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ABSTRACT

The idea of using overcomplete dictionaries with prototype
signal atoms for sparse representation has found many ap-
plications, among which image denoising is considered as
an active research topic. However, the standard process to
train a new dictionary for image denoising requires the whole
image (or most parts) as input, which is costly; training the
dictionary on just a few patches would result in overfitting.
We instead propose a dictionary learning approach for im-
age denoising via transfer learning. We transfer the source
domain dictionary to a target domain for image denoising
via a dictionary-regularization term in the energy function.
Thus, we have a new dictionary that is trained from only a
few patches of the target noisy image. We measure the per-
formance on various corrupted images, and show that our
method is fast and comparable to the state of the art. We also
demonstrate cross-domain transfer (photo to medical image).

Index Terms— Dictionary learning, image denoising,
sparse representations, domain adaptation, transfer learning

1. INTRODUCTION

Compressive sensing [1] involves decomposing a signal into
a linear combination of a few elements from a basis set, called
a dictionary [2], such that only a very few samples are suffi-
cient to reconstruct the signal [3, 4]. Formally, let y ∈ Rn

be a signal and D = [d1, d2, ..., dk] be a dictionary in Rn×k

with k atoms (k > n, for an overcomplete dictionary). It is
assumed that y can be represented as a sparse linear combi-
nation of these atoms; i.e., y may either be exactly y = Dx,
or approximate, y ≈ Dx, s.t. ||y−Dx||2 ≤ ε. In this setting,
sparse coding with an `0 regularization amounts to computing

min
x
||x||0 subject to ||y −Dx||2 ≤ ε (1)

where || · || is the `0 norm, the number of the non-zero en-
tries of a vector, and ε > 0 models potentially noisy mea-
surements. A natural approach to solving this problem is to
alternate between the two variables (x and D), minimizing
over one while keeping the other one fixed, see [4, 5].
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Barbara Cheetah MRI Brain

Fig. 1. Sample images. The three images are different, such
as different texture, shape and intensity. By dictionary trans-
fer, we can denoise different kinds of images.

Exact determination of sparsest representations proves to
be an NP-hard problem [6]. Thus, approximate solutions are
considered instead: e.g., Matching Pursuit (MP) [7] and Or-
thogonal Matching Pursuit (OMP) algorithms [8]. As for dic-
tionary learning, an overcomplete dictionary D can either be
chosen as a prespecified set of functions, such as wavelets,
DCT, steerable filters, etc., or designed by adapting its con-
tent to fit a given set of signal examples. Although denoising
with a prespecified dictionary is simple and fast, it results in
low reconstruction accuracy in most cases [3]. Moreover, a
global learned dictionary does not transfer well to different
types of images, see Fig. (1). Recent methods, such as K-
SVD, use an adaptive strategy to learn a new dictionary, and
show improvements in signal-to-noise ratios.

However, these adaptive methods, such as K-SVD [3] and
MOD [9], are designed to work with overlapping patches (one
per-pixel) of whole image. A 512 × 512 image will generate
about 250000 patches (8 × 8). Despite fast algorithms [5],
training with this many patches from a single image is time-
consuming. Conversely, training with a few patches leads to
overfitting. We hence face a dilemma on how to quickly learn
the dictionary and yet achieve higher accuracy.

To that end, we propose a domain adaptation approach
for dictionary learning. Our goal is to balance the trade off
between learning speed and accuracy by transferring an exist-
ing dictionary trained from other images. Even though other
dictionary learning approaches has been studied recently [10,
11, 12], we are aware of little work on dictionary transfer for
image denoising. Domain adaptation [13] is the problem that
arises when the data distribution in our test domain is different
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from that in our training domain. In other words, we cannot
directly use predefined dictionary for the target image denois-
ing. Thus, we need to transfer the predefined dictionary to the
target domain with a few training samples from the new im-
age. Compared to the recent methods, such as K-SVD [3], our
method speeds up the training process, maintains or improves
accuracy and avoids overfitting.

2. OUR APPROACH FOR DICTIONARY LEARNING

In this section, we propose a dictionary learning through
domain adaptation. Consider a few training patches Y =
{yi, i = 1, 2, ...,m} in Rn×m, which are randomly sampled
from a new corrupted image that we hope to reconstruct. De-
note the corresponding coefficient X = {xi, i = 1, 2, ...,m}
in Rk×m, s.t. yi ≈ Dxi, where D ∈ Rn×k.

2.1. Dictionary learning with domain adaptation

Suppose we have a learned dictionary D0 ∈ Rn×k available,
and we want to learn a new dictionary D given just a few
image patches yi by transfer learning. Thus, we propose to
minimize the following equation:

L(X,D) =min
x,D

m∑
i

||yi −Dxi||22 + λ1||D −D0||2F (2)

subject to ∀i, ||xi||0 ≤ L
and ∀j = 1, 2, ..., k, dTj dj ≤ 1

where yi is an image patch written as a column vector, xi is
the corresponding coefficient, D in Rn×k is a dictionary to be
learned, L is the number of nonzero elements in each coef-
ficient vector, and || · ||F is the Frobenius norm. To prevent
D from being arbitrarily large (which would lead to arbitrar-
ily small values of xi), it is common to constrain its columns
(dj)

k
j=1 to have an `2 norm less than or equal to one. The first

term in Eq. (2) is the data-dependent loss. Compared to K-
SVD [3] and on-line dictionary learning [14], in the second
term, we add D0 as a regularizer to control the complexity
of the target dictionary D—this term allows the dictionary
transfer and is the main technical innovation of our paper. λ1
is the weight for measuring the relevance between the source
domain and the target domain. If two domains are relevant,
D should be close to D0. Note that the second regulariza-
tion term in Eq. (2) is vital for our approach: (a) controls the
complexity of the target domain; (b) avoids overfitting for the
target dictionary D; (c) makes it possible with a few training
data for dictionary learning, meanwhile getting high denois-
ing accuracy. To minimize Eq. (2), we can use the standard
alternating strategy betweenX andD, which we now explain.

2.2. Algorithm Outline

Our algorithm is summarized in Algorithm 1. It alternates the
classical sparse coding steps with a fixed dictionary D, and

Algorithm 1
Input: Input image patches yi, D0 ∈ Rn×k, block size, λ1, k
(number of atoms) and T (number of iterarations).
Output: Dictionary D and coefficient X = {xi, i =
1, 2, ...,m}.
Method:

1: initial D = D0

2: for t = 1→ T do
3: Sparse Coding Stage: Use any pursuit algorithm to

compute xi for i =1,2,..., m
• minxi

||yi −Dxi||22 subject to ||xi||0 ≤ L
4: A← 0, B ← 0,
5: for all training patches yi and its corresponding coeffi-

cient xi, i = 1, 2, ...m
A← A+ xix

T
i

B ← B + yix
T
i

6: Dictionary Update Stage:
• minD

∑m
i=1 ||yi −Dxi||22 + λ1||D −D0||2F

• normalize D
7: end for

the dictionary update steps where X is fixed. As for sparse
coding with D fixed, we compute the decompositions xi by
minimizing Eq. (1) for each patch yi. In this paper, we use
orthogonal match pursuit (OMP) method to calculate coeffi-
cient X (from the current D). Then, for updating the dic-
tionary, there are two approaches: (1) using stochastic gradi-
ent descent [14]. This method (on-line learning) is effective
when training dataset is very large. The strength of stochastic
gradient descent methods (SGD) is that they are easy to im-
plement and effective for large training data. However, they
are subject to manual tuning of parameters (learning rate and
convergence criteria) and may not be robust. (2) By setting
gradient ∂L(X,D)

∂D = 0, we can compute new dictionary D. In
our work, since we consider a few training data for dictionary
learning, method (2) is preferred.

2.3. Dictionary Update

With X fixed, we minimize

min
D

m∑
i=1

||yi −Dxi||22 + λ1||D −D0||2F

=min
D

(
tr(DTDA)− 2tr(DTB) + λ1||D −D0||2F

)
, (3)

which has the following analytical solution:

D = (B + λ1D0)(A+ λ1I)−1 . (4)

Note that we need to normalize D when we compute it ac-
cording to above formula. The parameter λ1 is required to
yield an invertible (A+λ1I). When we have smaller training
patches, larger λ1 is preferred in order to avoid overfitting,



(a) Noise image (440× 640) (b) Initial dictionary D0

(c) Result (20 patches, 26.10 dB) (d) Dictionary (20 patches)

(e) Result (26.45 dB) (f) Dictionary (65000 patches)

Fig. 2. The first row is the noisy image and the pre-learned
dictionary by K-means from Barbara (see Fig. 1). The sec-
ond row is the denoising result and dictionary learned with 20
training patches. The last row is the denoising result and dic-
tionary learned with 65000 training patches from corrupted
cheetah image.

whereas when we have larger training patches, smaller λ1 is
set so that each atom in D can effectively reconstructed the
original image.

In this paper, we use a dynamic strategy to set λ1. We set
λ1 = 2.0 × 106 × (1 − m

col×row ), where m is the number of
training patches, col and row are respectively the height and
width of the noisy image; the constants were determined em-
pirically and used for all experiments. Our dynamic strategy
to set λ1 can effectively avoid overfitting when m is small,
and keep more weight on fidelity term so that the learned dic-
tionary can describe the content of the target image. We do
not observe any problem with inverting Eq. (4) either.

3. EXPERIMENTS

We have carried out several experiments on both natural
and medical images to show the practicality of the proposed
algorithm: our earlier claim is that the dictionary transfer
would yield comparable or superior denoised images more

efficiently than existing methods. We evaluate this claim and
find it substantiated.

First, we learn the initial dictionary D0 from image Bar-
bara using K-means, and transferred it to Cheetah and MRI
Brain, from Fig. (1). We use two points of comparison: a
baseline without dictionary transfer (using D0 for denoising
directly) and the state of the art K-SVD [3]. In all experi-
ments, we take the same parameters setting as K-SVD. For
example, the dictionaries in use are of size 64× 256, T = 10,
i.e., the number of iteration is 10. Using the OMP, atoms were
accumulated till the average error passed the threshold (cho-
sen empirically to 1.15σ) or the number of nonzero coefficient
larger than L (setting L = 6).

In experiment 1, we fix Gaussian noise σ = 25 and vary
training size (number of patches). The training data are sam-
pled patches (8×8 pixels) randomly from the target corrupted
image (adding noise σ = 25 to Cheetah and MRI Brain).
Fig. 2 demonstrates different dictionaries learned with dif-
ferent training size and Fig. 3 further describes the relation-
ship between accuracy and training size. It shows that dic-
tionary learning with transfer improves signal-to-noise when
compared to no transfer. We also demonstrate the relationship
between time and training size: our method can finish dic-
tionary learning in few seconds for a thousand patches (and
scales linearly). In contrast, K-SVD requires several minutes
to train an adaptive dictionary for image size 512 × 512. We
do not include the 10 patches result of K-SVD in Table 1, be-
cause it has an overfitting problem (10 patches are less than
dictionary size 256). Table 1 and Fig. 3 show that the ac-
curacy of our method increases gradually with more training
patches.

In experiment 2, we compare the three methods by vary-
ing σ on the Cheetah image. We compute the peak SNR value
(refer to the software package http://www.cs.technion.
ac.il/˜elad/software/). The results indicate a trade-off
in performance between K-SVD and our method depending
on the level of corruption in the image; see Figs. (4) and (5)
for more details. In all cases, our method yields results com-
parable or superior to the selected state of the art and yet is
more efficient.

4. CONCLUSIONS

In this paper, we have studied the dictionary transfer learn-
ing model for trade-off between computational cost and accu-
racy. The approach taken is based on sparse and redundant
representations in overcomplete dictionaries learned. With
only a few training samples, our method can speed up the
learning process via domain adaptation. Furthermore, the do-
main adaptation allows us to circumvent the overfitting prob-
lem effectively. Our experiments have demonstrated that our
method yields comparable or superior denoising more effi-
ciently than the state of the art K-SVD method.
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Fig. 3. (a) Denoising accuracy (σ = 25) with varying number
of training patches. (b) Computational time changing with the
number of training patches. Few patches will definitely speed
up dictionary training process.

Table 1. Accuracy with different training size (σ = 25)
PPPPPPPImg

Acc. #(patches) Methods
10 500 1000

Cheetah
26.09 26.09 26.09 No transfer
- 22.24 26.06 K-SVD
26.10 26.17 26.22 Our method

MRI Brain
27.70 27.70 27.70 No transfer
- 25.99 28.10 K-SVD
27.74 28.80 28.82 Our method
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Fig. 4. Accuracy comparisons between the three methods
by varying σ. It shows that our method outperforms K-SVD
when Gaussian noise increasing.
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