these ele-
ments, such as Niebles et al. [5] who model the local trajectories of STIP points
and Gaidon et al. [6] who learn a time-series kernel to explicitly model repeti-
tive motion in activities. All of these methods have limited transparency from a
semantic point-of-view and rely on large amounts of available training data.

Alternatively, it seems reasonable to develop more semantically rich repre-
sentations, such as those that more explicitly use articulated human models,
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Fig. 1. Polar histograms of limb-extrema points in human pose for the six actions in the
KTH data set [14]. Note the large similarity for each of the limb-extrema histograms
(the rows) across the different actions. These data suggest that pose alone may not be
suitable for human activity recognition.

to overcome these issues of transparency and scalability. However, fewer works
have directly attempted to use human pose for activity recognition, e.g., [7–9],
likely due to the challenging, unsolved nature of the pose estimation problem
itself. Recent developments in pose estimation based on data-driven discrimi-
native methods, such as Yang and Ramanan [10] who build a deformable parts
model [11] and Bourdev and Malik [12] who learn poselets that are tightly cou-
pled in 3D pose-space and local appearance-space, have paved the way for a
reinvestigation into the suitability of pose for activity recognition. There has
been limited success, yet, in the literature exploiting these better-performing
pose estimation methods. Our early experimental evidence implies that pose
alone may be insufficient to discriminate some actions. Figure 1, for example,
contains polar histograms of limb-extrema for a variety of actions; in many cases
the polar histograms across different actions are indistinguishable. Yao et al.
[13] also evaluate whether pose estimation helps action recognition by randomly
selecting appearance or pose feature in a random forest framework; they found
no improvement after combination.

In this paper, we explore a unification of these independent research trends—
motion- and pose-based human activity recognition—that addresses the limita-
tions of each separate approach, to some degree. Our main contribution is a
new representation called dynamic pose. The basic idea is to couple local mo-
tion information directly and independently with each skeletal pose keypoint.
For example, the actions of sitting down in a chair and standing up from the
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Fig. 2. Dynamic pose illustration: the girl is running to the right. The poses in the
second and fourth frames are not very different, but when the joints are augmented
with motion information, the distinction between them increases. In the second frame,
her arms are expanding and in the fourth, they are contracting.

chair are distinct but the set of poses are nearly identical; however, the set of
dynamic poses are indeed distinct and make the two actions distinguishable. We
give a visual example of dynamic pose in Figure 2; in this example, we highlight
the different stages of running, which have the arms contracting and expanding
in one period of the activity giving two separate dynamic poses where only one
skeletal pose would be apparent.

We adopt the state of the art pose estimation work of Yang and Ramanan
[10] to compute a 13-point skeletal pose (i.e., one point for the head, one for
the left shoulder, and so on). Then, at each of these 13-points, we compute the
motion in a small cube around the point using a histogram of oriented space-
time gradients (HoG3D) [2]. We apply the dynamic pose work in an activity
recognition setting and propose a novel distance function on the dynamic poses
to do so. Our experimental results conclusively demonstrate that dynamic pose
outperforms skeletal pose on two benchmarks (UCF Sports [4] and KTH [14]).

Related Work. Some methods avoid the need to explicitly compute human
pose and yet maintain a rich description of the underlying activity through tem-
plates. Exemplary methods along these lines are the space-time shapes [15], local
optical-flow templates [16], the Action MACH represent that unifies many exam-
ple templates into one based on spatiotemporal regularity [4], and the motion-
orientation template representation in the action spotting framework [17]. These
methods show good performance in some scenarios, but their ability to general-
ize to arbitrary settings is not clear, largely due to the difficulty in selecting the
templates, which is frequently a manual process.

There has been some recent work pushing in the general direction of com-
bining elements of human pose with local motion, but no work we are aware
of couples a full skeletal pose with local motion. In contrast, the closest works
we are aware of, [18–20], instead use bottom-up part-regions and/or foreground-
silhouettes. Tran et al. [18] represent motion of body parts in a sparse quantized
polar space as the activity descriptor, but discard the pose/part structure.

Brendel and Todorovic [19] build a codebook jointly on spatial-region ap-
pearance features (2D HOG) and motion features tied to these regions. They
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ultimately use a Viterbi algorithm on the sequence of codebook elements for ac-
tivity recognition. The key idea is that the shape of the moving region—in this
application it is primarily the human torso—will give information about the un-
derlying activity. However, the work does not go far enough as to directly couple
the motion information with full human pose and is hence limited in its direct
semantic transparency. Lin et al. [20] attend to the moving human and sepa-
rate the moving human foreground from the background, which they call shape.
They couple dense motion features in the attended shape region of focus. Ac-
tions are then represented as sequences of prototypical shape-motion elements.
Our proposed dynamic pose based model clearly differs from these approaches
by incorporating local motion directly with full skeletal human pose, leveraging
on impressive recent developments in human pose estimation [10].

2 Dynamic Pose for Human Activity Recognition

1.head

2.left-shoulder

3.left-elbow

4.left-hand

5.right-shoulder

6.right-elbow

7.right-hand8.left-hip

9.left-knee

10.left-foot

11.right-hip

12.right-knee

13.right-foot

Fig. 3. Explanation of the 13
points on the skeletal pose. Sec-
tion 2.1 explains how the local
motion at each of these points
is used to enhance the descrip-
tion of the pose for our dynamic
pose representation.

Human pose is the core of our representation for
activity recognition. Skeletal pose is represented
by 13 joint points, as depicted in the Fig. 3. We
use Yang and Ramanan’s [10] articulated pose es-
timation method to extract the initial pose; their
method outputs a bounding box for each human
parts and we reduce these to the desired 13 joint
points.

We define a local coordinate space for the
skeletal pose to allow for scale-invariant inter-
pose comparisons. Considering that human ac-
tion can be represented as pose points’ stretch
and rotation relative to torso, as well as the whole
body movement, we normalize the pose points by
eliminating the scale variance and whole body
movement. Denote the location of the 13 pose
points as L = {l1, ..., l13}, in the original image
coordinate space li = {xi, yi} (refer to the indices
in Fig. 3 to look up specific joint point identities
in the following discussion). We anchor the scale-
normalization using the extracted head point (x1, y1), as we have observed it to
be the most stable of the extracted points with the method in use [10]. And,
we normalize the spatial scale based on the maximum of the left lower or right
lower leg; denote this as d = max (||l10 − l9||, ||l13 − l12||). The scale-normalized
skeletal pose P is hence

pi =

(
xi − x1

d
,
yi − y1
d

)
. (1)

where i = {2, . . . , 13}. At last we normalize the 24-dimensional pose vector norm
to be 1. In the following sections, we introduce the dynamic pose formulation
and then describe how we use dynamic pose for activity recognition.
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2.1 Dynamic Pose

Although skeletal pose constrains the set of plausible activities a human may
be engaging in, our experiments in looking at statistics of joint locations for
different activities suggest that pose alone may not be sufficient for good activity
recognition (see Figure 1 and Section 3). We hence extend the skeletal pose to
incorporate local motion of the joint points, which we expect to add a richness
to the pose-based representation for better descriptiveness. For example, jogging
and running have similar skeletal poses, but pose with local motion information
(e.g. magnitudes of local motion at feet) better encodes their differences.

To capture the local motion information of each skeletal joint point, we com-
pute the histogram of oriented 3D gradients (HoG3D) [2] in the neighborhood
around the point. HoG3D has demonstrated strong performance in activity and
event classification as it encodes the statistics of local space-time articulation,
giving a sense of the texture of the motion in the video. The local gradients are
computed at multiple spatial and temporal scales in the neighboring vicinity of
the joint point and binned according to their orientation and magnitude. Specif-
ically, we define the scales to include 15− 60 pixels in each spatial direction and
5 − 20 frames in time. Ultimately, at each joint-point, the numerous multiscale
HoG3D vectors are summarized by a single local motion histogram; a codebook
(150 entries) is built over the HoG3D vectors (separately for each joint-point)
and then a histogram over the multiscale HoG3D vector-indices is calculated.

We now discuss computing the distance between two dynamic poses. The di-
rect distance of the combined skeletal and local-motion distance is not plausible—
for example, one can envision a case where two skeletal poses are quite different,
but the local motions of the points are similar. In this contrived case, we expect
the two dynamic poses to remain different. In other words, we seek a distance
that is constrained by the skeletal pose and incorporates the local motion infor-
mation only when needed. When two joint points have spatial distance smaller
than some threshold, we compute the distance by comparing the histogram of
HoG3D descriptor in that joint point; and when the spatial distance is larger
than the threshold, we give a maximum distance instead.

Define the threshold that indicates small spatial distance as γ and the maxi-
mum distance value between the local motion features for a large spatial distance
as β when we calculate the distance of two skeletal poses p and q (specific val-
ues for these parameters are discussed in the experiments). Let di(p, q) define
some appropriate distance function on joint point i in skeletal poses p and q;
plausible options are Euclidean distance and cosine distance (since the poses are
normalized). At each joint point i for pose p, denote the local space-time HoG3D
histograms as hp(i). The distance D(p, q) between two dynamic poses is

δ(i) =

{
1−min (hp(i), hq(i)) if di(p, q) < γ
β if di(p, q) ≥ γ

}
,

D(p, q) =

12∑
i=1

δ(i) . (2)
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We discuss parameter settings in Section 3. The distance function is capable
of clustering similar dynamic poses together, and separating different dynamic
pose with similar spatial configuration, because the local motion histogram can
characterize both joint motion orientation and speed.

2.2 Codebook-Based Dynamic Pose for Activity Recognition

To apply our dynamic pose to activity recognition, we use a bag-of-features
approach. Incorporating the local motion information with the pose affords this
simpler classifier than say a tracking-based one, which may be susceptible to
noise in the frame-to-frame pose estimates. For skeletal pose, we construct a k-
means codebook of 1000 visual words from the full set of 24-dimensional skeletal
pose data. We use a similar technique to generate a 1000 word dynamic pose
codebook, using the specified distance function in Eq. (2) instead of the standard
Euclidean distance.

For classification we use many one-versus-one histogram intersection kernel
SVMs [21]. Given labeled training data {(yi,xi)}Ni=1, xi ∈ Rd, where d is equal
to the size of the codebook and N is the number of training data. For vectors
x1 and x2, the histogram intersection kernel is expressed as:

k(x1,x2) =

d∑
i=1

min(x1(i), x2(i)) . (3)

Since we adopt a one-versus-one strategy, for a classification with c classes,
c(c−1)/2 SVMs are trained to distinguish the samples of one class from another.
Suppose we reduce the multi-class classification to binary classification, with
yi ∈ {−1,+1}. We minimize equation (4) in order to find a hyperplane which
best separates the data.

τ(w, ξ) =
1

2
||w||2 + C

N∑
i=i

ξi , (4)

subject to: yi((w · xi) + b) ≥ 1− ξi and ξi ≥ 0 . (5)

where C > 0 is the trade-off between regularization and constraint violation. In
the dual formulation we maximize:

W (α) =

N∑
i=1

αi −
1

2

∑
ij

αiαjyiyjk(x1,x2) , (6)

subject to: 0 ≤ αi ≤ C and
∑

αiyi = 0 . (7)

For a given SVM, suppose we have m support vectors xl : l ∈ 1, 2, ...m, for each
histogram vector xi, m kernel computations are needed to score it:

v(xi) =

m∑
l=1

(αlylk(xi,xl)) . (8)

The final classification of a video xi is the selected as the positive class in the
one-versus-one SVM with the highest score, v(xi).
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Table 1. Performance comparison between skeletal pose and dynamic pose on two
standard benchmark datasets.

Method KTH UCF-Sports
BoP 76.39% 71.33%

BoDP 91.2% 81.33%

3 Experimental Evaluation

We test our algorithm on two benchmarks: KTH [14] and UCF-Sports [4]. The
KTH dataset consists of six actions (Boxing, Hand-clapping, Hand-waving, Jog-
ging, Running and Walking) performed about four times each by 25 subjects,
for a total of 2396 sequences, including both indoor and outdoor scenes under
varying scale. We follow the standard experimental setting described in [14], us-
ing person 02, 03, 05, 06, 07, 09, 10 and 22 as testing data and the other 16
people as training data. The UCF Sports dataset consists of ten sports actions
(Diving, Golf-Swing, Kicking, Lifting, Riding Horse, Running, Skateboarding,
Swing-Bench, Swing-SideAngle and Walk), totally 150 videos in unconstrained
environments from wide range of scenes and viewpoints. We apply leave-one-out
scheme for training and testing on UCF Sports.

We test using both Bag of Pose (BoP) and our Bag of Dynamic Pose meth-
ods (BoDP). As described in Section 2.2, we construct two 1000-dimensional
codebooks from 10000 randomly sampled training features of skeletal pose as
well as dynamic pose. As for the parameters that we use in the process of train-
ing codebook and encoding, we empirically set small distance threshold γ as
0.02 and max distance threshold β as 1.5. Table 1 summarizes the recognition
accuracy of dynamic pose and skeletal pose on both benchmark datasets; the
results demonstrate that dynamic pose, as a middle-level representation that
incorporate both human pose skeletal and local motion information, is effective
to represent articulated human activity.

Fig. 4 shows the visualization of dynamic pose codebook for the KTH dataset
(scale-normalized skeletal poses are displayed only for simplicity); the ten sam-
ples displayed are the ten codebook centroids with the most support from the
data set. We have observed that the first codebook centroid and the 9th one look
very similar in the spatial coordinate, so we have inspected the video. We find
they are corresponding to the 220th frame of video person23_handclapping_

d4_uncomp.avi and the 134th frame of video person25_handclapping_d4_

uncomp.avi. Fig. 5 shows the sequences of frames around the 1st and 9th code-
book centroids. It is clear that, although the two canonical poses have great
spatial similarity as depicted in the frames with pose skeleton on human, the
motion is in the opposite direction. This visualization of codebook echoes our
argument that dynamic pose is capable of capturing local motion information,
which will definitely contribute to distinguishing different human action; it thus
tends to improve classification of different human activities as our experimental
evaluation will now show.
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95 72 66 66 55 52 51 47 46 46

Fig. 4. The top ten canonical dynamic poses in the learned codebook. The poses are
drawn after normalization and without any rendering of the local motion information
at each pose point. The number of samples from the training set are given for each
example.

212 214 216 218 220 222 224

128 130 132 134 136 138 140

Fig. 5. The 1st and 9th dynamic pose codebook centroids visualized in video se-
quence. The first row corresponds to the 1st centroid: the canonical pose in 220th
frame of video person23 handclapping d4 uncomp.avi, and the second row corre-
sponds to the 9th centroid: the canonical pose in 134th frame of video per-
son25 handclapping d4 uncomp.avi. The number below the video sequence is frame
number, and the arrow indicates the direction of hand clapping.

For the KTH dataset, Fig. 6 shows the confusion matrices of BoP and BoDP,
both classified by intersection kernel SVM over 1000 dimensional histograms.
BoDP clearly outperforms BoP in every action class. Specifically, with BoP,
14% of jogging is misclassified as walking, whereas with BoDP jogging achieves
100% accuracy; another example is boxing, BoDP reduces 28% misclassification
with hand clapping to 11%. These findings indicate that dynamic pose does cap-
ture enough articulated local motion information to distinguish spatially similar
skeletal poses, e.g., similar feet position distribution among walking and jog-
ging, and similar hand position distribution among boxing and hand-clapping.
The overall accuracy increases from 76.4% to 91.2%. BoDP, as a middle level rep-
resentation of articulated human action, has already achieves results comparable
to the state-of-the-art in terms of simple actions.

For UCF-Sports data set, the accuracy of BoP and BoDP are 71.33% and
81.33%, respectively. The confusion matrices in Fig. 7 show that, specifically, the
classification result of the action “diving” increased from 71% to 100%, totally
distinguish from “riding-horse”, “running” and “skating”; and the classification
accuracy of “kicking” increases from 70% to 90%, which shows that dynamic
pose helps distinguish it from “running”, “skating” and “swing-bench”. The
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Fig. 6. Confusion Matrix Comparison over BoP(Left) and BoDP(Right)
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Fig. 7. Confusion Matrix Comparison over BoP(Left) and BoDP(Right) on UCF-
Sports Dataset

experiments demonstrate that dynamic pose is also effective in dealing with the
complex articulations in UCF Sports.

4 Conclusion and Future Work

In conclusion, we propose a new middle level representation of articulated hu-
man action—dynamic pose—that adds local motion information to skeletal joint
points. The basic premise behind dynamic pose is that skeletal pose alone is insuf-
ficient for distinguishing certain human actions, those which have similar spatial
distributions of limb points over the course of an action. We have implemented
our representation in an activity recognition setting using bag of features with
kernel intersection SVM as the base classifier. Our experiments conclusively in-
dicate that dynamic pose is a capable middle-level representation of articulated
human motion. In the future, we plan to combine our dynamic pose with global
context.
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