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Segmentation of Brain Tumor is Important but Difficult.

® Important

e Difficult

g,

Enhancement

4
!

Would guantify tumor growth.

Currently, only manual or interactive.
Aid in surgical planning.

Provide data for treatment analysis.

Glioblastoma multiforme. R
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Highly varying in appearance, ;

size and shape.

Can deform nearby structures.
Impossible with simple thresholding.

Multiple modalities necessary.
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Two Typical Examples

T1 Pre-Contrast T1 Post-Contrast T1 Pre-Contrast T1 Post-Contrast
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Graph Affinity-Based Segmentation

Define the problem on a graph:
G=1{V,&}

Edges are sparse, to neighbors.

Each pixel / voxel is a node.
Augment nodes, for v € V
statistics: S, .
class label: Cy .
Define affinity between u,v € V
Wyp = €xp (—D(Sy, $u;0))

where ) is some non-negative
distance function and # are some
predetermined values. I I I I I

Regions are defined by cuts.
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Graph Affinity-Based Segmentation

Segmentation by Affinities

Define a measure

ZuER,ng W

ZU,UER Wy

[(R) =

Low I['(R) means good saliency:
low affinity on boundaries,

high affinity in interior.

Normalized Cut (Shi & Malik) | | | | |

Affinities at a pixel scale only. — —— | —

Can take filters of varying size
but erroneous at borders.
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Graph Affinity-Based Segmentation

Segmentation by Weighted Aggregation
Invented in natural image domain by Sharon et al. (CVPR 2000, 2001).
First extended to medical imaging domain by Akselrod-Ballrin (CVPR 2006)
Efficient, multiscale process.

Results in a pyramid of recursively coarsened graphs that capture multiscale
properties of the data.

Affinities are calculated at each level of the graph.

Statistics in each graph node are agglomerated up the hierarchy.
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Segmentation with Generative Models

Define a likelihood function P({s,}{c.}) ,
And define priors on the class labels (models): P({c,}) .

Goal 1s to seek estimates of class labels that maximize the

posterior:
P({cu}|i5u}) < P({su}|icu})P({Cu}) -

Segmentation and classification solved jointly.

Exemplified by the DDMCMC algorithm of Tu and Zhu.
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Tumor Outline Topology with Grammatical Relations

Image From Tu et al. IJCV 2005 Stochastic grammars are another example.
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Comparison

Graph Affinity-Based Methods

Rapid, feed-forward methods giving quick results.
Evidence of much power in these methods.
Not guaranteed to get meaningful answers.

Very memory intensive (especially with 3D medical data).

Model-Based MAP Methods

Guaranteed to get answer from posterior.
Very computationally expensive.

The models are hard to design and train.

Suggests a combination of the two.

Research Agenda: leverage the efficiency of graph-based
bottom-up methods with the power and optimality of top-down
generative models.
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Combining Affinities and Models

Define class dependent affinities in terms of probabilities:

p(Xuv|Su75v) — Wyv -

Xy is the binary event that both v and v are in the same region.

’U,’U 1

Xyov 1S not deterministic on class labels (Cu ,Cv):

pixels in same region may have different labels,

pixels in different regions may have same labels.
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Combining Affinities and Models

The Conventional Affinity Function

Wy — €XP (_D(Sua Sv s 6)))
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Combining Affinities and Models

Model-Aware Affinity

Model Specific

Node Likelihoods

S
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The node likelihoods weigh the model specific measurements.

y,
~

4 Y/ © Jason Corso UCLA LONI/CCB and CIVS 11



Combining Affinities and Models

Model-Aware Affinity

Treat class labels as hidden variables and sum them out:

P( uvlsuasfu > >1 uv‘suaSvacuacv)P(Cuacv‘SU73v) ,

X > >1 UU‘SU7SWCU?C”U)P(SuaSfu|cuacv)P(Cupcfu) ,

— > >1 uv‘SuaSv;Cu7CU)P(Su‘CU)P(SU‘CU)P(Cu,CU) :
— /

Model Specific Measurement Class Prior
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Combining Affinities and Models

Model-Aware Affinity

P(Xul$us 50, Cus ) = xp( =D (50, 503 0eu, )

Defined as a function of class label pairs 0|c,, ¢,]

Suitable for heterogeneous data.

Model-aware affinities modulated by evidence: P (Su ‘Cu) :
At pixel scales, evidence for any class is low.

At coarser scales, evidence is high and models improve affinities.

N
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Segmentation by Weighted Aggregation

Overview
Multiscale graph-based algorithm.
Inspired by methods in Algebraic Multigrid.

First extended to 3D medical domain by Akselrod-Ballrin (2006)
Again, define a graph G' = (V*, &%)

Superscript denotes level in a pyramid of graphs § = {Gt :t=0,..., T}
Finest layer induced by voxel lattice

6-neighbor connectivity

Node properties Sy set according to multimodal image intensities.

Affinities initialized by L1-distance: Wy, = exp (—0 |s, — Sy];)
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Segmentation by Weighted Aggregation

Select a representative set of nodes satistying

ZwUUZﬁZwU’U

VER? vept

i.e., all nodes in finer level have strong affinity to nodes in coarser.
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Segmentation by Weighted Aggregation

Select a representative set of nodes satistying

ZwUUZﬁZwU’U

VER? vept

i.e., all nodes in finer level have strong affinity to nodes in coarser.

Begin to define graph G* = (V! &)

g __
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Segmentation by Weighted Aggregation

Compute interpolation weights between coarse and fine levels
Wy U

2 veyri Wuy

PuU =

g o

PuU

¢ @—0—0—0—0—©
w’U,U

% V' © Jason Corso UCLA LONI/CCB and CIVS 1

N



Segmentation by Weighted Aggregation

Compute interpolation weights between coarse and fine levels
Wy U

2 veyri Wuy

PuU =

Accumulate statistics at the coarse level
PuUSu
uevt ZUEVt pUU

3\/@

PuU
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Segmentation by Weighted Aggregation

Interpolate affinity from finer levels

Dy = Y PuUWuuPov
(u#v)eV?t

¢ @—0—0—0—0—©
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Segmentation by Weighted Aggregation

Interpolate affinity from finer levels

Dy = Y PuUWuuPov
(u#v)eV?t

Use coarse affinity to modulate the interpolated affinity

Wuv = wyv exp (—D(su, sv;0))

¢ @—0—0—0—0—©
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Segmentation by Weighted Aggregation

Repeat ...

¢ @—0—0—0—0—©
w’U,U
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Segmentation by Weighted Aggregation

Incorporating Model-Aware Affinities

Alter the way coarse affinities are modulated.
Currently

Wuy = wyv exp (—D(su, sv; 0))

Change to
Wuv = wuv P(Xuv|su,sv) -
Associate the most-likely class with each node:

b3
: P [ )
cy = argmax P(sy/c)

LN
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Example of the Segmentation Pyramid
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Extracting Information from the Hierarchy

The Problem:

Gives hierarchy, need final answer.
Original SWA suggests saliency.

Model information provides more
information for extraction.

Current Model-Based Extraction

Compute class for each voxel for
each level in the pyramid.

Use interpolation weights.
Accumulate class membership.

Assign class the voxel was for most
of the levels.

4
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Extracting Information from the Hierarchy

Energy Based Methods -- Saliency Only

Treat hierarchy as an input datum to a minimizer.
Define a set of level variables {lv}, v € V over voxel lattice.
A final segmentation is induced by an instance.

Hy({l})=a1 Y D)) —az Y 1(, =1))

“External” Potential

Can be minimized various techniques
Formulate as Gibbs Field and use simulated annealing.

Use popular min-cut/max-flow graph cuts method.

N
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Extracting Information from the Hierarchy

Energy Based Methods -- Model-Based

Models provide stronger information for extraction.
Define a set of model variables {mv}, v € V over voxel lattice.
Bayesian estimate of model likelihood over hierarchy:

P(mzv§z) — L P(Swmza )

t=1{0,..

= Z P(S o |mi) E(8i,1)

t={0,..

E (§i, t) is level evidence, computed by entropy of likelihood dist:

exp (—/-i D mem (s @ |m)In P(s |m)>

B(3i,1) =
Zz:{O,...,T} C€XP (_R Zmé./\/l P(SU@ |m) In P(SU(Z) ‘m))
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Extracting Information from the Hierarchy

LN

Energy Based Methods -- Model-Based

Define a similar Potts-type energy model:

H,, (M :—alszz,s@ —OzQZl m;)

<1,7>

Use energy minimization or stochastic optimization techniques

Min-flow/max-cut methods.
1
Simulated annealing on Gibbs field: 11 M ( /\/l) — E exp (—7‘ H ({l }))

Swendseng-Wang cuts similar to Barbu and Zhu.
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Extracting Information from the Hierarchy
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Application to Brain Tumor Segmentation

Dataset of 20 glioblastoma multiforme patients.
3D, 256x256x25.
Images Pre-processed:

noise removal
skull removal
spatial registration

intensity standardization.
Use 4 modalities

T1, Tl w/contrast, Flair, and T2.
Expert annotated.

Data graciously provided by
Dr. Cloughesy of UCLA Henry E.
Singleton Brain Cancer Research
and preprocessed by Shishir Dube using FSL tools.

LN
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Model-Aware Affinity and Class Prior

For model-aware affinity, use class-dependent weighted distance:

M

m m m

P(Xuv|Su, Sv,Cuys o) =€xp | — g 0. .. |5y — So
m=1

Coefficients 6", are set based on expert, domain knowledge.

Braln Brain
Brain, Tumor

Feature statistic is simply average intensity.
The class prior term

encodes obvious hard constraints (e.g. tumor cannot be next to non-data),

remaining set to uniform.
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Class Likelihood Model

Each class is modeled with a
Gaussian mixture model.

Likelihood is computed directly
against this model.

For some structures more node JHl? I'" ----------- ~
statistics must be used: @ Tumor Clas

T1

Shape moments
Surface curvature

Location

RelatiO Ilal (b) Edema Class

N
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Example of the Segmentation Pyramid
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Example of the Segmentation Pyramid

10 11 12

Can see the relevant structures emerging.

Preliminary results from sub-cortical project (began Sept. 2006).
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Example of the Segmentation Pyramid

S ' : L

il

7 3

Hippocampus -

==

Hard to segment structures emerging too.
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Quantitative Results

Volume Overlap Comparison

Results on Training Set
Tumor Edema

Algorithm Jac Prec Rec Jac Prec Rec

Single Voxel Classifier | 42% 48% 85% | 43% 49% 78%
Saliency-Based Extractor | 44% 51% 64% | 47% 55%  76%
Model-Based Extractor | 62% 75% 81% | 54% 66%  72%

Results on Testing Set
Tumor Edema

Algorithm Jac Prec Rec Jac Prec Rec

Single Voxel Classifier | 49% 55% 81% | 56% 66% 76%
Saliency-Based Extractor | 48% 61% 63% | 56% 66% 71%
Model-Based Extractor | 66% 80% 79% | 61% 78% 71%
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Quantitative Results

Volume Measurement

Tumor Edema
Study ID Truth Auto Truth Auto

X
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Quantitative Results

Surface Measurement

Tumor Edema
Study ID | Mean Median | Mean  Median

_
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Classification Comparison

7 8 9 10 11

s ? ? .

Manual

Single
Voxel
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Comparing SWA with Model-Aware Affinities to Original SWA

g4 Y £e N o kd
Model-Aware

Original
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Implementation Details

Built with Java and Swing.
Uses ImagelO: supports many image formats using the LONI
medical image plugins.

Developed new core data structures to support transparent out-
of-core data manipulation, which is often necessary when
working with medical imaging (especially hierarchical).

Developed with principled OO techniques:

Polymorphic Model-Class design for “plug-and-play” affinity
function and likelihood measurements based on specific
application.

Design patterns to make it easy to generate an application
specific segmentation algorithm built with atop same core
software.

Computational time: 90x60x90 volume segmented in about 2
minutes on a 2Ghz PowerPC G5.

Extraction time depends on method.

LN
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Results - Tool for Interactive Analysis Using Models

JavaSeqg Gui

Sagittal

JT1CE

Pyramid Level

Select —
Hierarchy Level :

Overlay Blend

[ vor |""'-.-""'| O T I R B B
0 64 128 192

Hilite 5 Maost Salient .
Coronal

-.__' Overlay Ground Truth Contours '___.

([ Run Tumor Analysis (ClassAware) |

r Crab XY Slice
Stats & Info
Node ID: &

Overlay Manual Saliency: 5.6916702€-12
Contours

N
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Conclusions

Main contribution:

Classes as hidden variables for bridging graph-based affinities and model-
based techniques.

Incorporated into the SWA algorithm.

Computational time: 90x60x90 volume segmented & classified in
about 2 minutes on a PowerPC G5 (in Java).

Software contribution:

A complete system for experimenting with the Bayesian computational
methods, including learning, segmentation, visualization, and analysis.

Future:

Better models with more feature statistics,
Learning the model-aware affinity class dependent parameters,

Leverage the efficiency of graph-based bottom-up methods with the
comprehensive and optimality of top-down generative models.

—9 Thanks for listening.
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Research Overview

Automatic Knowledge discovery =

_ Statistical

/ Learning

Bayesian methodology (generative modeling)

Domain expert knowledge

Manual creation

Model discovery (e.g. learning grammars, manifold learning)

Estimate the models (find instances of the concepts) in data
Efficient and robust

Integrate bottom-up, feed-forward with top-down models

Medical Informatics
Surgical planning

— Various related biomedical application (e.g. tissue microarrays)
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