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Efficient Multilevel Brain Tumor Segmentation with
Integrated Bayesian Model Classification
Jason J. Corso, Member, IEEE, Eitan Sharon, Shishir Dube, Suzie El-Saden, Usha Sinha,

and Alan Yuille, Member, IEEE

Abstract— We present a new method for automatic segmen-
tation of heterogeneous image data that takes a step toward
bridging the gap between bottom-up affinity-based segmentation
methods and top-down generative model based approaches. The
main contribution of the paper is a Bayesian formulation for
incorporating soft model assignments into the calculation of
affinities, which are conventionally model free. We integrate the
resulting model-aware affinities into the multilevel segmentation
by weighted aggregation algorithm, and apply the technique to
the task of detecting and segmenting brain tumor and edema
in multichannel MR volumes. The computationally efficient
method runs orders of magnitude faster than current state-of-
the-art techniques giving comparable or improved results. Our
quantitative results indicate the benefit of incorporating model-
aware affinities into the segmentation process for the difficult
case of glioblastoma multiforme brain tumor.

Index Terms— Multilevel segmentation, normalized cuts,
Bayesian affinity, brain tumor, glioblastoma multiforme.

I. INTRODUCTION

MEdical image analysis typically involves heterogeneous
data that has been sampled from different underlying

anatomic and pathologic physical processes. In the case of
glioblastoma multiforme brain tumor (GBM), for example,
the heterogeneous processes in study are the tumor itself,
comprising a necrotic (dead) part and an active part, the edema
or swelling in the nearby brain, and the brain tissue itself. To
complicate matters, not all GBM tumors have a clear boundary
between necrotic and active parts, and some may not have any
necrotic parts. In Figure 1, we show a 2D slice of an MR image
in the T1 weighted and T2 weighted channels presenting an
enhancing GBM brain tumor. On the right, we outline the
different heterogeneous regions of the brain tumor and label
them as edema, active, or necrotic.
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Fig. 1. Labeled example of a brain tumor illustrating the importance of the
different modalities (T1 with contrast and T2).

It is assumed that a distinct statistical distribution of imag-
ing features exists for each heterogeneous process, and that
each distribution can be estimated from training data. In the
constrained medical imaging domain, it is plausible to cap-
ture such feature distributions with relatively low-dimensional
models that generalize to an entire population. This plausibility
in medical imaging comes in contrast to the natural imaging
domain in which the feature distribution can be extremely
complex due to external phenomena like lighting and occlu-
sion.

A key problem in medical imaging is automatically seg-
menting an image into its constituent heterogeneous processes.
Automatic segmentation has the potential to positively impact
clinical medicine by freeing physicians from the burden of
manual labeling and by providing robust, quantitative mea-
surements to aid in diagnosis and disease modeling. One such
problem in clinical medicine is the automatic segmentation
and quantification of brain tumors. We consider the GBM
tumor because it is the most common primary tumor of the
central nervous system, accounting for approximately 40% of
brain tumors across patients of all ages [1], and the median
postoperative survival time is extremely short (8 months) with
a 5-year recurrence-free survival rate of nearly zero [2].

Quantifying the volume of a brain tumor is the key indicator
of tumor progression [3]. However, like most segmentation
problems, automatic detection and quantification of a brain
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tumor is very difficult. In general, it is impossible to segment
a GBM tumor by simple thresholding techniques [4]. Brain
tumors are highly varying in size, have a variety of shape
and appearance properties, and often deform other nearby
structures in the brain [2]. In the current clinic, the tumor
volume is approximated by the area of the maximal cross-
section, which is often further approximated to an ellipse.
Such a rough approximation is used because the time cost to
compute a more accurate manual volume estimate is too high.
Liu et al. [3] present an interactive system for computing the
volume that reduces the cost of manual annotation and shows
promise in volume estimates on a small number of cases.

However, no completely automatic segmentation algorithm
has yet been adopted in the clinic. In Table I we present
a concise review of the prior art in automatic tumor seg-
mentation. Both GBM and non-GBM methods are given in
the table for completeness. Fuzzy clustering methods (voxel-
based) across all tumor types appear to be the most popular
approach. Philips et al. [5] give an early proof-of-concept
fuzzy clustering for brain tumor by operating on the raw
multi-sequence data. They visually demonstrated that even
with multi-sequence data the intensity distributions for tu-
mor and normal tissue overlap. This led future researchers
to incorporate additional knowledge into the feature vectors
being clustered. Clark et al. [6] integrate knowledge-based
techniques and multi-spectral histogram analysis to segment
GBM tumors in a multichannel feature space. Fletcher-Heath
et al. [7] take a knowledge-based fuzzy clustering approach
to the segmentation followed by 3D connected components
to build the tumor shape. Prastawa et al. [4] also present a
knowledge-based detection/segmentation algorithm based on
learning voxel-intensity distributions for normal brain matter
and detecting outlier voxels, which are considered tumor. The
distributions are learned with kernel-based density estimation
methods, and the initial outlier detection is followed by a
region competition algorithm.

Voxel-based statistical classification methods include [9],
[10]. Kaus et al. [10] use the adaptive template-moderated
classification algorithm [11] to segment the MR image into
five different tissue classes: background, skin, brain, ventricles,
and tumor. Their technique proceeds as an iterative sequence
of spatially varying classification and non-linear registration.
Prastawa et al. [9] define a parametric distribution across
multiple channels of tumor as a mixture of Gamma and Gaus-
sian components. They use the Expectation-Maximization
algorithm [18] to perform segmentation and iteratively adapt
the model parameters to the case at hand.

These two sets of methods are limited by their extreme
degree of locality, i.e., they are voxel-based and do not take
local or global context into account. While they have had some
success in segmenting low-grade gliomas and meningiomas
(relatively homogeneous) on a good-sized data set [10], their
success is limited in the more relevant GBM (heterogeneous)
segmentation examples. Furthermore, it is not clear this limited
success will scale to the more difficult inevitable cases arising
in larger data-sets (like the one used in this paper). There
have been few attempts at solving this problem of local
ambiguity. One method of note is the recent work of Lee et
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Fig. 2. The SWA algorithm gives a graph hierarchy of potential voxel
segments at different scales. This figure shows an explanatory 2D graph
hierarchy and the corresponding image region of each lattice element. Only a
few interlevel connections are drawn; note how one node can have multiple
parents. In practice, the individual voxels form the lowest graph layer.

al. [14] that uses the context-sensitive discriminative random
fields model [19], [20]. They use a set of knowledge-based
features [21] coupled with support vector machines to perform
the segmentation and classification. The use of energy and
shape models (e.g., level-sets [13] and active contours [16])
is promising but is generally iterative in nature and therefore
sensitive to initialization, which, unless interactive, is nearly
as difficult as the entire segmentation for brain tumor.

In this paper1, we present a new method for automatic
segmentation of heterogeneous image data that is applicable in
any case for which distinct feature distributions can be learned
for the heterogeneous regions. To demonstrate such an applica-
tion, we experiment with the task of detecting and segmenting
brain tumors but note the method is generally applicable. Our
method combines two of the most effective approaches to
segmentation. The first approach, exemplified by the work of
Tu et al. [23], [24], uses class models to explicitly represent the
different heterogeneous processes. The tasks of segmentation
and classification are solved jointly by computing solutions
that maximize a posterior distribution that has been learned
from training data. To make the optimization tractable, the
posterior is often represented as a product distribution over
generative models on sets of pixels, or segments. Hence, we
call these methods model-based. This type of approach is very
powerful as the solutions are guaranteed to be from a statistical
distribution that has been learned from training data, but the
algorithms for obtaining these estimates are comparatively
slow and model choice is difficult. Some techniques have
been studied to improve the efficiency of the inference, e.g.
Swendsen-Wang sampling [25], but these methods still remain
comparatively inefficient.

The second approach is based on the concept of graph
cuts [26]. In these affinity-based methods, the input data
induces a sparse graph, and each edge in the graph is given
an affinity measurement that characterizes the similarity of

1This paper is an extended version of [22]. Here, we present a more
complete technical discussion, full qualitative comparison to the literature,
complete results and failure mode analysis, and a new mathematical formu-
lation for learning the parameters of the model-aware affinity functions from
labeled training data.
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Authors Description Type # Cases Accuracy Time
Liu et al. [3] Fuzzy clustering (semi-automatic) GBM 5 99% 16 min.

Phillips et al. [5] Fuzzy clustering GBM 1 N/A N/A
Clark et al. [6] Knowledge-based fuzzy clustering GBM 7 70% N/A

Fletcher-Heath et al. [7] Knowledge-based fuzzy clustering NE 6 53%-90% N/A
Karayiannis and Pin [8] Fuzzy clustering (VQ) MG 1 N/A N/A

Prastawa et al. [4] Knowledge-based/outlier detection GBM 4 68%-80% 90 min.
Prastawa et al. [9] Statistical classification via EM GBM 5 49%-71% 100 min.

Kaus et al. [10], [11] Statistical classification with atlas prior LGG, MG 20 99% 10 min.
Vinitski et al. [12] k-Nearest neighbor N/A 9 N/A 2 min.

Ho et al. [13] 3D level sets GBM 3 85%-93% N/A
Lee et al. [14] Discriminative Random Fields and SVM GBM, AST 7 40%-89% N/A
Peck et al. [15] Eigenimage analysis N/A 10 N/A N/A

Zhu and Yan [16] Hopfield neural network and active contours N/A 2 N/A N/A
Zhang et al. [17] Support vector machines N/A 9 60%-87% N/A

Our Method Multilevel Bayesian segmentation GBM 20 27%-88% 7 min.

TABLE I
SUMMARY OF RELATED METHODS IN AUTOMATIC BRAIN TUMOR SEGMENTATION. THE TYPE ABBREVIATIONS ARE GBM: GLIOBLASTOMA

MULTIFORME, AST: ASTROCYTOMA, NE: NON-ENHANCING, LGG: LOW-GRADE GLIOMA, MG: MENINGIOMA. N/A IS USED WHENEVER THE

INFORMATION IS NOT GIVEN IN THE PAPER. ACCURACIES ARE COMPUTED AS VOLUME OVERLAP, WHICH IS ALSO CALLED THE JACCARD SCORE. WE

DISCUSS OUR RESULTS IN DETAIL IN SECTION VI-E AND INCLUDE FAILURE MODE ANALYSIS FOR THE FEW CASES AT THE LOWER END OF THE RANGE

(THE MAJORITY OF OUR CASES SCORE GREATER THAN 70%).

the two neighboring nodes in some predefined feature space.
Cuts are sets of edges that separate the graph into two
subsets, which are typically computed by analyzing the eigen-
spectrum [26], [27] or pairwise-predicate measures [28]. These
methods have led to the hierarchical segmentation by weighted
aggregation (SWA) algorithm due to Sharon et al. [29]–[31].
SWA was first extended to the 3D image domain by Akselrod-
Ballin et al. [32] for the problem of multiple sclerosis segmen-
tation.

SWA operates by recursively coarsening the initial graph
using an adapted algebraic multigrid algorithm [33]; it is
shown to approximate the normalized cut measure [26]. The
SWA algorithm produces a multilevel segmentation of the
data with each node in the hierarchy representing a potential
segment (see Figure 2 for a simple example). The hierarchy
can capture interesting multiscale properties like, for example,
the necrotic and active parts of the tumor as initially separate
segments to be joined at a higher level in the hierarchy as a
single segment. However, the original algorithm does not give
a method for selecting individual segments to produce a final
classification of the data. SWA is rapid and effective, but does
not explicitly take advantage of the class models used in [23].

The main contribution of this paper is the model-aware
affinity, which is step toward unifying these two disparate
segmentation approaches by incorporating models into the
calculation of the affinities on the graph and then using the
models to extract a final classification from the hierarchy. Both
the model parameters and the model-aware affinity parameters
are learned from labeled training data. Our method incorpo-
rates information from multiple scales and thus has greater
potential to avoid the local ambiguity problem that affects
the prior voxel-based classification and clustering methods.
Furthermore, our algorithm defines a feed-forward process that
requires no initialization and is capable of doing classification
during this process. We demonstrate encouraging results and
cross-validate them on a comparatively large GBM dataset.

The organization of the paper is as follows: first, we
discuss the necessary background in generative models and
the notation that will be used in the paper (Section II). Next,
we describe (Section III) how we incorporate Bayesian model
classification into the calculation of affinities. The proposed
model-aware affinity leads to improved cuts by allowing the
use of affinity functions tailored to the specific models in use.
We extend the SWA algorithm to include the model-aware
affinity in Section IV. In Section V, we describe a method to
extract the segmentation from the SWA hierarchy that makes
explicit use of the model probabilities from the new affinity
function. Finally, in Section VI we discuss the application
of our method to the problem of brain tumor segmentation
in multichannel MR. We describe the specific class models
and probability functions used in the experimental results. We
conclude with a failure mode analysis of the proposed method
and discuss potential improvements.

II. MATHEMATICAL BACKGROUND

In this section, we first make the definitions and describe
the notation necessary for the technical discussion. Then, we
introduce the necessary background concepts.

A. Notation

The input data induces a graph, G = (V, E), on which
all of the analysis occurs. Associated with each node in the
graph, u, v ∈ V , are properties, or statistics, denoted su ∈ S ,
where S is the space of properties (e.g., R3 for red-green-blue
image data). Edges in the graph, euv ∈ E , are created based
on connectivity relations in the input data. Define a cluster to
be a connected set of nodes C ⊂ V in the graph such that
Ck ∩ Cl = ∅ when k 6= l and

⋃
Ck = V .

Associated with each node is a random variable, mu, called
the model variable that takes values from a discrete set of
process models M that is problem specific; in the brain
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tumor example this set would be {brain, tumor, edema}.
Additionally, associated with each edge is a binary random
variable, Xuv , called the edge activation variable, and the set
of these over E is denoted X . An edge activation variable takes
value 1 if u and v are in the same cluster and value 0 if the
two nodes are not in the same cluster. Thus, an instance of
X , an activation set, defines a segmentation of the data into
clusters.

For a given image, there may be multiple plausible activa-
tion sets. These multiple interpretations often arise from the
inherent scale ambiguity in biomedical images: for example, at
one scale, a tumor is composed of separate necrotic and active
segments, but at a higher scale, the two subparts of the tumor
are joined giving a single tumor segment. We thus note that
the clusters are not deterministically defined by assignments
to the model variables: both sets of variables are stochastic,
there is an interdependent relationship between the two, and
nodes with different model variables can reside in the same
cluster.

B. Generative Models

The model based methods define a likelihood function
P ({su}|{mu}) for the probability of the observed statistics
{su} conditioned on the model variables {mu} of the pixels
{u}. The methods also put prior probabilities P ({mu}) on
the model variables defining what is termed a generative
model [34]. Intuitively, the term generative means that by
explicitly modeling the likelihood and prior, the creative, or
generative, process has been captured. Thus, one can generate
random samples from the model that resemble the real images
from which the model was trained. Examples of such gener-
ative models include simple point processes like those used
in this paper, maximum entropy models of texture [35], and
stochastic grammars [36].

Computing estimates of the class labels that maximize the
posterior probability

P ({mu}|{su}) ∝ P ({su}|{mu})P ({mu}) (1)

is the modus operandi of the model-based segmentation
methods. However, such distributions are typically very high-
dimensional and require very sophisticated modeling and
inference algorithms.

C. Affinity Methods

In contrast, the affinity-based methods define a compara-
tively efficient bottom-up strategy for computing the segmen-
tation of the input data. In the induced graph, each edge is
annotated with a weight that represents the affinity of the two
nodes. The affinity is denoted by wuv for connected nodes u
and v ∈ V . Conventionally, the affinity function is of the form

wuv = exp (−D(su, sv; θ)) (2)

where D is a non-negative distance measure and θ are
predetermined parameters. To promote efficient calculation,
the affinity function is typically defined on a simple feature
space like intensity or texture. For example, on intensities
a common function is θ |su − sv|1. The parameters θ are

fixed and predetermined through some heuristic techniques or
learned from training data [37].

The goal of affinity methods is to detect salient clusters
defined as those clusters giving small values of the following
function

Γ(C) =

∑
u∈C,v/∈C wuv∑

u,v∈C wuv
. (3)

Such clusters have low affinity across their boundaries and
high affinity within their interior. This is the so-called nor-
malized cut criterion [26]. Eigenvector techniques [27] were
originally used to compute the clusters, but, more recently,
an efficient multiscale algorithm for doing this was pro-
posed [29]–[31] and is described in Section IV.

III. INTEGRATING MODELS AND AFFINITIES

In this paper, we restrict ourselves to the simple generative
model where P (su|mu) is the conditional probability of the
statistics su at a node u with model mu, and P (mu,mv) is the
prior probability of model labels mu and mv at nodes u and
v. We assume the edge activation variables are conditionally
independent given the properties at its nodes.

We use probabilities to combine the generative model meth-
ods with the affinities. The affinity between nodes u, v ∈ V is
defined to be the probability of the binary event Xuv that the
two nodes lie in the same cluster. This probability is calculated
by treating the class labels as hidden variables that are summed
out:

P (Xuv|su, sv) =∑
mu
mv

P (Xuv|su, sv,mu,mv)P (mu,mv|su, sv) ,

∝
∑
mu
mv

P (Xuv|su, sv,mu,mv)P (su, sv|mu,mv)P (mu,mv) ,

=
∑
mu
mv

P (Xuv|su, sv,mu,mv)P (su|mu)P (sv|mv)P (mu,mv) ,

(4)

where the third line follows from the assumption that the nodes
are conditionally independent given class assignments. This
Bayesian model-aware affinity avoids making premature hard
assignments of nodes to models by integrating over all possible
models and weighting by the class evidence and prior. The
formulation also makes it plausible to define a custom affinity
function for each model pair. The first term in the sum of (4)
is a model specific affinity:

P (Xuv|su, sv,mu,mv) = exp
(
−D (su, sv; θ[mu,mv])

)
.

(5)
Note that the property of belonging to the same region is not
uniquely determined by the model variables mu,mv . Pixels
with the same model may lie in different regions and pixels
with different model labels might lie in the same region.

This definition of affinity is suitable for heterogeneous data
since the affinities are explicitly weighted by the evidence
P (su|mu) for class membership at each pixel u, and so can



5

adapt to different classes. This differs from the conventional
affinity function wuv = exp (−D(su, sv; θ)), which does not
model class membership explicitly. The difference becomes
most apparent when the nodes are aggregated to form clusters
as we move up the pyramid, see the multilevel algorithm
description in Section IV. Individual nodes, at the bottom of
the pyramid, will typically only have weak evidence for class
membership (i.e., P (su|mu) is roughly constant as a function
of mu). But as we proceed up the pyramid, clusters of nodes
will usually have far stronger evidence for class membership,
and their affinities will be modified accordingly.

The formulation presented here is general; in this paper,
we integrate these ideas into the SWA multilevel segmentation
framework (Section IV). In Section VI, we discuss the specific
forms of these probabilities used in our experiments.

IV. SEGMENTATION BY WEIGHTED AGGREGATION

We now review the segmentation by weighted aggregation
(SWA) algorithm of Sharon et al. [29]–[31], and describe
our extension to integrate model-aware affinities. As earlier,
define a graph Gt = (Vt, Et) with the additional superscript
indicating the level in a pyramid of graphs G = {Gt : t =
0, . . . , T}. Denote the multichannel intensity vector at voxel i
as I(i) ∈ RC , with C being the number of channels.

A. Original SWA Algorithm

The finest layer in the graph G0 = (V0, E0) is induced by
the voxel lattice: each voxel i becomes a node v ∈ V with
6-neighbor connectivity, and node properties set according to
the image, sv = I(i). The affinities, wuv , are initialized as in
Section III using D(su, sv; θ) .= θ |su − sv|1. SWA proceeds
by iteratively coarsening the graph according to the following
algorithm:

1) t← 0, and initialize G0 as described above.
2) Choose a set of representative nodes Rt ⊂ Vt such that
∀u ∈ Vt and 0 < β < 1∑

v∈Rt

wuv ≥ β
∑
v∈Vt

wuv . (6)

3) Define graph Gt+1 = (Vt+1, Et+1):
a) Vt+1 ← Rt, and edges will be defined in step 3f.
b) Compute interpolation weights

puU =
wuU∑

V ∈Vt+1 wuV
, (7)

with u ∈ Vt and U ∈ Vt+1.
c) Accumulate statistics to coarse level:

sU =
∑
u∈Vt

puUsu∑
v∈Vt pvU

. (8)

d) Interpolate affinity from the finer level:

ŵUV =
∑

(u 6=v)∈Vt

puUwuvpvV . (9)

e) Use coarse affinity to modulate the interpolated
affinity:

WUV = ŵUV exp (−D(sU , sV ; θ)) . (10)

Fig. 3. Example SWA hierarchy on a synthetic grayscale image. The numbers
indicate the level in the hierarchy (0 would be the pixels).

f) Create an edge in Et+1 between U 6= V ∈ Vt+1

when WUV 6= 0.
4) t← t+ 1.
5) Repeat steps 2 → 4 until |Vt| = 1 or |Et| = 0.

The parameter β in step 2 governs the amount of coarsening
that occurs at each layer in the graph (we set β = 0.2 in this
work). There is no explicit constraint to select a minimum set
of representative nodes that satisfy (6). However, the set Rt

should be programmatically chosen to be a minimum set or
the height of the resulting graph hierarchy is potentially un-
bounded. [30] shows that this algorithm preserves the saliency
function (3).

In Figure 3, we show the hierarchy resulting from running
the SWA coarsening algorithm on a synthetic grayscale image.
The input image is drawn in the top-left corner of the figure;
it consists of a bright annulus, a dot, a dark circle and a noise
process in the background. The levels of the pyramid depict
the segments (drawn with arbitrary colors) outputted by the
iterative coarsening process. Until we encounter some of the
objects of interest, the coarsening follows an isotropic growth.
At levels 3 and 4, the small dot is segmented well. At level
7 the dark circle is detected, and at level 8 the annulus is
detected. Eventually, all of the segments merge into a single
segment (on level 10, not shown).

In the example, we see that each of the salient foreground
objects in the image is correctly segmented at some level in the
hierarchy. However, being objects of different scale, they are
not detected at the same level. Sharon et al. [30], [31] suggest
thresholding the saliency function (3) to detect the salient
objects at their intrinsic scale. In our experimentation, we
found this method to be inadequate for medical imaging data
because the objects of interest are often not the only salient
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objects and seldom the most salient objects in the imaging
volume resulting in many false positives. In Section V, we
propose a new method for extracting segments from the hier-
archy that incorporates the model likelihood information, and
in Section VI, we show the model-aware approach performs
significantly better than the saliency based approach.

B. Incorporating Model-Aware Affinities

The two terms in (10) convey different affinity cues: the
first affinity ŵUV is comprised of finer level (scale) affinities
interpolated to the coarse level, and the second affinity is
computed from the coarse level statistics. For all types of
regions, the same function is being used. However, at coarser
levels in the graph, evidence for regions of known types (e.g.,
tumor) starts appearing making it sensible to compute a model-
specific affinity (step 3e below). Furthermore, the model-
aware affinities compute the model likelihood distribution,
P (sU |mU ), and we can also associate a most likely model m∗

U

with each node (step 3f below). The final algorithm follows:
1) t← 0, and initialize G0 as earlier.
2) Choose a set of representative nodes Rt satisfying (6).
3) Define graph Gt+1 = (Vt+1, Et+1):

a) Vt+1 ← Rt, and edges will be defined in step 3g.
b) Compute interpolation weights according to (7).
c) Accumulate statistics according to (8).
d) Interpolate affinity according to (9).
e) Apply the model-aware affinity as a modulation

factor:

WUV = ŵUV P (XUV |sU , sV ) , (11)

where P (XUV |sU , sV ) is evaluated as in (4).
f) Associate a class label with each node:

m∗
U = arg max

m∈M
P (sU |m) . (12)

g) Create an edge in Et+1 between U 6= V ∈ Vt+1

when WUV 6= 0.
4) t← t+ 1.
5) Repeat steps 2 → 4 until |Vt| = 1 or |Et| = 0.
We demonstrate a quantitative improvement from integrat-

ing models into the affinity calculation in the results presented
in Section VI-E.

V. EXTRACTING SEGMENTS FROM THE HIERARCHY

Both the original and the modified SWA algorithms pro-
duce a graph hierarchy during the iterative coarsening of the
input image. As briefly discussed through the example in
Figure 3, extracting the segments corresponding to objects
of interest from the hierarchy is non-trivial. In this section,
we propose two extraction algorithms. First, we discuss an
approach that uses saliency (3) and is derivative of the original
SWA papers [30], [31]. Second, we present a new extraction
algorithm that is based on tracing a voxel’s model signature
up the hierarchy. The second method relies exclusively on the
generative models that have been learned from data, and in
the results (Section VI), we show it outperforms the original
saliency-based approach.

A. Saliency-Based Extraction

This method associates each voxel with the most salient
segment of which it is a part in the graph hierarchy. The
routine proceeds for each voxel independently; neighborhood
information for the voxels is implicitly incorporated due to the
agglomerative nature of the graph hierarchy. First, associate
every voxel with a node at each level using the Gauss-Seidel
relaxation sweeps algorithm [30]. For voxel i, denote the node
v at level t with which it is associated by vt

i . Then, traverse
the hierarchy to find the level at which the associated node is
most salient:

t∗ = arg min
t={1...T}

Γ
(
vt

i

)
. (13)

Finally, label the voxel with the class associated with this most
salient node: mi ← mvt∗

i
.

B. Model-Based Extraction

We focus on the model likelihood function that is computed
during the Bayesian model-aware affinity calculation (4). In
this extraction method, we conserve the soft clustering nature
of the SWA algorithm in contrast to the saliency based method
that makes a hard assignment of a voxel to a node at each
level. Again, we proceed independently for each voxel letting
the neighborhood information be captured by the multiscale
nature of the graph hierarchy.

For each voxel i with corresponding node v, create a
variable m0

v to store the most likely model as in (12).

m0
v = arg max

m∈M
P (sv|m) (14)

Then, recursively proceed up the hierarchy creating such a
model variable for the voxel at each level in the hierarchy.
Explicitly use the interlevel interpolation weights (7) to incor-
porate the soft node coarsening from SWA. For example, at
level one, the function is easily written:

m1
v = arg max

m∈M

∑
V ∈V1

pvV P (sV |m) (15)

From the T + 1 resulting model variables, associate the voxel
with the model that occurs most frequently. As discussed ear-
lier, the model likelihood distribution will be roughly constant
at the fine (initial) levels in the hierarchy but will tend to
quickly peak for one model. In most cases, the likelihood will
remain peaked until the node gets joined to some other larger
node of a different class at which time, the distribution will
shift to prefer that class.

VI. APPLICATION TO BRAIN TUMOR SEGMENTATION

In this section, we discuss the application to automatic
segmentation and volume estimation of GBM brain tumors. As
discussed in the introduction, brain tumors are highly varying
in size, have a variety of shape and appearance properties,
and often deform nearby structures in the brain [2]. Quan-
tifying the volume of the tumor is a key indicator of tumor
progression [3]. An accurate volume measurement can be used
to analyze the effectiveness of new treatments. However, no
automatic approach yet exists for automatically and accurately
computing the volume.
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A. Data Processing

We work with a dataset of 20 expert-annotated GBM
studies. Using FSL tools [38], we pre-process the data through
the following pipeline: (1) spatial registration, (2) noise re-
moval, (3) skull removal, and (4) intensity standardization.
The intensity standardization is intended to align the gray and
white matter peaks in the intensity histogram; this procedure
can be corrupted by the presence of a large tumor. We have
taken no extra step in the standardization to make it robust
to such corruption. We use the T1 weighted pre- and post-
contrast (T1CE), FLAIR and the T2 weighted MR sequences.
The 3D data is 1× 1 mm2 resolution in the axial plane but it
varies (even for a single subject) in the slice resolution. For
example, the typical slice resolution used in the T1CE channel
is near isotropic (1 × 1 × 1 mm3), but the slice resolution in
the T2 channel is highly anisotropic (e.g., 1 × 1 × 10 mm3).
Since the proposed method assumes all image data lies on the
same lattice, we subsample all channels to match the resolution
of the lowest channel (since subsampling is generally a more
reliable task than extrapolating). While accurate volume mea-
surements are difficult under such anisotropy, the data reflects
current clinical practices in diagnostic radiology. The resulting
3D data is 256× 256 with an average of 24 slices (the range
is 22 to 26 slices). To facilitate training and testing, we split
the dataset into two sets and denote them as (A##) and (B##).
For most of the results, we use set A for training and set B for
testing. We do include two-fold cross-validation results (train
on B and test on A).

B. Class Models and Feature Statistics

We model four classes of data: non-data (outside of head),
brain matter, tumor, and edema. The tumor class includes
the necrotic (dead) part of the GBM tumor, the enhancing
(active) part of the tumor, the ambiguous tissue in between
necrotic and enhancing, as well as possible tumor infiltration
and non-enhancing tumor. The edema represents non-tumor,
healthy tissue that has a swelling response to the tumor. We
assume the underlying statistics of the tumor and edema inten-
sities conform to a mixture model with Gaussian components
(GMM). The mixture model is plausible because of its relative
simplicity and generality: it can be shown that given enough
components, a mixture model can fit any finite set of empirical
data. The single channel intensity histograms for the tumor and
edema data are given in Figure 4. We can see the enhancing
tissue as a heavy tail in the T1CE channel. The mixture
model can capture the different subparts of the tumor model
as separate components.

Denote the parameters of a Gaussian component ψi =
{φi, µi,Σi}, where µi is the mean vector and Σi is the
covariance matrix. The φi parameter is called the mixing
coefficient and describes the relative weight of component
i in the complete model. For the complete model, write
Ψ = {k, ψi, . . . ψk}, where k is the number of components in
the data. A mixture model on d-dimensional data x is written

P (x; Ψ) =
k∑

i=1

φiP (x;µi,Σi)

FLAIR
T1 T1CE

T2

Tumor Edema

Fig. 4. Class intensity histograms in each channel independently for the
whole population.

=
k∑

i=1

φi

exp
(
− 1

2 (x− µi)
T Σ−1

i (x− µi)
)

(2π)
d
2 |Σi|

. (16)

The standard Expectation-Maximization algorithm [18] is used
to estimate the parameters of each class mixture model in a
maximum likelihood formulation. Training these parameters
takes about two minutes per class on a standard Linux PC.

The node-class likelihoods P (su|mu) are computed directly
against this mixture model. The class prior term, P (mu,mv),
encodes the obvious hard constraints (i.e. tumor cannot be
adjacent to non-data), and sets the remaining unconstrained
terms to be uniform according to the maximum entropy
principle.

C. Model-Aware Affinity Definition and Learning

For the model-aware affinity term (5), we use a class
dependent weighted distance:

P (Xuv|su, sv,mu,mv) = exp

(
−
∑

c

θc
mumv

∣∣sc
u − sc

v

∣∣) ,

(17)

where superscript c indicates vector θ element at index c (the
channel c). The class dependent coefficients are learned from
the labeled training data by constrained optimization. Intu-
itively, the affinity between two nodes of the same (different)
class should be near 1 (0). Thus, we learn the coefficients
by optimizing the following function under the constraint that
the coefficients sum to one for each class pair,

∑
c θ

c
mu,mv

=
1, ∀{mu,mv}.

θ∗m∗
u,m∗

v
=

arg max
θ

∑
u:mu=m∗

u

v:mv=m∗
v

exp
(
−
∑
c
θc
∣∣sc

u − sc
v

∣∣) if m∗
u = m∗

v

arg min
θ

∑
u:mu=m∗

u

v:mv=m∗
v

exp
(
−
∑
c
θc
∣∣sc

u − sc
v

∣∣) otherwise.

(18)

To optimize the coefficients for each class-pair, we perform
an initial stochastic search for the best parameters followed
by a steepest coordinate-descent procedure. The gradient of
the function is estimated numerically at each iteration and
the single coordinate that optimally modifies the affinities is
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adjusted. The procedure is terminated when no adjustment will
improve the affinity over the training data. Because this is
an offline procedure in a non-linear space with many local
minima, we emphasize the utility of the initial stochastic
search to locate a good starting point for the coordinate-
descent step. Typically, the training is complete in about one
minute (on a standard Linux PC) for ten thousand iterations
of stochastic search and the ensuing descent.

We present the learned coefficients in Table II (we abbre-
viate non-data, ND). We have included only those pairs not
excluded by the hard constraints discussed above. The learned
coefficients reflect the general intuition about what channels
are best utilized to analyze certain region types. For example,
the affinity between brain and edema region is measured solely
in the FLAIR and T2 channels while the affinity between
tumor and edema incorporates the T1CE, FLAIR, and T2
channels. Note that the coefficients are symmetric (i.e., equal
for Brain, Tumor and Tumor, Brain).

XXXXXXXXmu, mv

c T1 T1CE FLAIR T2

ND, Brain 0.00 0.01 0.03 0.96
Brain, Brain 0.41 0.59 0.00 0.00
Brain, Tumor 0.00 0.15 0.36 0.49
Tumor, Tumor 1.00 0.00 0.00 0.00
Brain, Edema 0.00 0.00 0.54 0.46
Tumor, Edema 0.00 0.31 0.20 0.49
Edema, Edema 0.45 0.55 0.00 0.00

TABLE II
MODEL-AWARE COEFFICIENTS THAT WERE LEARNED FROM THE

TRAINING DATA. ROWS ARE (SYMMETRIC) CLASS PAIRS AND COLUMNS

ARE CHANNELS.

The sole feature statistic that we accumulate for each node
in the graph (SWA step 3c) is the average intensity; i.e.,
the intensity of a super node is the weighted average of its
children’s intensities. The feature statistics, model choice and
model-aware affinity form is specific to our problem; many
other choices could also be made in this and other domains
for these functions.

D. Implementation and Computational Efficiency

The multilevel approach based on the segmentation by
weighted aggregation algorithm is approximately linear in the
number of input voxels (

∣∣V0
∣∣) [30]. With the addition of the

Bayesian model-aware affinity calculation a multiplicative fac-
tor in the number of models squared is imposed. This number
is typically small, four in this case, and in our experience has
not greatly affected the computational efficiency.

However, the memory requirement of the multilevel algo-
rithm is high. The burden is not in the graph nodes, which
are O(2 |V|) since each coarsening procedure cuts the number
of nodes in half, roughly. Instead, the cost of maintaining the
adaptive neighborhood structure and soft assignment during
the agglomeration is large, even in the case of a sparse initial
graph. For the pixel layer, it is a linear term (each node is
connected to a fixed number of neighbors). However, while
the number of nodes decreases at each coarser layer in the

hierarchy, the neighborhood structure grows. We observe a
roughly constant total number of edges in a graph layer,
which gives a memory requirement of O(|V| log |V|). The
explicit representation of the soft interlevel weights requires a
second O(|V| log |V|) order memory term. Sharon et al. [31]
give suggestions for dealing with such memory cost. In our
implementation, we rely on an out-of-core memory buffer
to store the node relationships at each layer in the graph
hierarchy.

The algorithm is implemented in pure Java (v1.5) with no
native bindings. On a typical image volume of size 256×256×
24, the entire volume is completely segmented and classified
in less than 1 minute using a 3GHz P4 Linux machine with a
heap size of 1.5GB and less than 2 minutes using a 1.67GHz
PowerPC Mac OS X laptop with a heap size of 1.5GB.
Including the cost of preprocessing, which is about 5 minutes,
these times are orders of magnitude faster than the current state
of the art in medical image segmentation, specifically brain
tumor segmentation as summarized in Table I. For example,
the execution time given in [4] is about 90 minutes on a
2GHz Xeon machine. We note that the apparent speedup
observed in our approach may be caused by some intrinsic
characteristic of the data itself (e.g., the highly anisotropic
voxels) in comparison with other methods in the literature.
However, a direct comparison is not possible since each paper
works with a different dataset and often prior works have
not given the voxel resolution. But, as discussed above, the
proposed method scales linearly with the size of the input
image, and has been observed to perform at similar rapid rates
in other situations with higher resolution data.

E. Results

In this section, we show some results, both qualitative and
quantitative, from the experiments. For space reasons, in most
cases we show a single, indicative slice from the volume (all
processing is in 3D). In the classification figures, we use green
to represent the tumor label and red to represent edema. The
colors used to depict different segments in the hierarchy are
arbitrary.

1) Hierarchy Example: Figure 5 shows an example seg-
mentation hierarchy. In this typical example, we can see that
even at finer levels (5 and 6), the agglomeration process
begins to capture the subregions of the enhancing and necrotic
tumor tissues. At level 8 the entire necrotic subregion is
segmented while the active region and the edema region are
split into parts. The edema is never grouped into a single
region before joining with part of the tumor, which is partly
necrotic and partly enhancing (due to 3D processing, on a
different slice). Finally, at level 10, the tumor and edema
regions are completely absorbed by the brain region.

2) Quantitative Results: In Table III, we show the volume
overlap (Jaccard) results taking a weighted averaged over the
set. Let T be the true positive, Fp be the false positive, and Fn

be the false negative. The Jaccard score is T/(T + Fp + Fn).
The algorithm we propose in this paper is labeled (in bold)
“Model-Based SWA.” The single voxel classifier uses the
same learned models and applies a Bayes classification rule
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Tumor Accuracy (%) Tumor Volume (vx3) Tumor Surface Error (mm) Edema Accuracy (%)
Image Jaccard Prec. Recall Auto Manual Mean Median Hausdorff Jaccard Prec. Recall

A1 88 96 92 18720 19415 0.3 0 3 71 80 86
A2 52 72 65 2180 2432 5.17 0 50.14 32 50 47
A3 30 80 32 4712 11722 1.94 1 19.13 55 57 94
A4 31 32 92 476 166 1.72 1 15.3 55 62 83
A5 47 48 99 11014 5286 2.52 1 17.29 61 82 71
A6 47 52 83 2537 1590 2.42 1 44.4 20 28 43
A7 70 81 84 6909 6621 0.4 0 26.1 50 66 68
A8 69 69 99 7273 5116 1.54 0 24.39 72 77 92
A9 75 75 99 15014 11444 4.66 0 52.36 72 80 88

A10 83 87 95 25963 23812 0.39 0 11.36 28 82 30
B1 58 64 87 4868 3552 19.98 0 127.46 73 92 78
B2 73 84 85 11520 11306 0.67 0 39.74 65 81 77
B3 80 93 85 8885 9704 0.62 0 21.12 73 79 89
B4 78 86 90 2302 2184 0.58 0 15.39 83 92 89
B5 72 72 100 11483 8251 1.01 1 14.7 66 85 74
B6 37 90 38 2068 4867 1.25 1 7.55 13 26 21
B7 27 47 39 6412 7824 2.39 1 19.52 33 54 46
B8 85 92 92 10837 10867 0.32 0 14.14 73 83 86
B9 72 74 96 4417 3433 2.53 0 44.73 75 80 93

B10 82 85 97 22572 19849 0.74 0 66.72 66 85 75

TABLE IV
QUANTITATIVE SCORES FOR ACCURACY, VOLUME, AND SURFACE DISTANCE OF THE AUTOMATICALLY DETECTED TUMOR FOR EACH CASE IN THE

DATASET. SET A WAS USED FOR TRAINING AND B FOR TESTING TO COMPUTE THESE RESULTS.

Algorithm Tumor Edema
Train Test Train Test

Single Voxel Classifier 42% 49% 43% 56%
Saliency-Based Extraction 44% 48% 47% 56%

Conventional Affinity 58% 63% 54% 59%
Model-Based SWA 69% 69% 63% 62%

Cross-Validation 68% 55% 65% 54%

TABLE III
SUMMARY (JACCARD OVER ENTIRE SET) VOLUME OVERLAP RESULTS

AND TWO-FOLD CROSS-VALIDATION RESULTS (USING MODEL-BASED

SWA ON FLIPPED TRAINING AND TESTING SETS).

to each voxel independently. It is clear that even with the
strong mixture models, the independent voxel classification
rule is not robust to the variations in an individual image.
The single voxel classifier is outperformed by the other meth-
ods, each incorporating some multilevel information during
inference. Essentially, this single voxel classifier approximates
the voxel-based statistical classification methods [9]–[11] and
(less so) the fuzzy clustering methods [4]–[8]. These results
demonstrate the benefit of incorporating multilevel information
during inference rather than voxel level information alone.

Intuitively, the capability to use refined affinity functions
depending on the model classes should result in a more accu-
rate segmentation with difficult regions being extracted when
they would otherwise be missed. To quantitatively demon-
strate this intuition, we compare the proposed model-aware
affinity method (row labeled “Model-Based SWA”) against
the conventional affinity and show about 9% improvement in
the training sets and 6% in the testing sets. We also show
a near 20% improvement when comparing the model-based
extraction against the saliency-based extraction. We show a
visual comparison of these three methods in Figure 6 for 12
slices of case A1.

Finally, from the scores in Table III, it is also evident that the
generative models generalize to the testing set. Two-fold cross-
validation also confirm this generalization albeit with slightly
worse testing scores. However, as explained next in Table IV
and in the next section on failure modes, this comparatively
large dataset of GBM tumor contains some peculiarities not
entirely captured by our models.

In Table IV, we show a complete set of volumetric and sur-
face accuracy results. The precision is T/(T+Fn), and the re-
call is T/(T +Fp). We include additional error measurements
(volume and surface distance) to facilitate comparison, but
note that the relevance of these measurements is questionable
in the presence of the gross anisotropic voxels in our dataset,
which are typical of diagnostic radiology. The “mean” column
contains the average distance (Euclidean, in metric space) from
the voxels on the extracted surface to the nearest voxel on
the manually labeled surface. Likewise, the “median” column
contains the median distance, and the Hausdorff distance is a
conservative maxi-min distance.

In most cases, the median distance is 0 indicating that the
majority of the voxels on the automatically extracted surface
exactly lie on the manually labeled surface. However, it’s clear
from the scores in the mean and Hausdorff columns that there
are some examples with spurious false positives. Some of these
cases are elucidated in the next section on failure modes.

3) Failure Modes: Figure 7 shows some examples of the
failure modes in our current system. The left two depict
the case where a spurious false positive region is classified
as tumor. However, the two examples here demonstrate an
important detection (B1) and an erroneous one (B10). The
detected distant region in B1 is a malignant tumor, but it is
not a GBM tumor. Even though our models were not designed
to detect this non-GBM tumor, they did. However, in B10, the
erroneous detection occurs in the small region of enhancement
inside the ventricles. Similar errors occur in A2, A9, and B9
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Fig. 5. Example hierarchy on image B8 (from test-set). Levels of the hierarchy (2-11 shown) demonstrate increasingly salient tumor regions being segmented.

(a)

(b)

(c)

(d)

Fig. 6. Classification example on case A1. Each column is a sequential axial slice and each row depicts a different algorithm: (a) manual labeling, (b) single
pixel Bayes classifier, (c) saliency based SWA method, and (d) our approach (model based SWA).
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Fig. 7. These five cases represent the different failure modes in our current system. In each group, the left column shows the T1CE channel and the right
column shows the FLAIR. Complete discussion in text.
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explaining their large Hausdorff distances. Our models classify
each region based only on the local multilevel statistics,
and do not incorporate any global contextual information or
knowledge. To remove errors of this type, we can improve the
extraction stage to both incorporate prior knowledge similar
to [4], [6], [7] and enforce the global context model.

The next two columns, B7 and A6, represent particularly
difficult tumor regions. B7 is the sole case in our set that had
a biopsy prior to being imaged and an air-pocket is visibly
present in the slice. The disturbed tissue has an anomalous
intensity signature. The tumor in A6 is located near the
middle of the slice between the two ventricles. The resulting
intensity character is quite ambiguous with the nearby ventri-
cles. Similar phenomena occur in A4 and A5. To resolve the
ambiguity a context model that incorporates normal anatomy
(cortical and sub-cortical structures) could again help in both
the classification and extraction stages of the system.

The last column, A3, is the single case in our dataset where
the GBM tumor contains a non-contrast-enhancing component.
It, thus, classifies a large part of the tumor region as edema.
With more examples of this rare phenomenon, our current
approach would be able to handle it.

VII. CONCLUSION

We have made three technical contributions in this pa-
per. The main contribution is the mathematical formulation
presented in Section III for bridging graph-based affinities
and generative model-based techniques. Second, we extend
the SWA algorithm to integrate model-based terms into the
affinities during the coarsening. The model-aware affinities
integrate classification without making premature hard, class
assignments. Using model-specific affinity functions has clear
advantages over conventional static affinity methods, both
intuitively and justified in the experimental results. The third
contribution is a mathematical formulation for learning the pa-
rameters of the model-specific affinity functions directly from
training data. Furthermore, the algorithm is computationally
efficient, running orders of magnitude faster than current state
of the art methods.

We apply these techniques to the difficult problem of
segmenting and classifying GBM brain tumor in multichannel
MR volumes. Our approach improves upon the current state-
of-the-art in GBM brain tumor segmentation by incorporating
information at multiple scales. The results show good seg-
mentation and classification on a comparatively large dataset.
We note that the technical contributions in this paper are
general and can be applied to other problems with the proper
application-specific models.

We thoroughly analyze the failure modes of our algorithm.
While the majority of the cases are segmented with accuracies
near 70%, the failure modes will need to be addressed before
the method is ready for the clinic, which is the goal. To that
end, we have suggested possible solutions to fixing them, and
we are developing a global context model of normal brain
anatomy (cortical and sub-cortical structures [39]) and brain
tumor that will help disambiguate the complex phenomena
exhibited in some of the more difficult cases. We are cur-
rently investigating stochastic methods to solve the extraction

problem by treating the graph hierarchy as a set of model
proposals as in Swendsen-Wang sampling [25]. In future work,
we will include more complex classification models involving
additional feature information (e.g. shape and texture) and
models for the appearance of GBM tumor.
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