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Abstract

Scene understanding remains a significant challenge in the computer vision
community. The visual psychophysics literature has demonstrated the im-
portance of interdependence among parts of the scene. Yet, the majority
of methods in scene understanding remain local. Pictorial structures have
arisen as a fundamental parts-based model for some vision problems, such as
articulated object detection. However, the form of classical pictorial struc-
tures limits their applicability for global problems, such as semantic pixel
labeling. In this paper, we propose an extension of the pictorial structures
approach, called pixel-support parts-sparse pictorial structures, or PS3, to
overcome this limitation. Our model extends the classical form in two ways:
first, it defines parts directly based on pixel-support rather than in a para-
metric form, and second, it specifies a space of plausible parts-based scene
models and permits one to be used for inference on any given image. PS3
makes strides toward unifying object-level and pixel-level modeling of scene
elements. In this paper, we implement the first half of our model and rely
upon external knowledge to provide an initial graph structure for a given
image. Our experimental results on benchmark datasets demonstrate the
capability of this new parts-based view of scene modeling.
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1. Introduction

We consider the semantic pixel labeling problem: given a set of semantic
classes, such as tree, cow, etc., the task is to associate a label with every pixel.
Although hotly studied in recent years, semantic labeling remains a critical
challenge in the broader scene understanding community, for obvious reasons
like high intraclass variability, occlusion, etc. Early approaches have relied
on texture clustering and segmentation, e.g., (Carson et al., 2002). More
recently, conditional random fields have become the de facto representation
for the problem, e.g., (Shotton et al., 2009). Most such methods learn a
strong classifier based on local patches or superpixels and specify some form
of a smoothness prior over the field.

Although these methods have demonstrated good success on challenging
real world datasets, e.g., (Shotton et al., 2009), their performance remains
limited for one key reason: they are intrinsically local making it difficult to
incorporate any notion of object and even region semantics. Yet, the visual
psychophysics literature has demonstrated the clear importance of modeling
at the object- and inter-object relational level for full scene understanding
(Biederman, 1981). Although there has been some work on overcoming the
challenge of locality (see Related Work), there has been little work on a
notion of scene parts nor the inter-relationship among the parts.

In contrast, we present a parts-based approach to full semantic pixel label-
ing that marries an object-level model of the parts of the scene with a pixel-
level representation, rather than a strictly pixel- or region-level model. Our
method sits in the broad class of pictorial structures (Fischler and Elschlager,
1973), which has shown notable success at articulated object modeling in re-
cent years, e.g., (Felzenszwalb and Huttenlocher, 2005). However, classical
pictorial structures are not well-suited to semantic image labeling: they (1)
parameterize object parts and abstract them completely from the pixel-level,
(2) require all parts to be present in the scene, and (3) typically adopt simple
relational models (linear springs). These three characteristics of the classical
models make them unsuitable for image labeling problems.

Our method, called pixel-support parts-sparse pictorial structures, or
PS3, overcomes these limitations and takes a step towards a parts-based
view of image understanding by proposing a joint global model over image
parts—objects in the scene such as trees, cars, the road, etc.— which are
each nodes in the pictorial structures graph. It directly ties each part to a
set of pixels without any restrictive parameterization, which affords a rich
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set of object-level measurements, e.g., global shape. PS3 also defines a space
of plausible part-graphs and learns complete relation models between the
pairwise elements. At inference, a suitable part-graph is selected (in this
paper, manually) and then optimized, which jointly localizes the parts at an
object level and performs semantic labeling at the pixel level. Due to the
global nature of the PS3 models, de facto energy minimizers are unusable; we
use a Metropolis-Hasting Simulated Annealing algorithm to solve the energy
minimization problem. We propose a novel principled method of setting the
cooling schedule that adapts to each image and requires no manual tweaking.

We have tested our method on the MSRC and the SIFT-Flow benchmarks
and demonstrate better performance with respect to maximum likelihood and
Markov random field performance in a controlled experimental setting (exact
same appearance models). We also compare our methods to existing semantic
pixel labeling approaches, but do so with limited significance due to our
assumption of being given the parts-graph for a test image. In the remainder
of the paper, we present some related papers, then describe classical pictorial
structures, our extensions including an appropriate inference algorithm, our
experimental results, and conclusion and future work.

2. Related Papers

Several other recent papers have similarly demonstrated the significance
of moving beyond local methods. (Hoiem et al., 2008) demonstrate the value
of incorporating partial 3D information about the scene during detection.
(Li-Jia et al., 2009) take a hierarchical approach to full scene understanding
by integrating patch-level, object-level, and textual tags into a generative
model. These examples hold strong promise for scene understanding, but
are not directly applicable to labeling. One promising method applicable to
labeling is (Gould et al., 2008), which proposes a relative location prior for
each semantic class and model it with a conditional random field over all of
the superpixels in an image. Whereas their approach defines a joint distri-
bution over each of the superpixels in an image, which potentially remains
too local, our approach defines it essentially in a layer above the superpixels,
affording global coverage and the capability to also model the part-shape.

Another strategy has been to share information among different sub-
problems in image understanding. The Cascaded Classification Models ap-
proach (Heitz et al., 2008) shares information across object detection and
geometrical reasoning. Yang et al. (2010) drive a pixel-labeling process by a
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bank of parts-based object detectors; their method demonstrates the power
of explicitly modeling objects and their parts within the labeling process.

The Layout Consistent CRF (Winn and Shotton, 2006) uses a parts-based
representation of object categories to add robustness to partial occlusion and
captures different types of local transitions between labels. Other methods
look to hierarchies. (Ladicky et al., 2009) propose an elegant hierarchical
extension to the problem that currently performs best on the classic MSRC
benchmark (Shotton et al., 2009). However, in principle, it remains local and
does not incorporate a notion of scene parts nor inter-relationship among the
scene parts; indeed, nor do any of these prior methods.

3. Classical Pictorial Structures

Pictorial structures (PS) are a parts-based representation for objects in
images. Classical PS models (Fischler and Elschlager, 1973) are in the class
of undirected Markov graphical models. Concretely, pictorial structures rep-
resent an object as a graph G = (V,E) in which each vertex vi, i = 1, . . . , n
is a part in the n-part model and the edges eij ∈ E depict those parts that
are connected. A configuration L = {l1, . . . , ln} specifies a complete instance
of the model, with each li specifying the parametric description of each part
vi. For example, in human pose estimation, each li can specify the location,
scale, and in-plane rotation of each body part.

The best configuration for a given image I is specified as the one mini-
mizing the following energy:

L∗ = arg min
L

 n∑
i=1

mi(li|θ) +
∑
eij

dij(li, lj|θ)

 , (1)

where the mi and dij potentials specify the unary and binary potentials,
respectively, for parts li and lj, and θ specify model parameters. The specific
form of these potential functions is arbitrary, but they are most commonly
Gaussian functions, which gives rise to a spring model interpretation.

Such parts-based models have found success in the computer vision com-
munity for object recognition problems. Firstly, pictorial structures are a
general framework for parts-based modeling. Secondly, although the opti-
mization is, in general, NP-hard, under certain conditions, such as a tree-
structured graph (Felzenszwalb and Huttenlocher, 2005), the global optimum
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can be reached efficiently. Thirdly, pictorial structures have a clear statistical
interpretation in the form of a Gibbs distribution:

P (L|I, θ) =
1

Z(θ)
exp
[
−H(L|I, θ)

]
, (2)

where Z(·) is the partition, or normalizing, function and H(·) is the energy
function defined in (1). This statistical view permits principled estimation
of the model parameters and globally convergent inference algorithms even
in the case of general potentials.

However, classical pictorial structures have significant limitations when
applied to more general problems in which (1) some parts may be missing,
(2) a distribution over structures is present rather than a single one, and
(3) a precise segmentation of each part is required rather than strictly its
parametric description. One such problem is semantic pixel labeling. In
most images, only a few of the classes are present: e.g., four to five for the
21 class MSRC data set (Shotton et al., 2009). Furthermore, the standard
parametric descriptions of the parts li do not readily map to pixel labels.

4. The PS3 Model for Semantic Labeling

We begin with a concrete problem definition for semantic scene labeling.
Let Λ be the pixel lattice and define the basic elements λ ⊂ Λ to be either
individual pixels, patches, or superpixels, such that

⋃
λ = Λ and λ1

⋂
λ2 =

∅. Let Z specify the set of semantic class labels, e.g., car, tree, etc., and
denote zλ as the label for element λ. In the maximum a posteriori view, the
labeling problem is to associate the best label with each element

{zλ}∗ = arg max
{zλ}

P ({zλ}|I, θ) , (3)

but we do not directly model the problem at the pixel level. Rather, we
model it at the object level li as we now explain.
Parts with Direct Pixel Support. We take a nonparametric approach
and directly represent the part li based on its pixel support. Each part li
comprises a set of basic elements {λ(1), λ(2), . . . }, and induces a binary map,
Bi : Λ 7→ {0, 1}. A configuration L jointly represents a high-level description
of the elements in a scene, and also a direct semantic labeling of each pixel
in the image. Furthermore, rich, pixel-level descriptions of part-appearance
and part-shape are now plausible. However, it adds significant complexity
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into the estimation problem: fast inference based on max-product message
passing (Felzenszwalb and Huttenlocher, 2005) is no longer a viable option as
the parts have a more complex interdependent relation among their supports.
Parts-Sparse Pictorial Structures. Classically, pictorial structures mod-
els are defined by a fixed set of n parts, and all are expected in the image.
In scene labeling, however, most images contain a small subset of the pos-
sible labels Z. We consider the space Ω containing all plausible pictorial
structures for scene labels. Ω is large, but finite: for an image of size w, the
upper bound on nodes in a PS3 model is |w|, but the typical number is quite
smaller, e.g., around four to five for the MSRC dataset. Each node can be
of one class type from Z. Whereas classical pictorial structures model the
parameters θ for a specific structure, in PS3, we model θ in the unary and
binary terms at an individual and pairwise level, independent of the struc-
ture. Then, for any plausible layout of parts, we can immediately index into
their respective parameters and use them for inference.

In this paper, we do not define an explicit form on how Ω is distributed.
Rather, we enumerate a plausible set of structures and tie one to each im-
age, but in the general case, PS3 samples from Ω. In spirit, this notion of
parts-sparse pictorial structures has appeared in (Hess et al., 2007). Their
mixture-of-parts pictorial structures model has similarly relaxed the assump-
tion that the full set of parts needs to appear. One can indeed use this
mixture distribution on Ω. See Section 6 for more comparative discussion.
Standard Form of PS3. The terms of the energy function underlying
PS3 operate on functions of the parts φ(·) and ψ(·) rather than the parts
directly. These functions are arbitrary and depend on how the potentials will
be modeled (we specify exact definitions in the next section). The standard
form of a PS3 from Ω is

H(L|I, θ) =

 n∑
i=1

m
(
φ(li)|θ

)
+
∑
eij

d
(
ψ(li), ψ(lj)|θ

) . (4)

4.1. Model Details for Semantic Image Labeling

Unary Term. The unary term will capture the appearance, shape and the
location of the parts:

m(φ(li)|θ) =αAmA(li|θ) + ← appearance,

αSmS(li|θ) + ← shape,

αLmL(µi)|θ) ← location. (5)
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Figure 1: Visual rendering of some of the shape models on MSRC data. Each image
shows the map Bi that is centered around the part centroid and normalized to a unit-
box coordinate system. The images are rendered using the jet colormap in Matlab. The
figure has been broken into objects (left) and stuff (right) to emphasize the disparity in
expressiveness between the shape maps for the two part types.

airplane bicyclecarcow face flowersheep

bird bodybook catchair dogsign

Objects

building grass tree

roadsky water

Stuff

The α· are coefficients on each term. The φ function maps the pixel support
part li to the pair (li, µi), where µi is the centroid of li: µi

.
= 1
|li|
∑

λ∈li

∑
x∈λ x.

The terms of (5) are described next.
Appearance. We model appearance in four-dimensions: Lab color-space
and texton space. The texton maps use a 61-channel filter bank (Varma
and Zisserman, 2005) of combined Leung-Malik (Leung and Malik, 2001)
and Schmid filters (Schmid, 2001), followed by a k-Means process with 64
cluster centers. No experimentation was performed to optimize the texton
codebook filter and size choice. We compute histograms for the foreground
and class-specific background (computed in a narrowband of pixels around
the boundary of the part). The appearance potential is computed as the ratio
of the cross-element (foreground to background) histogram intersection to the
internal element (e.g., foreground model to foreground evidence) intersection.
Shape. The capability to model global part shape is a key unique feature
of the PS3 model. We model it nonparametrically using a kernel density
estimator and quantize the density as a discrete map of 201×201 normalized
pixels; call this map Szi for class z and part li. Recall, a part li induces a
binary membership map Bi at the (normalized) pixel level. Finally, the shape
potential is defined as the mean shape probability over the part’s constituent
pixels:

mS(li|θ) = − log

(
1

|w|
∥∥Bi � Szi

∥∥
F

+
∥∥(1−Bi)� (1− Szi)

∥∥
F

)
(6)

where � is the element-wise product and the Frobenius norm is used.
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Example shape densities are shown in Figure 1. There is a clear dis-
tinction in the expressiveness of this shape model between the objects (e.g.,
airplane, face) and the stuff (e.g., sky, road). The maps for the stuff classes
tend to be diffuse and indiscriminate, whereas the maps for the object classes
are mostly recognizable. Section 6 shows that this object-level modeling sig-
nificantly aids in labeling of the object-type classes.
Location. We model the part location with a Gaussian distribution on its
centroid µi and hence use the Mahalanobis distance for the location potential:
mL(µi|θ) = (µi − νz)TΣ−1(µi − νz), where νz and Σz are the mean centroid
and covariance matrix for class z respectively.
Binary Term. The binary term will capture the relative distance and angle
of pairwise connected parts:

d(ψ(li), ψ(lj)|θ) =αDdD(µi, µj|θ) + ← distance,

αRdR(µi, µj|θ) ← angle. (7)

The α· are again coefficients on each term. The ψ function maps the pixel
support part li to the µi, is the centroid of li. More sophisticated φ and ψ
functions are plausible with the PS3 framework, but we do not explore them
in this paper.
Distance. The relative part distance is captured simply by the distance
between the parts (classical pictorial structures). For parts li and lj, we eval-
uate the distance vij = ‖µi−µj‖2 and model it by a Gaussian parameterized
by (νij, σ

2
ij). The distance potential is dD(µi, µj|θ) = (vij − νij)2 /σ2

ij .
Angle. We model the relative angle between the two parts by a von Mises
distribution, which is a symmetric and unimodal distribution on the circle
(Berens, 2009). Let rij denote the angle relating part i with respect to part
j. The angle potential is the negative log, dR(µi, µj|θ) = − logP (rij|θ, zi, zj),
of the von Mises density. Some examples are presented in Figure 2. These
examples suggest this angle potential is jointly useful for the objects and the
shape, especially how they inter-relate. For example, consider the rightmost
plots of tree-given-cow: in the MSRC dataset, cows appear in (or on) pasture
nearly always and there are often trees on the horizon.

4.2. Learning the PS3 Model

For a training set of images {I1, . . . , IN} and corresponding configurations
{L1, . . . , LN}, which are essentially pixel-wise image labelings, learning the
parameters is cast as a maximum likelihood (MLE) problem. (Felzenszwalb
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Figure 2: Samples of the angle distribution.
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and Huttenlocher, 2005) show that the parameters θ on the unary potentials
can be learned independently, and this holds for our pixel-support parts. In
our case, we do not seek to learn a tree-structured graph. Instead, we define
a deterministic mapping from a label image, or configuration, Li to a graph
G in the following manner: for each connected component in Li create a
part in the graph. Two parts are adjacent in the graph if any pixel in their
respective connected components are adjacent in the label image Li. It is
our assumption that this general structure adds necessary descriptiveness for
the labeling problem. Finally, for each pair of adjacent parts, we learn the
parameters on the binary potentials via MLE.

The last part of learning is to estimate the five α weights on the various
potentials. It is widely known that estimating these weights is a significant
problem as it requires estimation of the full partition function, which is in-
tractable (Winkler, 2006). However, in our case, the problem is compounded,
even some standard approximations like pseudo-likelihood are intractable be-
cause of the pixel-support nature of the parts. Because of these complexities,
we simply set the coefficients such that the relative scale of each potential is
normalized and finally we ensure the weights specify a convex combination
over the potentials.

5. Inference with Data-Adaptive MCMC

Inference with the PS3 model has two main components: (1) determine
the structure of the PS3 for the image at hand, and (2) determine the optimal
configuration L∗ given a structure. In this paper, we study the latter and
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leave the former for future work. Although this limits the generality of the
contributions proposed herein to cases in which a suitable structure for the
PS3 could be determined or given, we show that even the determination of
the optimal configuration alone is a significant problem. Furthermore, direct
extensions of the proposed methods present viable options for handling the
structure inference, as we will discuss. The configuration inference problem
is posed as

L∗ = arg max
L

exp
[
−H(L|I, θ)

]
. (8)

The corresponding energy minimization problem is arg minLH(L|I, θ). In
general, this problem is NP-hard, but seems similar to the standard form
for which our community has hotly studied approximate solutions over the
past decade (Szeliski et al., 2006). However, as noted by (Felzenszwalb and
Huttenlocher, 2005), the structure of the graph and the space of possible so-
lutions differ substantially; in other words, the minimization problem cannot
be cast as a local labeling problem, as we know explain in more detail.

Consider the variables in question, L = {l1, . . . , ln}; we adopt a superpixel
specification of the elements {λ}, computed via (Felzenszwalb and Hutten-
locher, 2004), in our implementation. We already know the class zi of each
part and each li has a complex interrelationship to the other parts via its
pixel support. For example, taking one element λ away from li and moving
it to lj has part-global effects on both li and lj in terms of appearance and
shape, which differs quite drastically from these prior methods. One could
consider defining the PS3 inference as a labeling problem over the elements
{λ} with each part li being a labeling index and associating a label variable,
say ξj, with each element λj. However, inference would remain outside of the
scope of these methods, again because a local change of one label variables
ξj would have a far-reaching affect on many other (potentially all) elements
{λk : ξj ≡ ξk}.

In addition, classical pictorial structures use parametric representations
of li, such as part-centroid, and for the typical spring-model case, define a
Mahalonobis distance to capture the ideal relative location between parts.
Casting our nonparametric form li into this framework would yield an in-
tractable high-dimension problem: even though we rely on parametric func-
tions of li for our binary potentials (7) no convenient form of the ideal location
is possible since the li are tied directly to the pixel support.
MCMC Sampler. We hence adopt a Metropolis-Hastings (MH) approach
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to handle inference (Andrieu et al., 2003), as it is straightforward to im-
plement and known to converge to the underlying invariant distribution
P (L|I, θ) as long as the Markov chain satisfies detailed balance (Winkler,
2006). For space, we do not go into the details of the MCMC sampler other
than to note that the proposal distribution is specified to (1) uniformly sam-
ple from each of the parts and (2) sample elements in proportion to how well
their appearance fits the proposed change.
Data-Adaptive Simulated Annealing. We embed the MH sampler into
a simulated annealing process (Geman and Geman, 1984) because we seek
the maximum a posteriori samples. Simulated annealing adds a tempera-
ture parameter T into the distribution, P (T )(L|I, θ) = 1

Z
exp

[
− 1
T
H(L|I, θ)

]
,

such that as T → 0 the P (T )(L|I, θ) distribution approaches the modes
of P (L|I, θ). However, the theoretical guarantee exists on fairly restrictive
bounds on the cooling schedule, the sequence of temperatures as the process
is cooled (Andrieu et al., 2003). Furthermore, it is not well understood how
to set the cooling schedule in practice, especially for very high-dimensional
sample spaces, such as the one at hand. The challenge is that one proposed
move L′ will change the density quite little resulting in acceptance probabil-
ities near uniform unless the cooling schedule is set just right.

To resolve this issue, we propose an principled approach to set the cooling
schedule that adapts to each image at hand and requires no manual tweak-
ing. The basic idea is to directly estimate a map from desired acceptance
probabilities to the required temperatures. Denote γ as shorthand for the
acceptance probability. Disregarding the proposal distribution, consider γ
written directly in terms of the amount ρ of energy the proposed move would
make:

γ =
exp [−H (L′) /T ]

exp [−H (L(t)) /T ]
=

exp
[
−
(
H
(
L(t)
)

+ ρ
)
/T
]

exp [−H (L(t)) /T ]
(9)

For a specific desired γ value and known ρ, we can solve (9) for T = − ρ
ln γ

making it possible to adapt the simulated annealing cooling schedule to each
image in a principled manner, rather than manually tuning parameters by
hand. Before beginning the annealing process, we sample P (L|I, θ) to esti-
mate the ρ for the image. Assuming a linear gradient of desired acceptance
ratios, the only part that needs to be manually set is the acceptance proba-
bility range, γ1, γ2, which we set to 0.9 and 0.1 respectively to cover most of
the range of acceptance probabilities but never making them guaranteed or
impossible.
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6. Results and Discussion

We use two pixel-labeling benchmark datasets for our experimental anal-
ysis: MSRC (Shotton et al., 2009) and SIFT-Flow (Liu et al., 2009). In
brief, MSRC is a 21-class 596-image dataset and SIFT-Flow is a 33-class
2688-image dataset, both of typical natural photos. The gold standard for
these data is set by manual human labeling and most images have a large
percentage of pixels actually labeled in the gold standard. In both cases, we
use the authors’ training-testing splits for learning and evaluation; we note
the split is 55% training for MSRC and 90% training for SIFT-Flow. Finally,
in the authors’ split for SIFT-Flow, three classes (cow, desert, and moon) do
not appear and are hence dropped, yielding a 30-class dataset in actuality.

Figure 3: Quantitative results on the two data sets, comparing the MLE classifier, the
MRF model over the superpixel basic elements, and our proposed PS3. The table shows
% pixel accuracy Nii/

∑
j Nij for different object classes. “Global” refers to the overall

error
∑

i∈Z Nii∑
i,j∈Z Nij

, while “average” is
∑

i∈Z
Nii

|Z|
∑

j∈Z Nij
. Nij refers to the number of pixels

of label i labelled j. Note the color in the table columns is intended to serve as the legend
for Figure 4.
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6.1. Comparisons to Baselines

Our primary evaluation goal is to determine and quantify the benefit
gained through the global parts-based structure in a controlled setting. Hence
we make a quantitative comparison of our method against an MLE classifier
and an MRF, with results shown in Figure 3. We do not make a compar-
ison to other pictorial structures papers as, to the best of our knowledge,
no existing pictorial structures method can be directly applied to the pixel
labeling problem. To establish a rigorously controlled experimental setting,
in all cases, we use the same appearance models and assume full knowledge
of the graph structure (for the MLE and MRF methods, this means the
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Figure 4: Visual results on the two data sets. Each columns shows an example in three
rows: (1) original image, (2) human gold standard, and (3) our PS3 result overlaid upon
the image. We have also rendered the graph structure on top of the image. The color
legend is given in Figure 3. The results on the right side of the figure show some of the
worst examples of our performance.
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subset of possible class labels) for each test image. In the MLE case, the
basic elements are assumed independent, and in the MRF case, a local Potts
smoothness model is used between the basic elements. In all three cases, the
only aspect that is varied is how the basic elements (superpixels) are related
to the overall model; i.e., we are able to evaluate exactly how much the PS3
model improves upon local MLE and MRF models. We note that our pro-
posed PS3 model is also an MRF, but over the global scene parts and not
over the superpixel basic elements. Our quantitative scores hence need to be
interpreted as relative among the three methods we have displayed. In this
setting, it is clearly demonstrated that the proposed model outperforms both
the superpixel-independent MLE classifier and the locally connected MRF
model.

Our proposed method performs best in global and average per-class la-
beling accuracy over the pixel-independent MLE and local-MRF methods on
both datasets. On MSRC we see a gain of 2% in global and 3% in aver-
age accuracy. These are not significant numbers, overall, but we note the
significant improvement in two subsets of the classes. First, in classes with

13



high intraclass variance, such as building, we see a 30+% increase. Second,
in classes with strong global object shape, such as airplane, we see a 20%
increase. These exhibit the merits the global modeling of PS3 brings to the
problem. The reason why the overall gain is not too much is that the dom-
inant classes, such as sky, grass, and so on, have a strong visual character
in the relatively small MSRC data set that is already easily modeled at the
local level.

We find a different case in the SIFT-Flow dataset, which is much larger
and contains more intra-class variance even for these dominant classes. In
the SIFT-Flow cases, a larger increase of 9% in global and 12% in average
accuracy is observed. We note the marked improvement in some of the
categories corresponding to things, such as airplane, car, door, and person.
We explain this improvement as being due to the added modeling richness
in the parts-based representation: things in the image benefit from the rich
global description through the shape and part-context. We also note the
few categories in SIFT-Flow where PS3 was outperformed by the MLE and
MRF methods (bridge, crosswalk, fence, and sun). In these cases, the typical
object foreground is sparse and the global part description is insufficient to
accommodate the weak local cues, which get overtaken by the other nearby
classes. Examples of this phenomena (as well as good cases) are given in
Figure 4.

6.2. Comparisons to State of the Art

We also make a quantitative (Figure 5) against a range of papers from
the state of the art, TextonBoost (Shotton et al., 2009), Mean-Shift Patches
(Yang et al., 2007), Graph-Shifts (Corso et al., 2008), TextonForests (Shotton
et al., 2008), and Hierarchical CRF (H-CRF) (Ladicky et al., 2009). Nearly
all of these papers can be classes within the “local” labeling realm. The
state-of-the-art H-CRF approach in (Ladicky et al., 2009) makes a clever
extension to define a hierarchy of random fields that has shown great potential
to overcome the limitations of purely local labeling methods. However, it
still defines the labeling problem based directly on local interactions of label
variables rather than on object level interactions, as we do in PS3. None
of the existing pictorial structures papers we are aware of can be directly
applied to semantic image labeling and are hence not compared here.

Our proposed PS3 method performs best in average per-class labeling
accuracy (78%) and shows marked improvement in numerous classes, such as
flower, bird, chair, etc. We make careful note that although the table directly
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Figure 5: Quantitative results on the MSRC data set, in the same format as (Ladicky
et al., 2009) for easy comparison. The table shows % pixel accuracy Nii/

∑
j Nij for

different object classes. “Global” refers to the overall error
∑

i∈Z Nii∑
i,j∈Z Nij

, while “average” is∑
i∈Z

Nii

|Z|
∑

j∈Z Nij
. Nij refers to the number of pixels of label i labelled j.
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TextonBoost 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 7
Mean-Shift Patches 75 62 63 98 89 66 54 86 63 71 83 71 79 71 38 23 88 23 88 33 34 43 32

Graph-Shifts 77 66 72 93 85 66 70 93 86 69 85 66 85 58 64 25 91 44 74 41 30 51 43
TextonForests 72 67 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18

Hierarchical CRF 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9
PS3 81 78 74 90 72 72 69 93 65 71 70 70 78 99 83 79 99 90 77 84 88 59 56

compares PS3 to the other literature, we assume the graph structure for each
testing image is known. Our findings hence need to be taken with caution:
the assumption on knowing the graph structure that we have made limits the
significance and comparability of our proposed method against these others.
Notwithstanding this point, we do feel it is important to demonstrate the
comparative performance against the state of the art. Furthermore, we note
that our unary potentials are comparatively simpler (i.e., color and texton
histograms) to those in many of the other methods. Finally, knowing the
appropriate graph for the image does not immediately solve the problem:
e.g., as Figure 3 points out, on MSRC, an MLE assignment of superpixels to
elements in the graph yields global accuracy of 74% and average accuracy of
70%—i.e., the PS3 model is indeed adding power to the problem.
Separating Objects from Stuff. The respective merits of the two top
performing approaches, namely H-CRF and ours, PS3, become immediately
evident when inspecting how the methods compare on various classes, as we
discuss next. As we mentioned earlier, one can group the parts roughly into
two types: objects (cow, sheep, aeroplane, face, car, bicycle, flower, sign,
bird, chair, road, cat, dog, body, and boat) and stuff (building, grass, tree,
sky, water and road)

The objects tend to be small and articulated and have high location
variance, whereas the stuff tends to be relatively stable in terms of location
and appearance distribution. As we have shown in Section 4.1, the shape
distributions of the stuff are uninformative, but for the objects, they are
quite informative. We have claimed that a key merit of our method is that
it allow the modeler to emphasize global object shape and relationship to
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Figure 6: Quantitative results when we group objects and stuff on the MSRC data set.
The scores in this table are all average accuracy derived from the per-class accuracy scores
from Figure 5; no further processing was performed. See text for discussion and the list
of classes for the two groups.

Objects Stuff
TextonBoost 50 78

Mean-Shift Patches 53 83
Graph-Shifts 60 81

TextonForests 65 71
Hierarchical CRF 68 91

PS3 77 80

the scene in general. This claim is clearly substantiated when looking at the
comparative average accuracy of the objects to the stuff in Figures 5 and 6.
We explain it via the components of the PS3 model as follows: our method
performs at about the average performance for the stuff classes, which are
comparatively easier to infer using location and appearance. Subsequently,
these stuff classes are grounded and drive the object classes during inference
allowing them to utilize the objects’ richer shape and angle potentials.

6.3. Methodological and Computational Comparisons

Parts-based methods have been the topic of heavy inquiry since their
inception (Fischler and Elschlager, 1973). In this section, we discuss the
proposed PS3 model against four relevant examples in the literature on the
basis of methodological and computational comparisons; the computational
comparison is made at the end of the section.

Comparison to DDMCMC (Tu and Zhu, 2002). The seminal
DDMCMC work laid the groundwork for our approach to inference in this
paper, but the underlying problem and model are quite different. Firstly, the
DDMCMC work is an approach to the low-level image segmentation prob-
lem. No notion of object class or global object is incorporated into that work,
which, as our quantitative results demonstrated is a significant merit of our
proposed approach. Secondly, it is primarily seeking samples of image seg-
mentations under all plausible partitions of the image. We have restricted
ours to the set of superpixels, but we can plausibly relax our assumption.
Lastly, their work did not seem to seek the modes, whereas we propose a
data-adaptive method for mode seeking in the MCMC framework.

Comparison to the constellation and star models (Fergus et al.,
2007, 2005). This class of methods semi-supervisedly learn translation and
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scale-invariant models for the parts of various object categories under spe-
cific topological arrangements based on available bottom-up interest point
detections. The learning process is expectation-maximization based and au-
tomatically selects the parts comprising the model during learning; in the
constellation model (fully connected) learning is O(NP ) for N point de-
tections and P model parts and for the star (root-connected) learning is
O(N2P ). Detection can be improved to O(NP ) using distance transforms.
These models, however, are inherently incomparable to the proposed PS3
model because they learn an object-specific model with a fixed number of
parts; in the semantic pixel labeling problem studied herein, we focus on
scene models in which only a few parts of those possible will appear in the
image. Despite its success on specific objects, directly learning a constellation
model for semantic pixel labeling is hence not plausible.

Comparison to Deformable Parts Models (DPM) (Felzenszwalb
et al., 2010). The state of the art in parts-based models of objects is the
DPM, per its broad success on challenges like the PASCAL VOC (Evering-
ham et al., 2010). These models use a latent SVM learning procedure to
learn a two-level hierarchy of object-specific part-filters capable of recogniz-
ing articulated objects. The natural successors of the earlier constellation
and star models, these methods bring more power by maximizing over part-
parameters during inference (such as spatial location of the part) but also
substantially more cost. Nevertheless, these methods are similarly not de-
signed to deal with the various configurations of different part-types in a
single model, as we expect in the semantic pixel labeling case.

Comparison to Mixture-of-Parts Pictorial Structures (MoPPS)
(Hess et al., 2007). As far as we know, MoPPS is the first and only
other pictorial structures extension to permit part subsets. Like our method,
they permit a space of plausible pictorial structures. Then, the MoPPS
method carefully specifies a mixture distribution over parts, a set of legal
part configurations and a mechanism for returning a pictorial structure given
a part subset. In the spirit of sparse-parts pictorial structures, PS3 is similar
to MoPPS. But MoPPS remains restricted to the object modeling case For a
given parts subset, the MoPPS structure is classical (Gaussian spring model)
whereas our part potential incorporate a more rich set of relations.

Computational Comparisons. The core challenge in PS3 is that we
need to address the space Ω of all part-models for scenes, in which some or
many may be present in any one instance of PS3. Because of this complexity,
we have made an assumption of stationarity: for P parts, we learn the unary
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terms separately O(P ) and binary pairwise terms O(P 2). These learning
costs are comparatively low because we are not selecting optimal parts for a
specific object/scene (our models are hence “weaker” in a sense), but this is
necessary for the broader problem at hand.

Inference, however, is more expensive than learning in PS3 because we
are optimizing over the combinatoric space of associating elements with each
graph part and no dynamic programming or distance transforms methods are
available. The Metropolis-Hasting stochastic optimizer is well-known to be a
costly process; if we fix the number of sweeps to a constant number (say 10,
which we have found to work satisfactorily in practice), we can approximate
the complexity to O(N2P 2) for N superpixels and P parts in the graph
structure for a given image. The N2 term results from each superpixel getting
visited once during each sweep and possibly affecting a change globally over
the graph, and the P 2 term comes from the binary interaction term as we test
the membership of different superpixels. We find it converges on average in
about a minute of processing the images in this paper (running sequentially
on a standard 2GHz PC in Matlab). Comparatively, in the case the graph
structure is known (which is also an assumption made in standard parts-
based methods) the PS3 method has a similar complexity to the other parts-
based methods, with an extra P term that is typically much smaller than N .
Typical running times also reflect this similarity across the methods.

7. Conclusion

We have presented the pixel-support, parts-sparse pictorial structures, or
PS3 model. PS3 makes a step in scene labeling by moving beyond the de facto
local and region based approaches to full semantic scene labeling and into a
rich object-level approach that remains directly tied to the pixel level. As
such, PS3 unifies parts-based object models and scene-based labeling models
in one common methodology. Our experimental comparisons demonstrate
the merits in moving beyond the local methods in a number of settings on
benchmark data sets (MSRC and Sift Flow).

PS3 has, perhaps, opened more problems than it has solved, however.
For example, we have assumed that the graph for an image is known during
inference. For general applicability, this assumption needs to be relaxed. Ex-
tensions of the proposed MCMC methods into jump-diffusion dynamics (Tu
and Zhu, 2002) are plausible, but some approximations or other methods to
marginalize the full sample-space are also plausible. Probabilistic ontologies
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and Markov logic present two potential avenues for this problem. Similarly,
we have demonstrated that the parameter estimation problem in the PS3 is
more complex given the global-local part-pixel dependency. We are not aware
of a principled tractable method for estimating these parameters. Finally, we
have observed a big disparity in the respective strength of our various model
terms for object- and stuff-type classes, but we have not incorporated this
distinction into the model itself.
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