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Abstract. Repeatable, quantitative assessment of intervertebral disc pathology
requires accurate localization and labeling of the lumbar region discs. To that
end, we propose a two-level probabilistic model for such disc localization and
labeling. Our model integrates both pixel-level information, such as appearance,
and object-level information, such as relative location. Utilizing both levels of
information adds robustness to the ambiguous disc intensity signature and high
structure variation. Yet, we are able to do efficient (and convergent) localization
and labeling with generalized expectation-maximization. We present accurate re-
sults on 20 normal cases (96%) and a promising extension to a pathology case.

1 Introduction

Past [1] and recent [2] studies have suggested a need for repeatable quantitative inter-
vertebral disc degeneration (IDD) assessment methods. IDD is prevalent, especially in
modern times—about 12 million Americans have some type of IDD—and can cause
very high pain levels. One example of an IDD is herniation, where the disc, a structure
that acts like a shock-absorber between vertebrae, bulges out of place causing fragments
of disc material to press on the nerve roots in the spinal column. In the clinic, a radiolo-
gist diagnoses an IDD by first localizing and labeling each intervertebral disc and then
identifying any pathology in a given disc based on its local geometry and appearance.
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Fig. 1. Lumbar region.

Accurate localizing and labeling is necessary for diag-
nosis of an IDD pathology. However, the underlying image
signal is ambiguous: the intensity of a disc greatly over-
laps with that of the spinal nerve fibers. Even the structure
can change from case to case, with possible bending of the
spinal column (scoliosis) and missing or additional verte-
brae [3]. In Figure 1, we show a normal example of the
lumbar region of the spinal column with the discs labeled
according to the standard scheme.

In this paper, we propose a method to automate the de-
tection and labeling of the intervertebral discs from sin-
gle MR radiographs. Although we study lumbar discs, our
method is directly extensible to the full spinal column. Our
method is based on a two-level probabilistic model. On the
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first level, we model the local pixel-level properties of the discs, such as appearance.
On the second level, we capture the object-level geometrical and contextual relation-
ships between discs. The model parameters are estimated from previously labeled cases
(supervised learning). The two-level model insulates the localization of the discs from
the complex appearance variation in the underlying radiograph leading to a robust and
efficient algorithm.

2 Related Work

Automatic localization and labeling of inter-vertebral discs has been a focus of the
medical imaging community for over two decades, and it has largely evaded researchers
due to the ambiguous disc appearance and high structural variation. Early methods, e.g.,
Chwialkowski et al. [4], are primarily model- or heuristic-based such as analyzing a
horizontal cross-section of intensities to search for the posterior and anterior disc edge.
These early models have been influential (e.g., [5]), but were generally tested on few
cases and it is not known if they scale.

The recent work by Peng et al. [5] uses such a model-based approach to localize the
disc position based on template convolution and an intensity profile. Output from this
process is used to help automatically pick the sagittal slice from the volume to work
with; the slice with minimum variance for peaks of the intensity profile are used. Pekar
et al. [6] also develop an approach for labeling the vertebral column as part of scan
geometry planning (a step beyond selecting a particular slice from an existing scan).
They search for possible disc locations and then do 3D connected components to find
disc centers. Masaki et al. [7] also propose a method for automated geometry planning
based on intensity and a Hough transform. Five radiologists agree in 9 out of 10 cases
that the automatic image plane is as good as or better than manual.

Weiss et al. [8] propose a semi-automatic technique for labeling discs. The user
manually marks one disc and then the algorithm proceeds by an iterative intensity-
analysis based method. The upper and lower halves of the spine are independently pro-
cessed using threshold values, filters and noise suppression operators. The technique is
highly dependent on imaging quality and data dependent thresholding values. Zheng
et al. [9] do segmentation of lumbar vertebrae using digital videofluoroscopic images,
which are more noisy than the standard MR radiographs but have a time component.
They propose a method based on shape descriptors and a Hough transform (relatively
high dimension); the method is validated on synthetic data and a single in vivo sequence.

Our proposed method is most similar to the recent work by Schmidt et al. [10].
These two works take a step away from the heuristic driven approaches and construct
probabilistic models. [10] define a probabilistic graphical model based on the vertebrae.
It incorporates appearance and shape information and uses the A? algorithm, which
does a best-first greedy coordinate search for the solution. Their method assumes a
full 3D volume, which is not a current clinical standard. In contrast, our method uses
a single T2 radiograph (current clinics use multi-spectral radiographs). Their method
uses comparatively opaque discriminative models, while we develop a generative prob-
abilistic model that also incorporates appearance and object information but in a more
direct, transparent manner. We structure our model in two levels to increase robustness
to variation and make it plausible to do full inference using expectation-maximization.



3 Approach

3.1 Conventional Labeling Approach

Our goal is to localize each disc connected to the lumbar vertebrae. One standard prob-
abilistic approach is to formulate a labeling problem with one label per disc and do
inference by assigning the most probable label at each pixel. The brain structure la-
beling work of Fischl et al. [11] is an example of this standard problem formulation.
Concretely, let Λ = {s = (x, y) : 0 ≤ x < n, 0 ≤ y < m} be the image lattice and
consider the image as a map from the lattice to intensities1, I : Λ 7→ R. Define the set
of disc labels A = {1, . . . , 6} (there are six discs connected to lumbar vertebrae), and
a set T of label variables ti with one for each pixel i ∈ Λ. Then, given an image I, one
seeks the maximum a posteriori estimate of the labels:

T ∗ = arg max
T

P (T |I) . (1)

However, this inference problem is non-trivial; one typically must make an assumption
of independence or rely on (opaque) discriminative models such as the randomized tree
classifier as done by Schmidt et al. [10]. Both assumptions may break down due to the
high degree of intensity similarity to neighboring anatomy and across discs, the large
spatial variability of the discs, and pathological discs (e.g., herniation). Furthermore,
it is difficult to incorporate high- or object-level information (such as the relative disc
ordering) into this formulation since all of the variables are represented at the pixel level.
This difficulty not only affects the robustness of modeling, but also makes it necessary
to add post-processing constraints to enforce additional problem specific constraints,
such as each disc being a closed elliptical region.

3.2 Two-Level Probabilistic Model

We instead propose a two-level probabilistic model that only requires conditional in-
dependence, is generative (more transparent), and adequately insulates the localization
variables from the pixel intensities while at the same time modeling the exact disc ge-
ometry rather than solely pixel-level labels. Let D = {d1, d2, . . . , d6} be the set of disc
variables with each di = (xi, yi)T representing the disc center (they could also include
disc angle, boundary, etc.). Inferring these from an image is our ultimate goal, but we
avoid doing it directly due to the difficulties mentioned above. Rather, we introduce a
set of auxiliary variables, called disc-label variables and denoted L = {li, ∀i ∈ Λ}.
The disc-labels make it plausible to separate the disc variables from the image inten-
sities; i.e., the disc-label variables will capture the local pixel-level intensity models
while the disc variables will capture the high-level geometric and contextual models of
the full set of discs. Each disc-label variable can take a value of {−1,+1} for non-disc
or disc, respectively. Note the simpler situation than above where we had a particular
label for each disc. Figure 2 presents and compares the two modeling situations.

1 These are MR images, but we consider the pixel values as simple intensities without incorpo-
rating any special MR related model.
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Fig. 2. Graphical models depicting the conventional probabilistic model and our proposed two-
level probabilistic model. Our model (right) separates the low- or pixel-level information from the
high- or object-level information adding disc localization robustness to the common intensity and
structure variation. In the figure, filled squares are observed data (the image) and hollow circles
are latent variables. The image and first level (T and L) sit on the 2D or 3D image lattice Λ, but
the high level is a single 1D chain with one node per disc.

We marginalize over the possible disc-labelings since these are auxiliary variables
giving the following optimization function:

D∗ = arg max
D

∑

L
P (L,D|I) = arg max

D

∑

L
P (L|D, I)P (D) , (2)

where the second equality follows from the multi-level nature of the model (the disc
variables are assumed independent of the intensities). Note the summation is over a
very large set of possible assignments (2|Λ|). We model it as a Gibbs distribution:

P (L|D, I) =
1

Z[L]
exp

[
− β1

∑

s∈Λ

UI(ls, I(s)) ← intensity (3)

− β2

∑

s∈Λ

UD(ls,D) ← spatial

P (D) =
1

Z[D]
exp

[
− β3

∑

di∈D
UL(di) ← location

− β4

∑

(i∼j)

VD(di, dj)
]

← disc-context

where βk ≥ 0, k = {1, . . . , 4} are tunable parameters and Z[·] are the partition func-
tions. The (· ∼ ·) notation denotes the set of neighboring elements on the disc chain.
Each term will be explicitly defined in the following sections.

The first level, P (L|D, I), captures the probability of a particular labeling given
both the underlying image and the overlying disc variables. Each potential function
models a different aspect of the local pixel-level information (the aspect is mentioned
on the right of each equation-line). The second level P (D) models the high-level infor-
mation about the disc locations and context.



3.3 Low Level Terms

Fig. 3. Disc intensity em-
pirical distribution.

Intensity. The potential, UI(ls, I(s)), models the pixel ap-
pearance I(s) based on its current label ls. We use a Gaus-
sian for the disc pixels, motivated by empirical study of the
distribution of disc pixels (figure 3), and take the negative-
log of it for the potential. The parameters of the Gaussian,
µI and σ2

I , are learned from labeled training data (specific
details in experiments section §4). We drop the normalizing
term since it does not depend on the specific intensity value:

UI(ls, I(s)) =





(I(s)−µI)2

2σ2
I

if ls = +1

− log
(
1− exp

[
− (I(s)−µI)2

2σ2
I

])
if ls = −1

(4)

Since there are a (small) finite number of intensities, the second case (with the log) can
be precomputed and cached without incurring great computational burden.
Spatial. The potential UD(ls,D) models the spatial relationship between a disc-label
and the set of discs. Intuitively, a disc-label is more likely to take value +1 the closer
it is to the location specified by one of the discs. We compute the covariance matrix Σi

(i.e., shape) of each disc di during training (roughly, the discs are elliptically shaped)
and then base the spatial potential on the squared Mahalanobis distance:

UD(ls,D) = ls · min
di∈D

[
(s− di)

T
Σ−1

i (s− di)
]

. (5)

The potential assigns energy proportional to the distance of the closest disc, and the
label variable acts as a switch: when ls = −1, being far from the closest disc is lower
energy than being closer to it and vice versa.

3.4 High Level Terms

Location. The potential UL(di) measures the distance of disc di to its expected location.
Similar to the spatial low level term in (5), we estimate the covariance Σi for each disc
(same as above) and, in this case, the mean location µi. We do the estimation offline
from training data. The squared Mahalanobis distance defines the potential:

UL(di) = (di − µi)
T

Σ−1
i (di − µi) . (6)

Disc-Context. The potential VD(di, dj) captures the high-level contextual relationship
between two neighboring discs. Consider the discs form a chain; then the neighboring

Fig. 4. Empirical distri-
bution of disc distances.

pairs are nearest neighbors on the chain. Since we in-
clude only the spatial location for each disc variable, the
distance between neighboring discs is a natural measure
for this potential. Inspecting the empirical distribution of
these distances (figure 4) suggests a Gaussian parameter-
ized by µD, σ2

D, and its negative log for the energy. Let
eij = |di − dj |2, then

VD(di, dj) =
(eij − µD)2

σ2
D

. (7)



3.5 Inference Using Generalized Expectation-Maximization

We use the generalized EM (gEM) algorithm [12] to solve (2). We initialize D0 by
setting each disc di in its mean location µi, which we’ve learned offline from training
data. Then, we iteratively estimate the posterior over the disc-label variables, L, and
refine the disc variables by maximizing the expected log likelihood (ELL):

E-step→ F t(L) = P
(L|Dt, I

)
(8)

M-step→ Dt+1 = arg max
D

[
log P (D) +

∑

L
F t(L) log P (L, I|D)

]
(9)

Inference with gEM is tractable without resorting to monte carlo methods because of the
underlying structure of our two-level model. Since no dependencies are defined among
the disc-label variables L, we factor them into independent local terms:

P (L|D, I) =
∏

s∈Λ

1
Z[ls]

exp
[
−β1UI(ls, I(s))− β2UD(ls,D)

]
. (10)

Thus, we directly evaluate the full posterior (8) and log terms (9) during optimization.
Since the partials are not analytically available, we execute a finite differences-based
gradient ascent algorithm to iteratively maximize the ELL. It is beyond the scope of
this paper to go into full detail; basically, iteratively for each disc variable di, we eval-
uate the local gradient of the ELL by perturbing di by a set of changes {δ}. For each
perturbation, we fully evaluate (9) and change di by the δ yielding the maximum (if no
δ increases the function, we do not change di). We stop when no di has changed.

4 Experimental Results

We use 20 pathology-free cases of clinical T2-weighted MR data for the lumbar spinal
column (e.g., figure 1). The images have been acquired on a 3T Philips Medical Systems
Intera Scanner with a voxel resolution of 0.5 × 0.5 × 4.5 mm3. From each case, we
extract the four middle slices giving a total of 80 radiographs. We work in 2D because
there is there is 5mm inter-slice space and it is standard clinical practice. We have
manually annotated the images to specify each disc center as well as to label a subset
of the disc pixels so that we could perform training of the necessary parameters for our
model (intensity, spatial, etc.). We set the parameters of the model β1 through β4 by
hand; these could be learned by various supervised parameter estimation algorithms.

We have performed a leave-two-out cross validation (CV) experiment. In each CV
sub-experiment, we separate all four images from two cases to be used for testing and
leave the rest (72 images in 18 cases) for training; this prevents bias since multiple
slices are taken from the same case. Figure 5 summarizes the results of this experiment
using two quantitative mechanisms: the Euclidean distance to the known disc center
and a boolean score that is yes if the inferred label lies anywhere inside of the disc
(this is scored manually). A distance of less than 3mm is within the margin of error in
human labeling of the disc center. The discs are labeled from bottom to top, i.e., D1
is S-L5. Our scores are comparable or superior to [10] (depending on which variant of



their algorithm is analyzed), but they use a full 3D volume and opaque discriminative
models while we use a 2D image and transparent generative models. We have focused
exclusively on the lumbar region while they do the full spine (our model is directly
extensible).
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Exp. D6 D5 D4 D3 D2 D1 Out of 48
1 0.6 0.3 6.5 0.9 0.8 3.3 45
2 1.3 0.7 4.3 1.6 2.7 2.2 47
3 2.6 2.7 3.3 1.8 0.7 2.7 47
4 5.2 0.6 0.8 1.5 1.6 0.7 46
5 0.9 1.6 4.9 2.2 3.5 4.2 44
6 3.6 4.4 3.8 4.2 4.8 5.7 45
7 1.9 1.4 1.6 2.0 2.2 1.4 48
8 2.0 1.5 2.4 1.3 3.3 2.5 48
9 0.7 1.7 2.1 2.2 2.1 2.2 47

10 4.8 4.2 3.9 4.7 4.9 5.1 45
Average 2.36 1.91 3.33 2.24 2.67 2.98

Accuracy (mm) 96.2%

Fig. 5. Results of cross validation (CV). Every time two cases (8 images) are pulled out and
training is perfomed on the other 72 images. (Left) A box-plot showing summary statistics of
Euclidean distances over all testing cases in CV. The line in each box is the median, the top
and bottom are the 75th and 25th percentiles, and plusses are statistical outliers. (Right) The
mean Euclidean distances for each of the 10 CV experiments and the labeling results (right-most
column) marking how many discs were localized inside of the correct disc. Accuracy is 96.2%

Figure 6 shows the labeling in four test images; the first three are from our dataset
and the fourth is a pathology case. The images show a green line that traces the path
during disc optimization and a plus for the converged point. We can see (e.g., left-most
D4) that even when initialization is far from the true disc, the two-level model is able to
drive the variable to an accurate position. Although the model is not designed to handle
the abnormalities presented in the fourth case (disc degeneration, bottom two), we are
able to successfully localize each disc in this image too, suggesting our model could
extend to the more complicated cases of abnormalities (with some enhancements). One
failure we see is D3 in the left-most image; here, the disc is labeled but the model fails
to accurately localize the disc center.

5 Summary and Discussion

We have proposed a two-level probabilistic model for robustly localizing and label-
ing intervertebral discs. The unifying model incorporates both pixel-level information
(e.g., appearance) and high-level information (e.g., spatial relationship between discs)
in a single coherent generative model. This two-level approach insulates the high-level
inferences (about disc localization) from the pixel-level variations.

Our quantitative results show good localizing and labeling performance: about 96%
labeling accuracy in a cross validation experiment. We plan to extend the size of the



Fig. 6. Labeling results. Each image shows disc optimization path and a plus for the converged
point. The right-most image is an abnormal case not in our data-set.

dataset and adapt the method to pathological cases, which is our ultimate goal. As the
example in figure 6 shows, the generalization to pathological cases is possible with
the straightforward potentials proposed in this paper, but will require extensions to the
model. To that end, we plan to enhance the model by incorporating local texture into
the low-level terms and disc orientation and shape into the high-level terms.
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