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Abstract— In order to achieve good and timely volumetric
mapping for mobile robots, we improve the speed and accuracy
of multi-resolution voxel map building from 3D data. Mobile
robot capabilities, such as SLAM and path planning, often
involve algorithms that query a map many times and this
lookup is often the bottleneck limiting the execution speed. As
such, fast spatial proximity queries has been the topic of much
active research. Various data structures have been researched
including octrees, k-d trees, approximate nearest neighbours
and even dense 3D arrays.

We tackle this problem by extending previous work that
stores the map as a hash table containing occupied voxels at
multiple resolutions. We apply Bloom filters to the problem of
spatial querying and voxel maps for the example application
of SLAM. Their efficacy is demonstrated building 3D maps
with both simulated and real 3D point cloud data. Looking up
whether a voxel is occupied is three times faster than the hash
table and within 10% of the speed of querying a dense 3D array,
potentially the upper limit to query speed. Map generation was
done with scan to map alignment on simulated depth images, for
which the true pose is available. The calculated poses exhibited
sub-voxel error of 0.02m and 0.3 degrees for a typical indoor
scene with a map resolution of 0.04m.

I. INTRODUCTION

A good representation of the operating surroundings (map)
is vital for many tasks that mobile robots need to accomplish.
Examples of such tasks include mapping and localisation
(SLAM), path planning, obstacle avoidance, ray tracing and
object detection and recognition.

The map building process can be considered to consist of
two phases. The localisation of the robot or sensor within
the map and the update of the map with this new data. As
such the map data structure should support both operations,
answering queries and incorporating new data very quickly,
all the while maintaining a small memory footprint.

Many representations have been explored including occu-
pancy grids in 2D, point clouds [1], parametric representa-
tions such as planes [2] and salient features [3]. Currently
the most popular approach for mapping with 3D data and
the corresponding 6 degree of freedom poses is point clouds
aligned with iterative closest point (ICP, [4]) and a mecha-
nism to accelerate the nearest neighbour lookup on the point
clouds.

For fast queries on large point clouds approximate nearest
neighbour techniques have recently proven popular, [5]. For
even greater query speed researchers have resorted to gener-
ating local dense 3D binary arrays in which every voxel is
stored. These dense arrays allow map queries at close to the
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theoretical minimum lookup time. The problem with dense
3D arrays is the prohibitively large memory required for
relatively small operating volumes. One gigabyte of memory
can only hold a 10m cube at 1cm resolution with one byte
per voxel.

Others have implemented tree based volumetric mapping
structures such as K-d trees [6] and octrees [7]. Octrees have
the advantage of representing free space as well as occupied
voxels. For localisation and SLAM the representation of
free space is not as important because more information is
derived from observing occupied voxels due to their rarity in
comparison to free voxels. Distinguishing free space helps
with path planning and planning for exploration but can be
done at a coarser resolution.

Previous works by the authors describe a memory efficient
and highly adaptable map representation framework referred
to as the Occupied Voxel List (OVL) and the Multiple-
Resolution Occupied List (MROL) [8]. This framework is
used for accurate alignment based segmentation akin to 3-
dimensional background subtraction in [9]. The individual
occupied voxel lists of the MROL are implemented as hash
tables with the keys being the integer voxel indices of the
nearest cubic lattice point. The hash table based procedure of
occupied voxel lists combined with only storing voxels which
are occupied reduces memory requirements at the cost of
increased query time. The hash tables have constant lookup
time with respect to the number of voxels in the map however
this can be quite slow mainly due to the handling of hash
collisions.

These structures save memory by only encoding occupied
voxels in the robot’s surroundings and, we will demonstrate,
can be made almost fast as look ups in a dense 3D array.
Adding a Bloom filter to the lookup procedure makes these
accelerations possible.

The previous localisation approach described in [8] is
especially effective for global localisation when no initial
pose estimate for each scan is available. Similarly, global
localisation on a multi-resolution map is tested by [10].
Iterative alignment methods such as ICP cannot work in
such situations. However, it is often the case that a pose
estimate for each scan is available, particularly relative
pose transforms between subsequent scans as acquired by a
moving robot with odometry sensors. Therefore it would be
beneficial if the same map data structure could also support
localisation given an initial guess for each 3D point cloud.
Although scan to scan pose estimates can be acquired, it
is more accurate to perform scan to map matching. Thus
in this work we also implement an iterative gradient descent
optimization for scan to map matching given an initial guess.
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This initial guess can be quite inaccurate, for instance the
pose of the previous 3D scan, and still lead to the correct
result.

The ramifications of this work are two fold. First the
development of an algorithm that allows faster iterative
alignment on volumetric maps. This means that the same
volumetric map structure can support global as well as local
localisation (determining pose when supplied with a good
initial guess pose). Secondly, we present for the first time
a method involving Bloom filters and packed voxel indices
that allows a sparse representation as well as query times
approaching the likely minimum possible, that associated
with querying a dense 3D array. Applying Bloom filters to
accelerate spatial querying could also benefit fields where
fast spatial querying is paramount such as collision detection
in physics engines, protein folding and computer graphics
rendering and ray tracing.

II. ACCELERATED VOXEL OCCUPANCY LOOKUP

Use of an OVL based map representation is inherently
biased towards a high number of lookup operations. These
tend to occur during the course of aligning new scan data
to the map and for ray tracing operations. The ray tracing
is required for calculating free space voxels, needed for
segmentation and path planning.

The process steps that dominate the computation time in
practical applications are taking a list of points, transforming
them (translation and rotation), quantising them to the nearest
lattice point and querying the occupancies of the resulting
voxels in the map. Whilst well established procedures exist
for transformations the lookup operations can take significant
time for high numbers of queries, as is common with high
density point clouds. The point transformations are easily
computed in parallel with consumer graphics cards doing
such geometric transforms at very high rates. Executing the
map lookups quickly in parallel is much harder because
of the widely separated memory access patterns and thus
the map queries tend to be the bottleneck in practical
implementations. Ideally this lookup time should be fast and
independent of map size.

A. Counting Bloom filter for volumetric maps

The Bloom filter, [11], is a memory efficient data structure
and associated algorithms that facilitate fast set membership
queries in a probabilistic manner. Queries that return absent
are guaranteed to be correct but those returning present
are correct to a high probability. The probability of false
presence depends on the size of the dataset and the Bloom
table as given in (1).

The standard Bloom filter consists of a binary array of
length m and associated k hash functions. Each hash function
converts set elements to a different position in the binary
array. When an element is added to the set the bits in
the binary array are set corresponding to the results from
evaluating the k hash functions. Upon a query the k hash
functions are evaluated on the query term and the resulting
bit positions checked. If any are not set then the query term

is definitely not present in the set. If they are all set then the
query term is likely to be present with a small probability of
a false positive given by,

PFP =

(
1−

[
1− 1

m

]kn)k

≈
(
1− e−kn/m

)k
. (1)

Where n is the number of elements already in the set.
One of the limitations of the original Bloom filter is that

it does not allow removal of elements from the set. In
real mobile robot applications voxels need to be removed
from the map when objects are removed, parts of the
environment change or map errors need correcting. As set
element removal is required we adopt a counting Bloom
filter, [12]. By incrementing at the positions given by the hash
functions on insertion into the set, items can subsequently be
removed from the set by decrementing at these positions. For
guaranteed correct removal the presence of the items should
be first confirmed in the hash table with those to be removed
that are present passed on for removal from the Bloom filter.

For a volumetric map consisting of occupied voxels the
Bloom filter stores the hash bits generated from the set of
occupied voxel indices. The actual value (if occupied) can
then be looked up in a standard hash table, if required. How-
ever for some operations like scan matching this subsequent
value retrieval is unnecessary and can be skipped for speed.

B. Circumventing hashing with packed voxel indices

Additionally, the required hashing operation performed on
the voxel indices can take some time. To overcome this, the
voxel indices are packed into a contiguous region of memory
such that the three voxel indices (for 3D space) are packed
as four 2 byte integers (with one zero filler) into a single
8 byte representation. The 8 byte integer acts as the voxel
key ID, which unlike a normal hash function is guaranteed
to be unique. This memory layout avoids hashing the voxel
indices to generate an ID for the hash table, accelerating
lookup times. Another benefit of this approach over hashing
the voxel indices is that such indices can be unambiguously
recovered from the voxel ID. The disadvantage is the limit
on the voxel index that in this case is restricted to -32768 to
32767 (2 byte integer limit). Practically, this corresponds to
a 655m cubed volume at 1cm resolution and this limit can
be increased by packing larger integers and accommodating
the larger ID. Together these improvements accelerate the
lookup process threefold; Fig. 1 contains a more detailed
break down of execution time.

III. SCAN ALIGNMENT AND MAP CREATION

The OVL and MROL frameworks provide a ready means
for simultaneous localisation and mapping (SLAM) capabil-
ities in the form of scan to map alignment and incremen-
tal map growing. The sampling based approach described
in [8] provides a global localisation method for scan to map
matching in the MROL framework, whilst iterative methods
based on the minimisation of cost functions that characterise
the fit of the scan to the existing map (see [9]) provide
this functionality where a reasonable pose prior exists for



both the classical OVL representation and those at multiple
resolutions. The resolution of the finest occupied voxel list
at the zeroth level is ε0 and the resolution of the nth level
is εn = ε02

n.
It has been shown that SLAM conducted in a scan to

map and incremental map growing approach leads to slower
error accumulation and reduced drift rates compared to
standard pair-wise scan matching [13], [14] and the work
here uses such an approach. For the small mapping problems
considered within this work (data collected over minutes),
the place recognition for loop closure constraint and the loop
relaxation problems are safely ignored.

Some optimisations to the aforementioned alignment pro-
cedures have been developed that not only improve the
computational efficiency, but also improve the accuracy of
the resultant transforms.

A. Volumetric Sampling

To reduce alignment errors due to range-based point
density effects we employ volumetric sampling. The aim
is to ensure that the sampled points are both representative
of the structure contained within the scan at an appropriate
resolution for matching against a voxelised structure and
also to reduce the number of points in the scan required
in the evaluation of the alignment objective function. An
effective means to achieve this is by subsampling the scan,
randomly selecting single scan points from each voxel, at a
given sample resolution. This volumetric sampling approach
differs to the various range-weighting schemes found in the
literature [15], [16].

The 3D point cloud arising from a scan in this work
is volumetrically sampled to reduce the number of scan
points. In our experiments the volumetric sample resolution
is adjusted to produce approximately 1000 scans points. Scan
to map alignment is performed on these sample points. The
good distribution of this sampling mechanism means few
sample points are needed for testing candidate poses. Once
a good pose alignment is found all the points from the scan
are added into the map.

B. Sequential multi-resolution alignment

An improvement to the iterative alignment method de-
scribed in [9] has been adopted. Rather than calculating the
cost function to be optimized as a weighted sum of the
hits at the various resolutions, here the iterative alignment
is carried out at each resolution from coarse to fine. For
the simulated data presented in Section IV-B, the finest
resolution ε0 is 0.04m and the multi-resolution map has 4
levels. The number of levels depends on the convergence
region required. Larger regions of convergence are required
when only poor estimates of initial pose are available. In
this work no pose estimate is required as the guess pose is
simply the pose of the previous scan.

The selection of voxel size is important for two reasons.
As this approach does not perform any geometric charac-
terisation of the environment, the finest voxels have to be
large enough to cover gaps in the point cloud due to scan

line spacing to prevent alignment to the scan line geometry
rather than that of the environment. Secondly, the voxel
size is lower bounded by the error on scan points. It is
important to appreciate that sub-voxel alignment is possible,
for instance with 0.04m resolution pose accuracy of 0.02m
and 0.3 degrees was achieved. Such sub-voxel accuracy is
possible as the original range data points are transformed
first before quantisation for the map intersection calculation.
This allows small iterative adjustments to this transformation
pose to influence the count of voxelised points against the
map (overlap) that defines the cost function.

The sequential alignment procedure is summarised below.
1) Take a volumetric sample of points at the coarsest

resolution
2) Iteratively align with a gradient ascent approach to

maximise overlap using fixed step sizes related to the
resolution of the current level.

3) Use the pose returned at the coarser level as an initial
guess for alignment at the next finer resolution.

4) Repeat above until done for the finest level
5) Perform sub-voxel alignment by using all points (rather

than a sample) and gradient ascent to maximise overlap
using small translations and angles.

This procedure ensures the utmost map quality (minimal
blurring/spreading of the map over time) by minimising the
number of new voxels that are created to contain the scan
points.

The map is stored as a multi-resolution occupied voxel
list along with the trajectory consisting of the poses from
which the observations were made when generating the
map. The advantage of this representation is that it is very
memory efficient, because it is only storing occupied voxels,
the required memory does not increase significantly with
multiple observations. A map encoding the free space can
be easily generated dynamically via a sensor model at the
recorded observation poses.

IV. EXPERIMENTS AND RESULTS

We have conducted a suite of experiments to evaluate our
primary claim: that the use of Bloom filters for volumetric
SLAM is faster than currently used methods, such as hash
tables, and yet remains accurate and is memory efficient.
All experiments with timing information were executed with
a single core of an Intel(R) Core(TM) I5 750 running
at 2.67GHz with 4GB of RAM. In our first experiment,
we evaluate the execution times along the critical path of
execution — the process of looking up a point in the map
— for implementations with and without Bloom filters.

In our second experiment, we use simulated data generated
from a 3D graphics program and assess the overall accuracy
of our system with and without the Bloom filters; the
advantage of simulated data is that access to the true values
of variables such as pose is possible allowing quantitative and
systematic evaluation. In our final experiment, to allow for
comparative evaluation and reproducible results, we select
a benchmark dataset (thermolab [17]) that consists of real-
world data from an imaging depth sensor. With this real
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Fig. 1. Box and whisker plot (10 runs) of single core execution times
for stages of determining whether a point in space falls within a occupied
voxel in the volumetric map. The point is rotated, translated and quantised
to voxel indices. These transformed indices are queried in the volumetric
map for occupancy. Transform in this case includes the rotation, translation
and quantisation. The map representations are a standard hash table, Bloom
filter and dense 3D array. The dense 3D array is likely to be the fastest
possible but requires an inordinate amount of memory.

world data, we seek to evaluate if the efficiency improve-
ments observed in standalone trials (Experiment 1) translate
into faster execution in real applications, and our findings
indeed demonstrate this critical point.

For these experiments the Bloom filter used two hash
functions and had 6 million elements. The thermolab map
results in 142812 voxels at a map resolution of 0.05m.

The two hash functions applied to the voxel index are the
Fowler-Noll-Vo hash function and D. J. Bernstein’s hash. The
pseudo code for these two hash functions follows.

def djbhash(i):
h = 5381L
t = (h * 33) & 0xffffffffL
return t ^ i

def fnvhash(i):
h = 2166136261
t = (h * 16777619) & 0xffffffffL
return t ^ i

A. Experiment 1: Comparative Efficiency of Lookups

Fig. 1 compares the execution times of various aspects of
the process required to lookup a random point in a map
consisting of randomly generated voxels. In the process
of scan-to-map-matching either with global localisation or
alignment with an initial pose many candidate poses are
checked against the map. Each candidate pose check involves
the transformation and query of a large selection of points
in the scan. The point lookup procedure is therefore exe-
cuted many times, and we show detailed comparative timing
information for this part of the algorithm.

Query times in Fig. 1 show that map querying with
Bloom tables is three times faster than with hash tables,

which is the de facto method for fast lookups. A similar
speed-up is shown when including the transformation steps.
Also included in Fig. 1 is the time taken to calculate the
overlap between the transformed scan and the map via a set
intersection operation.

What is exciting about the results in Fig. 1 is how close the
Bloom filter lookup time is to the fastest possible, that of a
dense 3D array arranged contiguously in memory. This dense
3D array is the natural 3D extension of standard occupancy
grids used in mobile robotics for many years [18]. On the
experimental machine, it corresponds to nearly 10 million
points queried against the map per second.

B. Experiment 2: Simulation with Perfect Ground Truth

We now test our system using simulated data for which
perfect ground truth is available. The operant hypothesis is
that the accuracy of our system results will not degrade from
the use of Bloom filters for lookup, which is a potential
source of error. The simulated data for these experiments was
generated by building an indoor scene in Blender and having
the camera follow a path through the scene. At a number of
points along the path the view from the camera is rendered
as a depth image. These depth images (Fig. 2) are converted
to point clouds and fed to the multi-resolution alignment
process described in Section III. No noise is added artificially
but inaccuracies in the resulting point clouds do arise from
the low colour depth (one byte) of the depth images. The
resulting map along with the trajectory of camera positions
is displayed in Fig. 3.

With the Bloom filter optimization, our position errors
are 0.02m and orientation errors are 0.3 degrees for a map
resolution of 0.04m. Good mapping accuracy corresponds to
a low growth in the map occupied voxel count because if a
new scan is aligned well to the map more of the new scan
points should fall in voxels which are already occupied in
the map thus the number of new occupied voxels needed in
the map should be lower. This is a useful map quality metric
when no pose ground truth is available. Although the Bloom
filter is probabilistic Fig. 5 highlights there is no reduction
in mapping accuracy as indicated by the map occupied voxel
counts. The lines for the hash table and Bloom performance
are coincident and as to be expected are significantly better
than mapping with odometry alone. To check the effect of
the Bloom filter approximation experiments were run with
and without Bloom filter acceleration. With a Bloom filter
size of 6 × 106 the pose solutions obtained were identical
however at 6 × 105 a position error of around 0.02m was
introduced.

C. Experiment 3: Benchmark thermolab Data

In order to confirm that the improvements observed in
Fig. 1 translate into faster execution for real applications
we consider the example application of SLAM. SLAM by
scan to map alignment was performed on the benchmark
thermolab dataset using Bloom filters or hash tables. The
thermolab dataset [17] was recorded by Dorit Borrmann,
and Hassan Afzal from Jacobs University Bremen gGmbH,



Fig. 2. Example depth images rendered for a path through a typical indoor
scene by the 3D design program Blender.

Fig. 3. Map generated from depth images in Fig. 2 the trajectory of
observation points are shown in blue. The map resolution is 0.04m, the
position errors are 0.02m and the orientation errors are 0.3 degrees.

Germany. The location is the Automation Lab at this uni-
versity. Acquisition of range information was from a Riegl
VZ-400. Each composite scan of around 400,000 points is a
panoramic scan formed by rotating the scanner in place to
capture 9 scans. Thermal camera information is also included
in this dataset but is not used for this paper.

The resulting map generated from the thermolab dataset
is included in Fig. 4. The execution times for each scan, for
both map updating and alignment are graphed in Fig. 5. It
is clear from Fig. 5 that, the improvement in query times
translates into improved real application performance. Sec-
ondly, the extra Bloom filter updates required in our system
for testing set membership do not significantly increase the
map update times.

V. CONCLUSION

Our described volumetric map approach involving Bloom
filters allows map lookups close to the fastest lookup pos-
sible, that of a dense 3D array, but with the memory
space savings of a sparse volumetric map. The Bloom filter
accelerates lookups and hence localisation and mapping with
no observed impact on the mapping accuracy due to the
probabilistic nature of Bloom tables (they can occasionally
return false positives). The mapping accuracy was tested by

Fig. 4. Resulting volumetric map produced from the thermolab first by
the odometry information alone provided with the dataset and second by
MROL with Bloom filter accelerated alignment and map generation. The
voxel size for both maps is 0.05m.

performing scan to map alignment for a simulated data set
generated from a modeled 3D scene for which perfect ground
truth was available and from a public benchmark data set.

For point in map queries the Bloom filter was over 3 times
faster than the de facto standard hash table and perhaps more
significantly within 10% of the query speed of a dense 3D
array. The dense 3D is conjectured to be the fastest possible
query mechanism however it cannot be used in practice due
to its infeasible memory requirements. Also contributing to
increased speed is a packed voxel index memory layout. In
conjunction these accelerate the point-in-map collision check
process threefold and enable sub-voxel alignment accuracy.
Localisation accuracy for the simulated data set for voxels of
0.04m was 0.02m and 0.3 degrees. Employing a sequential
multi-resolution alignment process substantially enlarges the
region of convergence which is vital if initial pose estimates
have large error.

In this work we test the accelerated spatial proximity data
structure on the example application of SLAM with 3D scan
to map matching to acquire both the poses of the scans and
a good quality volumetric map.

The occasional false positives that arise from the Bloom
filter might be of concern, however it is worth noting three
points, firstly that this false positive error is adjustable,
secondly for any practical application involving data from the
real world such as mapping and path planning uncertainty is
present anyway. Finally the Bloom filter can be backed by an
error free data store such as a hash table and still accelerate
lookups if there are a high proportion of query terms that
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Fig. 5. Comparison between prior method involving hash tables and proposed method involving Bloom tables on the real 3D thermolab dataset. The
first graph plots the execution time for alignment and map updating for the two methods. The second graph shows the map occupied voxel count growth
of the two methods in addition to that of mapping with odometry alone. A lower growth in the map occupied voxel count is associated with better scan
alignment. Note that the hash table and bloom voxel counts are identical and so the curves are coincident.

are not present in the set.
Much of the source code repository for this work, includ-

ing the Bloom filter implementation, is available at [19].
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