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Abstract— Concurrently estimating the 6-DOF pose of mul-
tiple cameras or robots—cooperative localization—is a core
problem in contemporary robotics. Current works focus on
a set of mutually observable world landmarks and often
require inbuilt egomotion estimates; situations in which both
assumptions are violated often arise, for example, robots
with erroneous low quality odometry and IMU exploring an
unknown environment. In contrast to these existing works in
cooperative localization, we propose a cooperative localization
method, which we call mutual localization, that uses reciprocal
observations of camera-fiducials to obviate the need for egomo-
tion estimates and mutually observable world landmarks. We
formulate and solve an algebraic formulation for the pose of the
two camera mutual localization setup under these assumptions.
Our experiments demonstrate the capabilities of our proposal
egomotion-free cooperative localization method: for example,
the method achieves 2cm range and 0.7 degree accuracy at
2m sensing for 6-DOF pose. To demonstrate the applicability
of the proposed work, we deploy our method on Turtlebots
and we compare our results with ARToolKit [1] and Bundler
[2], over which our method achieves a tenfold improvement in
translation estimation accuracy.

I. INTRODUCTION

Cooperative localization is the problem of finding the
relative 6-DOF pose between robots using sensors from more
than one robot. Various strategies involving different sensors
have been used to solve this problem. For example, Cognetti
et al. [3], [4] use multiple bearning-only observations with a
motion detector to solve for cooperative localization among
multiple anonymous robots. Trawny et al. [5] and lately Zhou
et al. [6], [7] provide a comprehensive mathematical analysis
of solving cooperative localization for different cases of
sensor data availability. Section II covers related literature
in more detail.

To the best of our knowledge, all other cooperative local-
ization works (see Section II) require estimation of egomo-
tion. However, a dependency on egomotion is a limitation
for systems that do not have gyroscopes or accelerometers,
which can provide displacement between two successive
observations. Visual egomotion, like MonoSLAM [8], using
distinctive image features estimates requires high quality cor-
respondences, which remains a challenge in machine vision,
especially in cases of non-textured environments. Moreover,
visual egomotion techniques are only correct up to a scale
factor. Contemporary cooperative localization methods that
use egomotion [5], [6], [9] yield best results only with
motion perpendicular to the direction of mutual observation
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Fig. 1: Simplified diagram for the two-camera problem.
Assuming the length of respective rays to be s1, s2, s3, s4
respectively, each marker coordinates can be written in both
coordinate frames {p} and {q}. For example M1 is s1p̂1 in
frame {p} and q1 in {q}, where p̂1 unit vector parallel to
p1.

and fails to produce results when either observer undergoes
pure rotation or motion in the direction of observation.
Consequently, in simple robots like Turtlebot, this technique
produces poor results because of absence of sideways motion
that require omni-directional wheels.

To obviate the need for egomotion, we propose a method
for relative pose estimation that leverages distance between
fiducial markers mounted on robots for resolving scale am-
biguity. Our method, which we call mutual localization, de-
pends upon the simultaneous mutual/reciprocal observation
of bearing-only sensors. Each sensor is outfitted with fiducial
markers (Fig. 1) whose position within the host sensor coor-
dinate system is known, in contrast to assumptions in earlier
works that multiple world landmarks would be concurrently
observable by each sensor [10]. Since our method does not
depend on egomotion, hence it is instantaneous, which means
it is robust to false negatives and it do not suffers from the
errors in egomotion estimation.

The main contribution of our work is a generalization of
Perspective-3-Points (P3P) problem where observer and the
observed points are distributed in different reference frames
unlike conventional approach where observer’s reference
frame do not contain any observed points and vice versa.
In this paper we present an algebraic derivation to solve for
the relative camera pose (rotation and translation) of the two
bearing-only sensors in the case that each can observe two
known fiducial points in the other sensor; essentially giving
an algebraic system to compute the relative pose from four
correspondences (only three are required in our algorithm
but we show how the fourth correspondence can be used
to generate a set of hypothesis solutions from which best
solution can be chosen). Two fiducial points on each robot
(providing four correspondences) are preferable to one on
one and two on the other, as it allows extension to multi-robot
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(> 2) systems ensuring that any pair of similarly equipped
robots can estimate their relative pose. In this paper, we focus
on only two robot case as an extension to multi-robot case
as pairwise localization is trivial yet practically effective.

Our derivation, although inspired by the linear pose es-
timation method of Quan and Lan [11], is novel since
all relevant past works we know on P3P problem [12],
assume all observations are made in one coordinate frame
and observed points in the other. In contrast, our method
makes no such assumption and concurrently solves the pose
estimation problem for landmarks sensed in camera-specific
coordinates frames.

We demonstrate the effectiveness of our method, by ana-
lyzing its accuracy in both synthetic, which affords quanti-
tative absolute assessment, and real localization situations
by deployment on Turtlebots. We use 3D reconstruction
experiments to show the accuracy of our algorithm. Our
experiments demonstrate the effectiveness of the proposed
approach.

II. RELATED WORK

Cooperative localization has been extensively studied and
applied to various applications. One of the latest works in
this area comes from Cognetti et al. [3], [4] where they focus
on the problem of cooperatively localizing multiple robots
anonymously. They use multiple bearing-only observations
and a motion detector to localize the robots. The robot detec-
tor is a simple feature extractor that detects vertical cardboard
squares mounted atop each robot in the shadow zone of the
range finder. One of oldest works come from Karazume et.
al. [13] where they focus on using cooperative localization
as a substitute to dead reckoning by suggesting a “dance”
in which robots act as mobile landmarks. Although they do
not use egomotion, but instead assume that position of two
robots are known while localizing the third robot. Table I
summarizes a few closely related works with emphasis on
how our work is different different from each of them. Rest
of the section discusses those in detail.

Howard et al. [14] coined the CLAM (Cooperative Lo-
calization and Mapping) where they concluded that as an
observer robot observes the explorer robot, it improves the
localization of robots by the new constraints of observer
to explorer distance. Recognizing that odometry errors can
cumulate over time, they suggest using constraints based
on cooperative localization to refine the position estimates.
Their approach, however, do not utilizes the merits of mutual
observation as they propose that one robot explores the world
and other robot watches. We show in our experiments, by
comparison to ARToolKit [1] and Bundler [2], that mutual
observations of robots can be up to 10 times more accurate
than observations by single robot.

A number of groups have considered cooperative vision
and laser based mapping in outdoor environments [15], [16]
and vision only [17], [18]. Localization and mapping using
heterogeneous robot teams with sonar sensors is examined
extensively by [19], [20]. Using more than one robot enables

Related work \ Tags NoEM BO NoSLAM MO
Mutual localization X X X X
Howard et al. [14] 7 X X X
Zou and Tan [10] X X 7 7
Cognetti et al. [3] 7 X X X
Trawny et al. [5] 7 X X X
Zhou and Roumeliotis [6], [7] 7 X X X
Roumeliotis et al. [24] 7 7 7 X

where

Tag meaning
NoEM Without Ego-Motion. All those works that use ego-

motion are marked as 7.
BO Localization using bearing only measurements. No

depth measurements required. All those works that
require depth measurements are marked with 7.

NoSLAM SLAM like tight coupling. Inaccuracy in mapping
leads to cumulating interdependent errors in localiza-
tion and mapping. All those works that use SLAM
like approach are marked with a 7

MO Utilizes mutual observation, which is more accurate
than one-sided observations. All those works that do
not use mutual observation, and depend on one-sided
observations are marked as 7

TABLE I: Comparison of related work with Mutual local-
ization

easier identification of previously mapped locations, simpli-
fying the loop-closing problem [21].

Fox et al. [22] propose cooperative localization based
on Monte-Carlo localization technique. The method uses
odometry measurements for ego motion. Chang et al. [23]
uses depth and visual sensors to localize Nao robots in the 2D
ground plane. Roumeliotis and Bekey [24] focus on sharing
sensor data across robots, employing as many sensors as
possible which include odometry and range sensors. Rekleitis
et al. [25] provide a model of robots moving in 2D equipped
with both distance and bearing sensors.

Zou and Tan [10] proposed a cooperative simultaneous
localization and mapping method, CoSLAM, in which mul-
tiple robots concurrently observe the same scene. Correspon-
dences in time (for each robot) and across robots are fed into
an extended Kalman filter and used to simultaneously solve
the localization and mapping problem. However, this and
other “co-slam” approaches such as [26] remain limited due
to the interdependence of localization and mapping variables:
errors in the map are propagated to localization and vice
versa.

Recently Zhou and Roumeliotis [6], [7] have published
solution of a set of 14 minimal solutions that covers a
wide range of robot to robot measurements. However, they
use egomotion for their derivation and they assume that
observable fiducial markers coincide with the optical center
of the camera. Our work does not make any of the two
assumptions.

III. PROBLEM FORMULATION

We use the following notation in this paper, see Fig. 1.
Cp and Cq represent two robots, each with a camera as a
sensor. The corresponding coordinate frames are {p} and
{q} respectively with origin at the optical center of the



camera. Fiducial markers M1 and M2 are fixed on robot
Cq and hence their positions are known in frame {q} as
q1,q2 ∈ R3. Similarly, p3,p4 ∈ R3 are the positions of
markers M3 and M4 in coordinate frame {p}. Robots are
positioned such that they can observe each others markers in
their respective camera sensors. The 2D image coordinates
of the markers M1 and M2 in the image captured by the
camera {p} are measured as p̄1, p̄2 ∈ R2 and that of M3

and M4 is q̄3, q̄4 ∈ R2 in camera {q}. Let Kp,Kq ∈ R3×3

be the intrinsic camera matrices of the respective camera
sensors on robot Cp, Cq . Also, note the superscript notation.
2D image coordinates are denoted by a bar, example p̄. Unit
vectors that provide bearing information are denoted by a
caret, example p̂.

Since the real life images are noisy, the measured image
positions p̄i and q̄i will differ from the actual positions p̄i0
and q̄i0 by gaussian noise ηi.

p̄i = p̄i0 + ηpi ∀i ∈ {1, 2} (1)
q̄i = q̄i0 + ηqi ∀i ∈ {3, 4} (2)

The problem is to determine the rotation R ∈ R3×3 and
translation t ∈ R3 from frame {p} to frame {q} such that
any point pi in frame {p} is related to its corresponding
point qi in frame {q} by the following equation.

qi = Rpi + t (3)

The actual projections of markers Mi into the camera image
frames of the other robot are governed by following equa-
tions,

p̄i0 = f(KpR
−1(qi − t)) ∀i ∈ {1, 2} (4)

q̄i0 = f(Kq(Rpi + t)) ∀i ∈ {3, 4} (5)

where f is the projection function defined over a vector
v =

[
vx, vy, vz

]>
as

f(v) =
[ vx
vz
,
vy
vz

]>
(6)

To minimize the effect of noise we must compute the optimal
transformation, R∗ and t∗.

(R∗, t∗) = arg min
(R,t)

 ∑
i∈{1,2}

‖p̄i − f(KpR
−1(qi − t))‖2

+
∑

i∈{3,4}

‖q̄i − f(Kq(Rpi + t))‖2
 (7)

To solve this system of equations we start with exact
equations that lead to a large number of polynomial roots.
To choose the best root among the set of roots we use the
above minimization criteria.

Let p̂i, q̂i ∈ R3 be the unit vectors drawn from the
camera’s optical center to the image projection of the mark-
ers. The unit vectors can be computed from the position of

markers in camera images p̄i, q̄i by the following equations.

p̂i =
K−1

p

[
p̄>i , 1

]>
‖K−1

p

[
p̄>i , 1

]>
‖
∀i ∈ {1, 2} (8)

q̂i =
K−1

q

[
q̄>i , 1

]>
‖K−1

q

[
q̄>i , 1

]>
‖
∀i ∈ {3, 4} (9)

Further let s1, s2 be the distances of markers M1, M2

from the optical center of the camera sensor in robot Cp.
And s3, s4 be the distances of markers M3, M4 from the
optical center of camera sensor in robot Cq . Then the points
q1, q2, s3q̂3, s4q̂4 in coordinate frame {q} correspond to
the points s1p̂1, s2p̂2, p3, p4 in coordinate frame {p}.

q1 = t + s1Rp̂1

q2 = t + s2Rp̂2

s3q̂3 = t +Rp3

s4q̂4 = t +Rp4

(10)

These four vector equations provide us 12 constraints (three
for each coordinate in 3D) for our 10 unknowns (3 for
rotation R, 3 for translation t, and 4 for si). We first consider
only the first three equations, which allows an exact algebraic
solution of the nine unknowns from the nine constraints.

Our approach to solving the system is inspired by the well
studied problem of Perspective-3-points [12], also known as
space resection [11]. However, note that the method cannot
be directly applied to our problem as known points are
distributed in both coordinate frames as opposed to the space
resection problem where all the known points are in the one
coordinate frame.

The basic flow steps of our approach are to first solve
for the three range factors, s1, s2 and s3 (Section III-A).
Then we set up a classical absolute orientation system on
the rotation and translation (Section III-B), which is solved
using established methods such as Arun et al. [27] or Horn
[28]; finally, since our algebraic solution will give rise to
many candidate roots, we develop a root-filtering approach
to determine the best solution (Section III-C).

A. Solving for s1, s2 and s3
The first step is to solve the system for s1, s2 and s3. We

eliminate R and t by considering the inter-point distances in
both coordinate frames.

‖s1p̂1 − s2p̂2‖ = ‖q1 − q2‖
‖s2p̂2 − p3‖ = ‖q2 − s3q̂3‖
‖p3 − s1p̂1‖ = ‖s3q̂3 − q1‖

(11)

Squaring both sides and representing the vector norm as
the dot product gives the following system of polynomial
equations.

s21 + s22 − 2s1s2p̂
>
1 p̂2 − ‖q1 − q2‖2 = 0 (12a)

s22 − s23 − 2s2p̂
>
2 p3 + 2s3q

>
2 q̂3 + ‖p3‖2 − ‖q2‖2 = 0

(12b)

s21 − s23 − 2s1p̂
>
1 p3 + 2s3q

>
1 q̂3 + ‖p3‖2 − ‖q1‖2 = 0

(12c)



This system has three quadratic equations implying a Bezout
bound of eight (23) solutions. Using the Sylvester resultant
we sequentially eliminate variables from each equation.
Rewriting (12a) and (12b) as quadratics in terms of s2 gives

s22 + (−2s1p̂
>
1 p̂2)︸ ︷︷ ︸

a1

s2 + (s21 − ‖q1 − q2‖2)︸ ︷︷ ︸
a0

= 0

(13)

s22 + (−2p̂>2 p3)︸ ︷︷ ︸
b1

s2 − (s23 − 2s3q
>
2 q̂3 − ‖p3‖2 + ‖q2‖2)︸ ︷︷ ︸

b0

= 0

(14)

The Sylvester determinant [29, p. 123] of (13) and (14)
is given by the determinant of the matrix formed by the
coefficients of s2.

r(s1, s3) =

∣∣∣∣∣∣∣∣
1 a1 a0 0
0 1 a1 a0
1 b1 b0 0
0 1 b1 b0

∣∣∣∣∣∣∣∣ (15)

This determinant is a quartic function in s1, s3. By definition
of resultant, the resultant is zero if and only if the parent
equations have at least a common root [29]. Thus we have
eliminated variable s2 from (12a) and (12b). We can repeat
the process for eliminating s3 by rewriting r(s1, s3) and
(12c) as:

r(s1, s3) = c4s
4
3 + c3s

3
3 + c2s

2
3 + c1s3 + c0 = 0

−s23 + (2q>1 q̂3)︸ ︷︷ ︸
d1

s3 + s21 − 2s1p̂
>
1 p3 + ‖p3‖2 − ‖q1‖2︸ ︷︷ ︸

d0

= 0

(16)

The Sylvester determinant of (16) would be

r2(s1) =

∣∣∣∣∣∣∣∣∣∣∣∣

c4 c3 c2 c1 c0 0
0 c4 c3 c2 c1 c0
1 d1 d0 0 0 0
0 1 d1 d0 0 0
0 0 1 d1 d0 0
0 0 0 1 d1 d0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (17)

Solving (17) gives an 8 degree polynomial in s1. By Abel-
Ruffini theorem [30, p. 131], a closed-form solution of the
above polynomial does not exist.

The numeric solution to (17) gives eight roots for s3.
We compute s1 and s2 using (12c) and (12b) respectively.
Because the camera cannot see objects behind it, only real
positive roots are maintained from the resultant solution set.

B. Solving for R and t

With the solutions for the scale factors, {s1, s2, s3} we can
compute the absolute location of the Markers {M1,M2,M3}
in both the frames {p} and {q}.

pi = sip̂i ∀i ∈ {1, 2}
qi = siq̂i ∀i ∈ {3}

These exact correspondences give rise to the classical prob-
lem of absolute orientation i.e. given three points in two
coordinate frames find the relative rotation and translation

between the frames. For each positive root of s1, s2, s3 we
use the method in Arun et. al [27] method (similar to Horn’s
method [28]) to compute the corresponding rotation R and
translation value t.

C. Choosing the optimal root

Completing squares in (12) yields important information
about redundant roots.

(s1 + s2)2 − 2s1s2(1 + p̂>1 p̂2)− ‖q1 − q2‖2 = 0 (18a)

(s2 − p̂>2 p3)2 − (s3 − q>2 q̂3)2

+ (p3 − p̂2)>p3 − q>2 (q2 − q̂3) = 0

(18b)

(s1 − p̂>1 p3)2 − (s3 − q>1 q̂3)2

+ (p3 − p̂1)>p3 − q>1 (q1 − q̂3) = 0

(18c)

Equations (18) do not put any constraints on positivity of
terms (s2−p̂>2 p3), (s3−q>2 q̂3), (s1−p̂>1 p3) or (s3−q>1 q̂3).
However, all these terms are positive as long as the markers
of the observed robot are farther from the camera than the
markers of the observing robot. Also, the distances si are
assumed to be positive. Assuming the above, we filter the
real roots by the following criteria:

s1 ≥ ‖p3‖ (19)
s2 ≥ ‖p3‖ (20)
s3 ≥ max(‖q1‖, ‖q2‖) (21)

These criteria not only reduce the number of roots signifi-
cantly, but also filter out certain degenerate cases.

For all the filtered roots of (17), we compute the cor-
responding values of R and t, choosing the best root that
minimizes the error function, (7).

D. Extension to four markers

Even though the system is solvable by only three markers,
we choose to use four markers for symmetry. We can fall
back to the three marker solution in situations when one
of the markers is occluded. Once we extend this system to
4 marker points, we obtain 6 bivariate quadratic equations
instead of the three in (12) that can be reduced to three 8-
degree univariate polynomials. The approach to finding the
root with the least error is the same as described above.

E. Extension to more than four markers

Assume that the five markers are distributed on two robots
such that the equations are formulated as:

q1 = t + s1Rp̂1

q2 = t + s2Rp̂2

s3q̂3 = t +Rp3

s4q̂4 = t +Rp4

s5q̂5 = t +Rp5

(22)



Markers

Camera

Fig. 2: The deployment of markers on Turtlebot that we used
for our experiments

Compare this system of equations to the system when two
cameras observe an unknown set of corresponding points i.e.
in both the coordinate frames we only know the projection
of the points.

s1q̂1 = t + s2Rp̂1

s3q̂2 = t + s4Rp̂2

s5q̂3 = t + s6Rp̂3

s7q̂4 = t + s8Rp̂4

s9q̂5 = t + s10Rp̂5

(23)

Clearly, our problem under consideration (22) is easier than
solving (23) as we already know five of the ten unknown
scale factors. Fortunately, this problem of finding relative
camera pose as they observe unknown set of five or more
corresponding points has been well studied [31]–[34]. How-
ever, these methods result in a solution that is correct up to
a scale factor. By additionally using the distance relations
from (11) we can solve for the relative camera pose along
with scale factor.

Assuming the unknown essential matrix to be E, the
system of equations (22) can be rewritten in the following
form:

q>i Ep̂i = 0 ∀i ∈ 1, 2 (24)

q̂>i Epi = 0 ∀i ∈ 3, 4, 5 (25)

With this notation, it is easy to follow the solution outlined
in [32] for five or six points (markers). For even more points
refer to [35] for the widely known 7-point and linear 8-point
algorithms.

IV. IMPLEMENTATION

We implement our algorithm on two Turtlebots with
fiducial markers. One of the Turtlebots with markers is
shown in Fig. 2. We have implemented the algorithm in
Python using the Sympy [36], OpenCV [37] and Numpy
[38] libraries. As the implementing software formulates and

solves polynomials symbolically, it is generic enough to
handle any reasonable number of points in two camera co-
ordinate frames. We have tested the solver for the following
combination of points: 0-3, 1-2, 2-2, where 1-2 means that
1 point is known in the first coordinate frame and 2 points
are known in the second.

We use blinking lights as fiducial markers on the robots
and barcode-like cylindrical markers as for the 3D recon-
struction experiment.

The detection of blinking lights follows a simple thresh-
olding strategy on the time differential of images. This ap-
proach coupled with decaying confidence tracking produces
satisfactory results for simple motion of robots and relatively
static backgrounds. Fig. 3 shows the cameras mounted with
blinking lights as fiducial markers. The robots shown in 3
are also mounted with ARToolKit [1] fiducial markers for
the comparison experiments.

V. EXPERIMENTS

To assess the accuracy of our method we perform a
localization experiment in which we measure how accurately
our method can determine the pose of the other camera.
We compare our localization results with the widely used
fiducial-based pose estimation in ARToolKit [1] and visual
egomotion and SfM framework Bundler [2]. We also gen-
erate a semi-dense reconstruction to compare the mapping
accuracy of our method to that of Bundler. A good quality
reconstruction, is a measure of the accuracy of mutual
localization of the two cameras used in the reconstruction.

A. Localization Experiment

a) Setup: Two turtlebots were set up to face each other.
One of the turtlebot was kept stationary and the other moved
in 1 ft increments in an X-Z plane (Y-axis is down, Z-axis
is along the optical axis of the static camera and the X-
axis is towards the right of the static camera). We calculate
the rotation error by extracting the rotation angle from the
differential rotation R>gtRest as follows:

Eθ =
180

π
arccos

(
Tr(R>gtRest)− 1

2

)
(26)

where Rgt is the ground truth rotation matrix, Rest is the
estimated rotation matrix and Tr is the matrix trace. The
translation error is simply the norm difference between two
translation vectors.

b) Results in comparison with ARToolKit [1]: The
ARToolKit is an open source library for detecting and
determining the pose of fiducial markers from video. We
use a ROS [39] wrapper – ar_pose – over ARToolKit for
our experiments. We repeat the relative camera localization
experiment with the ARToolKit library and compare to our
results. The results show a tenfold improvement in translation
error over Bundler [2].

"http://www.ros.org/wiki/ar_pose"
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Fig. 3: Diagram of the two camera setup for mutual localization 3D metric reconstruction, along with images from each
camera for two poses of the mobile camera. Cameras have distinctive cylindrical barcode-like markers to aid detection in
each others image frames. Also depicted is the triangulation to two example feature points.
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Fig. 4: Translation error comparison between the ARToolKit
and our mutual localization. The translation error is plotted
to ground truth X and Z axis positions to show how error
varies with depth (Z) and lateral (X) movements. We get
better results in localization by a factor of ten. Also note
how the translation error increases with Z-axis (inter-camera
separation).

Median Trans. error Median Rotation error
ARToolKit [1] 0.57m 9.2◦

Bundler [2] 0.20m 0.016◦

Mutual Localization 0.016m 0.33◦

TABLE II: Table showing mean translation and rotation error
for ARToolKit, Bundler and Mutual Localization
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Fig. 5: Rotation error comparison between the ARToolKit
and Mutual localization. Rotation error decreases with Z-
axis (ground truth inter-camera separation). See (26) for
computation of rotation error.



2 4 6 8 10
Noise (pixels)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Tr

an
sl

at
io

n
E

rr
or

(m
)

2 4 6 8 10
Noise (pixels)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ot

at
io

n
E

rr
or

(d
eg

re
es

)

Fig. 6: Rotation and translation error as noise is incremen-
tally added to the detection of markers.

B. Simulation experiments with noise

A simple scene was constructed in Blender to verify the
mathematical correctness of the method. Two cameras were
set up in the blender scene along with a target object 1m
from the static camera. Camera images were rendered at
a resolution of 960 × 540. The markers were simulated
as colored balls that were detected by simple hue based
thresholding. The two cameras in the simulated scene were
rotated and translated to cover maximum range of motion.
After detection of the center of the colored balls, zero mean
gaussian noise was added to the detected positions to investi-
gate the noise characteristics of our method. The experiment
was repeated with different values of noise covariance. Fig. 6
shows the translation and rotation error in the experiment
with variation in noise. It can be seen that our method is
robust to noise as it deviates only by 5cm and 2.5◦ when
tested with noise of up to 10 pixels.

C. 3D Reconstruction experiment

The position and orientation obtained from our method
is inputted into the patch based multi-view stereo (PMVS-
2) library [40] to obtain a semi-dense reconstruction of an
indoor environment. Our reconstruction is less noisy when
compared to that obtained by Bundler [2]. Fig. 7 shows a
side-by-side snapshot of the semi-dense map from Bundler-
PMVS and, our method, Mutual Localization-PMVS. To
compare the reconstruction accuracy, we captured the scene
as a point cloud with an RGB-D camera (Asus-Xtion).
The Bundler and Mutual Localization output point clouds
were manually aligned (and scaled) to the Asus-Xtion point
cloud. We then computed the nearest neighbor distance from
each point in the Bundler/Mutual localization point clouds

discarding points with nearest neighbors further than 1m as
outliers. With this metric the mean nearest neighbor distance
for our method was 0.176m while that for Bundler was
0.331m.

VI. CONCLUSION

We have developed a method to cooperatively localize two
cameras using fiducial markers on the cameras in sensor-
specific coordinate frames, obviating the common assump-
tion of sensor egomotion. We have compared our results
with the ARToolKit showing that our method can localize
significantly more accurately, with a tenfold error reduction
observed in our experiments. We have also demonstrated
how the cooperative localization can be used as an input for
3D reconstruction of unknown environments, and find better
accuracy (0.18m versus 0.33m) than the visual egomotion-
based Bundler method. We plan to build on this work
and apply it to multiple robots for cooperative mapping.
Though we achieve reasonable accuracy, we believe we can
improve the accuracy of our method by improving camera
calibration and measurement of the fiducial marker locations
with respect to the camera optical center. We will release the
source code (open-source) for our method upon publication.
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