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Abstract

In this paper we present an image segmentation tech-
nique that fuses contributions from multiple feature sub-
spaces using an energy minimization approach. For each
subspace, we compute a per-pixel quality measure and per-
form a partitioning through the standard normalized cut al-
gorithm [12]. To fuse the subspaces into a final segmen-
tation, we compute a subspace label for every pixel. The
labeling is computed through the graph-cut energy mini-
mization framework proposed by [3]. Finally, we combine
the initial subspace segmentation with the subspace labels
obtained from the energy minimization to yield the final seg-
mentation. We have implemented the algorithm and provide
results for both synthetic and real images.

1. Introduction

Image segmentation in a particular feature subspace is
a fairly well understood problem [13]. However, it is well
known that operating in only a single feature subspace, e.g.
color, texture, etc, seldom yields a good segmentation for
real images. In the simple case given in Figure 2, segment-
ing in either the color or the texture subspace does not yield
all of the regions. However, combining information from
multiple subspaces in an optimal manner is a difficult prob-
lem to solve algorithmically. Although there is recent in-
terest in combining two subspaces of information, primar-
ily color and texture [1, 4], we are unaware of any general
technique for combining multiple subspaces.

The obvious approach one might take to combine infor-
mation from multiple subspaces is to construct a large fea-
ture vector with components from each of the subspaces,
and then employ a standard segmentation approach. How-
ever, it is not clear that such an approach makes good use of
each subspace, and the curse of dimensionality may render
the problem intractable.

In this paper we propose a method that fuses separate

segmentations from multiple subspaces into one final seg-
mentation. The fusion is performed in the graph-cuts based
energy minimization framework [3, 10]; such an energy
minimization approach attempts to capture the global struc-
ture of an image where local techniques would fail.

1.1. Related Work

The literature on image segmentation is dense. Here, we
sample relevant papers. Jain et al. [8] provide a complete
survey of data clustering techniques. Our approach uses the
normalized cuts [12] image segmentation in each subspace
independently. This approach is one of a class of techniques
characterized by Weiss [13] as an eigendecomposition of
the affinity matrix.1 The normalized cuts technique is also
used in [11] where the authors provide a technique for com-
bining texture information and brightness information for
image segmentation.

The strength of energy minimization techniques lie in
their ability to model global image structure on which local
methods would normally fail. However, before the recent
work by Boykov et al. [3, 2], energy minimization algo-
rithms were typically solved through simulated annealing
methods which rendered them computationally intractable.
Their framework provides an approximate solution to the
minimization in polynomial time. While not all ener-
gies can be minimized using graph cuts, Kolmogorov and
Zabih [10] define the class of energy functions which are
graph representable and thus can be minimized using graph
cuts. The graph cut minimization techniques have been suc-
cessfully applied to image restoration [3], stereo [9], and
joint stereo-background separation [7].

2. Approach

We propose a technique that computes segmentations in
multiple separate subspaces and then fuses them in a man-

1The affinity matrix is a large matrix containing information about
inter-pixel affinity (similarity or dissimilarity).
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ner that attempts to capture the global image structure. The
thrust of our work is to select an appropriate subspace for re-
gions in the image based on the underlying image structure
in that region. We propose a general energy minimization
algorithm that computes this selection, or labeling.

We first concentrate on our approach for combining the
results of segmentation algorithms. To this end, let S be the
set of labels for the considered subspaces and I be the set
of image pixel locations. For every subspace s ∈ S we de-
fine two functions: the quality function2 Qs : I → [0, 1]
and the segmentation Cs : I → Zs with the restriction that
Zs1 ∩Zs2 = ∅. Intuitively, the quality function should mea-
sure the expectation that a pixel neighborhood will yield a
promising segmentation. Q is the set of quality functions
{Qs, s ∈ S} over all subspaces and C is similarly the set
of segmentations {Cs, s ∈ S} over all subspaces. One can
employ a variety of techniques to compute Q and C; in Sec-
tion 3 we provide the complete algorithm and examples of
techniques to compute Q and C in Section 4.1.

2.1. Labeling via Energy Minimization

As discussed in [10], there is a certain class of energy
functionals that can be minimized using graph cuts. The
energy function we choose belongs to that class of function-
als. The input to the energy minimization algorithm is the
set of quality measures Q and segmentations C. The output
is to associate a labeling L : I → S for each pixel i ∈ I
that is the best subspace from the set of subspaces S. We
assume that the clustering obtained in each subspace is the
optimal one for that subspace. Thus, wherever the quality
measure is good for a particular subspace, the clustering for
that subspace will also be good. Based on [3], the energy
functional that we minimize is

E(L) =
∑

i∈I

QL(i)(i) +
∑

i,j∈N

Vi,j(L(i), L(j)) (1)

where N is the neighborhood over a set of pixels, Vi,j is
the discontinuity preserving smoothness or the interaction
term between neighboring pixels i and j. It is defined based
on the clustering in each of the subspaces. We simplify the
notation L(i) to be Li here.

Vi,j(Li, Lj) =

k2 + (k1 − k2) · δ(CLi
(i), CLi

(j)) · δ(CLj
(i), CLj

(j))

(2)

where CLi
denotes the clustering in the subspace with label

L at pixel i, k2 > k1 and δ is the Kronecker delta function.

20 being the best quality and 1 the worst quality.

Intuitively, the interaction term (2) attempts to preserve
the boundary at Li and Lj if either subspace segmentation
CLi

or CLj
indicates a boundary. Additionally, it enforces

smoothness in the labeling by linking adjacent pixels. We
include a detailed discussion of the interaction term in [5].

The energy function we use satisfies the constraint de-
fined in [10]. Due to space limitations, the proof is included
in [5]. In order to minimize this energy functional, we cre-
ate a set of graphs as outlined in [3] without the a-nodes and
perform α-expansion3 at every step to compute the labeling
that minimizes the energy.

2.2. Fusion of Subspaces

The final step of our algorithm performs the fusion of the
subspace segmentations C based on the labeling L. Each
pixel i ∈ I in the final segmentation is assigned to the re-
gion based on its labeling L(i) and the subspace segmenta-
tion CL(i):

Cf (i) = CL(i)(i), ∀i ∈ I (3)

Note that a boundary in L creates a boundary in the final
segmentation. Likewise, note that boundaries in the highest
quality regions (over which L is constant) are preserved. To
reduce noise, we first median filter L.

3. The Complete Algorithm

The complete segmentation algorithm is presented in
Figure 1. We initially compute a standard single-subspace
segmentation using the normalized cuts algorithm [12] and
a pixel-coefficient for each subspace that measures the sub-
space quality. These two quantities drive the energy min-
imization which assigns a per-pixel subspace label that is
then used in a fusion procedure.

SEGMENT ( Input Image I )
1 foreach (subspace s ∈ S )
2 foreach (pixel i ∈ I)
3 Compute quality Qs(i)
4 Compute clustering Cs(I)
5 Compute labeling L(I)
6 foreach (pixel i ∈ I)
7 Cf (i) = CL(i)(i)
8 return Cf as final segmentation

Figure 1. Proposed segmentation algorithm.

We employ the standard normalized cuts algorithm [12]
to compute subspace segmentation (Ck, k ∈ S) and choose

3Hence the use of small values for high quality and large values for low
quality (Section 4.1 for more information).
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to use the dominant 6 eigenvectors of the affinity matrix
instead of performing explicit recursion. We follow the
same formula to compute the affinity matrix A as [12];
namely, we populate the entries of A as the product of
the feature subspace similarity term and the clamped spa-
tial proximity term. Specifically, for pixels i and j let
Xij =‖ X(i) − X(j) ‖2 where X(i) is the spatial loca-
tion of pixel i,

Aij = e
−‖F(i)−F(j)‖2

σF ∗

{

e
−Xij

σX if Xij < r

0 otherwise
(4)

where F(i) is the feature vector based on feature subspace
(see Section 4.1 for examples of F) and r is the neighbor-
hood truncation threshold. We follow [12] in our choices of
parameters, r, σF , σX : 5, 0.01, 4.0 respectively.

4. Experiments

In this paper, we consider techniques and results for the
color and texture feature subspaces only; however, there is
no inherent limitation in our approach limiting it to these
two subspaces. We present results for both synthetic and
real data.

4.1. Subspace Definitions

In both the color and texture subspaces, we use an in-
tuitive approach to measuring quality (Qc and Qt): the
variance of the image I. For the color subspace, regions
with low color variance are expected to yield good seg-
mentation. We take a conservative measurement and use
the color-channel with the worst variance. Let i ∈ I
be a pixel in the image, Ni be a neighborhood of pixels
about i, µp(i) = 1

|N |

∑

x∈N Ip(x) where p ∈ r, g, b, i
is a plane of the color image or grayscale, and σp(i) =
1

|N |

∑

x∈N (Ip(x) − µp(i))2.

σc(i) = max[σr(i), σg(i), σb(i)] (5)

σt(i) = σi(i) (6)

By convention (Section 2.1), we define quality 0 as best
quality and 1 as worst quality. Let η be a threshold on the
max color variance allowed (we use 0.2 in our experiments).

Qc(i) =

{

1 if σc(i) > η
σc(i)

η
otherwise

(7)

Qt(i) = 1 − σt(i) (8)

For the color and texture subspaces, we define F(i) as
follows:

- Color - F(i) = [v, v · s · sin h, v · s · cosh](i), where
h, s, v are the HSV values.

- Texture - F(i) = [|I ∗ g1|, · · · , |I ∗ gn|](i), where
the gk are the Gabor convolution kernels [6] at various
scales and orientations. In our implementation we use
4 scales and 6 orientations.

4.2. Results

Figure 2 shows the result of our algorithm on a synthetic
image that contains three regions: one from the texture do-
main and two from the color domain. It is clearly visible
that fusing the subspaces improves the segmentation signif-
icantly over either the color or texture subspace alone.

Figure 2. Result of subspace fusion on a syn-
thetic image. First row is the color subspace
segmentation and quality. Second row is the
texture subspace, and the final row is the orig-
inal image and the fusion segmentation. Note
that quality ranges from 0 (black) to 1 (white)
with 0 the best quality and 1 the worst quality.

Figure 3 shows the result of subspace fusion on a real
zebra image. The segmentation in both the color and tex-
ture subspaces is shown with the resultant segmentation ob-
tained by subspace fusion.

It is important to note that the segmentation in the texture
subspace in the zebra image is not very good as the segmen-
tation was run on a very low resolution image (i.e. 100x80)
where the texture information is subdued. We expect that on
higher resolution images the results would be much better,
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Figure 3. Complete segmentation for the ze-
bra image. Top-left is the high resolution im-
age and top-right is the low-resolution image
used. Row 2-left is the color subspace clus-
tering, Row 2-right is the texture subspace,
bottom-left is the labeling with black assigned
to color, and bottom-right shows the final
clustering.

but due to the high computation cost involved with segment-
ing high resolution images, we currently restrict ourselves
to low resolution images.

5. Conclusion and Future Work

In this paper we have presented a technique for im-
age segmentation which employs information from multi-
ple subspaces. We make two contributions: First, we pro-
pose a technique to measure subspace quality based on the
expectation that a local image neighborhood will yield a
good segmentation for a given subspace. Second, we pro-
pose a novel use of the graph-cut based energy minimiza-
tion framework [3] to fuse the subspace segmentations into
a final segmentation.

Presently, we show techniques and results for the color
and texture subspaces. However, there is no inherent limi-
tation in our approach limiting it to these two subspaces.

For future work, we plan to experiment with additional
subspaces: reconstruction geometry for multiple cameras,
contours, neighborhood statistics, etc. Also, the texture sub-
space we are currently using is based on the Gabor filter
response which assumes a repetitive texture. However, for
cases with scale-varying texture, this measure will perform
poorly. Alternatively, since the Gabor convolution provides

a measure for repetitiveness, a better quality measure would
be one that judges a neighborhood’s repetitiveness. We are
currently investigating both scale invariant repetitive texture
measures and the use of Fourier analysis for computing a
measure of repetitiveness. For the graph cut results, we plan
to study the effect of using different size neighborhoods.
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