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Segmentation of Brain Tumor is Important but Difficult.

• Important

• Would quantify tumor growth.

• Currently, only manual or interactive.

• Aid in surgical planning.

• Provide data for treatment analysis.

• Difficult

• Glioblastoma multiforme.

• Highly varying in appearance, 

     size and shape.

• Can deform nearby structures.

• Impossible with simple thresholding.

• Multiple modalities necessary.

Motivation
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Motivation

Two Typical Examples

3
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Graph Affinity-Based Segmentation

• Define the problem on a graph:

• Edges are sparse, to neighbors.

• Each pixel / voxel is a node.

• Augment nodes, for  

• statistics:  

• class label:

• Define affinity between

• where     is some non-negative 
distance function and     are some 
predetermined values.  

• Regions are defined by cuts.
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any case that distinct feature distributions can be learned for
the heterogeneous regions. To demonstrate such an application,
we experiment with the task of detecting and segmenting
brain tumors. Our method combines two of the most effective
approaches to segmentation. The first approach, exemplified
by the work of Tu et al. [4], [5], uses class models to
explicitly represent the different heterogeneous processes. The
tasks of segmentation and class membership estimation are
solved jointly by sampling from a posterior distribution of
possible problem solutions. The goal of these methods is
to compute samples that maximize the posterior distribution,
which is often represented as a product distribution over
generative models on sets of pixels, or segments. Hense,
we call these methods model-based. This type of approach
is very powerful as the samples are guaranteed to be from
a statistical distribution that has been learned from training
data, but the algorithms for obtaining these estimates are
comparatively slow and the model choice problem is difficult.
Some techniques have been studied to improve the efficiency
of the inference task, e.g. Swendsen-Wang sampling [6], but
these methods still remain comparatively inefficient.

The second approach is based on the concept of normalized
cuts [7] on graphs. In these graph-based methods, the input
data induces a sparse graph, and each edge in the graph is
given an affinity measurement that characterizes the similarity
of the two neighboring nodes in some predefined feature
space. Cuts are sets of edges that separate the graph into
two subsets, typically by analyzing the eigen-spectrum [7],
[8] or pairwise-predicate measures [9]. These methods have
lead to the hierarchical segmentation by weighted aggregation
(SWA) algorithm due to Sharon et al. [10], [11]. SWA operates
by recursively coarsening the initial graph using an adapted
algebraic multigrid algorithm [12]; it is shown to approximate
the normalized cut meaure. SWA was first extended to the 3D
image domain by Akselrod-Ballin et al. [13]. In their work,
multiple modalities are used during the segmentation to extract
multiscale segments that are then classified in a decision tree
algorithm; it is applied to multiple sclerosis analysis. SWA
is extremely rapid and effective, but does not explicitly take
advantage of the class models used in [4].

In this paper, we take a step toward unifying these two dis-
parate approach by incorporating models into the calculation
of the affinities on the graph. The organization of the paper
is as follows: first, we discuss the necessary background in
generative models and that notation that will be used in the
paper (Section II). Next, we describe (Section III) how we
incorporate Bayesian model classification into the calculation
of affinities in a principled manner. The proposed model-aware
affinity leads to improved cuts by allowing the use of affinity
functions tailored to the specific models assigned to the two
nodes on the computation. It does so in a soft, Bayesian man-
ner by integrating over all possible model assignments without
needing to make a premature hard decision. The model-aware
affinity leads (Section IV) to a modification of the SWA
algorithm using class-based probabilities. In Section V, we
describe a method to extract the segmentation from the SWA
hierarchy that makes explicit use of the model probabilities
from the new affinity function. Finally, in Section VI we

Fig. 2. An example graph from brain MR showing the measurable node
properties as squares and the random, model variables are circles. A 2D graph
is shown for presentation only; all processing occurs in 3D.

discuss the application of our method to the problem of
segmenting brain tumor in multichannel MR. We describe the
specific class models and probability functions used in the
experimental results.

II. BACKGROUND

In this section, we first make the definitions and describe
the notation necessary for the technical discussion. Then, we
introduce the necessary background concepts for the use of
generative models in segmentation.

A. Notation

The input data induces a graph, G = (V, E), on which all
of the analysis occurs. Each node in the graph, u, v ∈ V ,
is augmented with properties, or statistics, denoted su ∈ S,
where S is the space of properties (e.g., R3 for red-green-blue
image data). Edges in the graph, euv ∈ E , are created based
on connectivity relations in the input data. Define a cluster to
be a connected set of nodes C ⊂ V in the graph such that
Ck ∩ Cl = ∅ when k $= l and

⋃
Ck = V .

Associated with each node is a random variable, mu, called
the model variable that takes values from a discrete set of
process models M that is problem specific; in the brain
tumor example this set would be {brain, tumor, edema}.
Additionally, associated with each edge is a binary random
variable, Xuv , called the edge activation variable, and the set
of these over E is denoted X . An edge activation variable takes
value 1 if u and v are in the same cluster and value 0 if the
two nodes are not in the same cluster. Thus, an instance of
X , an activation set, defines a segmentation of the data into
clusters.

A pictorial example of such a graphical model [14], [15]
representing these variables for a 2D brain MR slice is
given in Figure 2. Each voxel in the input image induces
a corresponding node in the graph; these are drawn as the
pair of measurable and random variables associated with each
node. Squares are used to represent the measurable properties,
su, at each graph node. Circles are used to depict the random
variables, in this case the model variables mu at each node. In
the formulation, the model variables generate the measurables,
or the appearance, which results in the actual image.
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Graph Affinity-Based Segmentation

Segmentation by Affinities

• Define a region saliency measure

• Low           means good saliency:

• low affinity on boundaries,

• high affinity in  interior.  

• Normalized Cut (Shi & Malik)

• Affinities at a pixel scale only.

• Can take filters of varying size 
    but erroneous at borders.

5

Γ(R) =
∑

u∈R,v/∈R wuv∑
u,v∈R wuv

.
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Graph Affinity-Based Segmentation

Segmentation by Weighted Aggregation

• Invented in natural image domain by Sharon et al. (CVPR 2000, 2001).

• First extended to medical imaging domain by Akselrod-Ballrin (CVPR 2006)

• Efficient, multiscale process.

• Results in a pyramid of recursively coarsened graphs that capture multiscale 
properties of the data.

• Affinities are calculated at each level of the graph.

• Statistics in each graph node are agglomerated up the hierarchy.

6
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Segmentation with Generative Models

• Define a likelihood function

• And define priors on the class labels (models):

• Goal is to seek estimates of class labels that maximize the 
posterior: 

• Segmentation and classification solved jointly.

• Exemplified by the DDMCMC algorithm of Tu and Zhu.

7

P ({su}|{cu}) ,

P ({cu}) .

P ({cu}|{su}) ∝ P ({su}|{cu})P ({cu}) .

Image From Tu et al. IJCV 2005 Stochastic grammars are another example.
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Comparison

• Graph Affinity-Based Methods

• Rapid, feed-forward methods giving quick results.

• Evidence of much power in these methods.

• Not guaranteed to get meaningful answers.

• Very memory intensive (especially with 3D medical data).

• Model-Based MAP Methods

• Guaranteed to get answer from posterior.

• Very computationally expensive.

• The models are hard to design and train.

• Suggests a combination of the two.

8

Research Agenda:  leverage the efficiency of graph-based 
bottom-up methods with the power and optimality of top-down 
generative models.
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Combining Affinities and Models

• Define class dependent affinities in terms of probabilities:

•        is the binary event that both     and     are in the same region.

•        is not deterministic on class labels (    ,    ):

• pixels in same region may have different labels,

• pixels in different regions may have same labels.

9

u v
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Combining Affinities and Models

The Conventional Affinity Function

10

wuv = exp (−D(su, sv; θ))
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Combining Affinities and Models

Model-Aware Affinity

11

Model Specific
MeasurementsNode Likelihoods

The node likelihoods weigh the model specific measurements.
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Combining Affinities and Models

Model-Aware Affinity

• Treat class labels as hidden variables and sum them out:

12

P (Xuv|su, sv) =
∑

cu

∑

cv

P (Xuv|su, sv, cu, cv)P (cu, cv|su, sv) ,

∝
∑

cu

∑

cv

P (Xuv|su, sv, cu, cv)P (su, sv|cu, cv)P (cu, cv) ,

=
∑

cu

∑

cv

P (Xuv|su, sv, cu, cv)P (su|cu)P (sv|cv)P (cu, cv) .

Model Specific Measurement Node Likelihoods Class Prior
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Combining Affinities and Models

Model-Aware Affinity

• Defined as a function of class label pairs

• Suitable for heterogeneous data.

• Model-aware affinities modulated by evidence: 

• At pixel scales, evidence for any class is low.

• At coarser scales, evidence is high and models improve affinities.

13

P (Xuv|su, sv, cu, cv) = exp
(
−D (su, sv; θ[cu, cv])

)

θ[cu, cv] .

P (su|cu) .
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Segmentation by Weighted Aggregation

• Overview

• Multiscale graph-based algorithm.

• Inspired by methods in Algebraic Multigrid.

• First extended to 3D medical domain by Akselrod-Ballrin (2006)

• Again, define a graph

• Superscript denotes level in a pyramid of graphs

• Finest layer induced by voxel lattice

• 6-neighbor connectivity

• Node properties      set according to multimodal image intensities.

• Affinities initialized by L1-distance:      

14

G = {Gt : t = 0, . . . , T}

sv

wuv = exp (−θ |su − sv|1) .

u vwuv
G0

su sv

Gt = (Vt, Et)
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Segmentation by Weighted Aggregation

• Select a representative set of nodes satisfying

• i.e., all nodes in finer level have strong affinity to nodes in coarser.

15

u vwuv
G0

su sv

∑

v∈Rt

wuv ≥ β
∑

v∈Vt

wuv
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Segmentation by Weighted Aggregation

• Select a representative set of nodes satisfying

• i.e., all nodes in finer level have strong affinity to nodes in coarser.

• Begin to define graph 
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u vwuv
G0

su sv

∑

v∈Rt
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∑
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Segmentation by Weighted Aggregation

• Compute interpolation weights between coarse and fine levels

17

u vwuv
G0

su sv
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Segmentation by Weighted Aggregation

• Compute interpolation weights between coarse and fine levels

• Accumulate statistics at the coarse level

18

u vwuv
G0

su sv

G1

puU =
wuU∑

V ∈Vt+1 wuV

U V

sU =
∑

u∈Vt

puUsu∑
v∈Vt pvU

sU sV

puU



©  Jason Corso         UCLA  LONI/CCB and CIVS

Segmentation by Weighted Aggregation

• Interpolate affinity from finer levels

19

u vwuv
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Segmentation by Weighted Aggregation

• Interpolate affinity from finer levels

• Use coarse affinity to modulate the interpolated affinity

20

u vwuv
G0

su sv

G1 U V
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Segmentation by Weighted Aggregation

• Repeat ...

21
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Segmentation by Weighted Aggregation

Incorporating Model-Aware Affinities

• Alter the way coarse affinities are modulated.

• Currently

• Change to

• Associate the most-likely class with each node: 

22

WUV = ŵUV exp (−D(sU , sV ; θ)) .

WUV = ŵUV P (XUV |sU , sV ) .

c∗U = arg max
c∈C

P (sU |c) .
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Example of the Segmentation Pyramid

23
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Extracting Information from the Hierarchy

The Problem:

• Gives hierarchy, need final answer.

• Original SWA suggests saliency.

• Model information provides more 
information for extraction.

Current Model-Based Extraction

• Compute class for each voxel for 
each level in the pyramid.

• Use interpolation weights.

• Accumulate class membership.

• Assign class the voxel was for most 
of the levels.

24
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Extracting Information from the Hierarchy

Energy Based Methods -- Saliency Only

• Treat hierarchy as an input datum to a minimizer.

• Define a set of level variables                      over voxel lattice.

• A final segmentation is induced by an instance.

• Can be minimized various techniques

• Formulate as Gibbs Field and use simulated annealing.

• Use popular min-cut/max-flow graph cuts method.

25

{lv}, v ∈ V

Hs({l}) = α1

∑

{i}

Γ(v(li)
i )− α2
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“External” Potential Pair Potential
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Extracting Information from the Hierarchy

Energy Based Methods -- Model-Based

• Models provide stronger information for extraction.

• Define a set of model variables                       over voxel lattice.

• Bayesian estimate of model likelihood over hierarchy:

•              is level evidence, computed by entropy of likelihood dist:

26

{mv}, v ∈ V

P (mi, ŝi) =
∑

t={0,...,T}

P (ŝi,mi, t)

=
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i
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−κ

∑
m∈M P (s

v(t)
i

|m) ln P (s
v(t)

i
|m)

)

∑
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(
−κ

∑
m∈M P (s

v(z)
i

|m) ln P (s
v(z)
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|m)
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Extracting Information from the Hierarchy

Energy Based Methods -- Model-Based

• Define a similar Potts-type energy model:

• Use energy minimization or stochastic optimization techniques

• Min-flow/max-cut methods.

• Simulated annealing on Gibbs field:

• Swendseng-Wang cuts similar to Barbu and Zhu.

27

Hm(M) = −α1

∑

{i}

P (mi, ŝi)− α2

∑

<i,j>

1 (mi = mj)

ΠM (M) =
1
Z

exp
(
−τH({l})

)
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Extracting Information from the Hierarchy

28

Keys to making these methods more robust and efficient.

Activate Top-Down Generative Models

 Treat the hierarchy as a set of model “proposals.”

 Becomes plausible to use global object properties (e.g., shape).

 Towards a comprehensive medical image parsing framework.

Integrate Top-Down Generative Models

 Drive hierarchical agglomeration by the top-down models.

 Need to define a new multiscale generative model incorporating

  appearance and shape properties.

 New learning algorithms for the models and agglomeration.
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Application to Brain Tumor Segmentation

• Dataset of 20 glioblastoma multiforme patients.

• 3D, 256x256x25.

• Images Pre-processed:

• noise removal

• skull removal

• spatial registration

• intensity standardization.

• Use 4 modalities

• T1, T1 w/contrast, Flair, and T2.

• Expert annotated.

• Data graciously provided by 
    Dr. Cloughesy of UCLA Henry E.
    Singleton Brain Cancer Research Program 
    and preprocessed by Shishir Dube using FSL tools.

29
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On the Dimensionality of Enhancing Brain Tumor Appearance in
Multimodal MR Images

Jason J. Corso PhD
Medical Imaging Informatics, University of California, Los Angeles, CA 90024

Abstract

Medical data presents complex high dimensional sig-
nals to the informatician. Understanding this data is
paramount to achieving robustness and efficiency in the
solution to many medical informatics problems. In this
paper, we perform a statistical analysis of the appear-
ance of brain tumor and edema. A maximum likeli-
hood and minimum description length methodology is
adopted using mixture models to capture the distribu-
tions. The data consists of 30 manually contoured en-
hancing brain tumor studies analyzed both in single
modalities and jointly in four modalities.

1 Introduction

Understanding the data is paramount to achieving ro-
bustness and efficiency in the solution to many med-
ical informatics problems. Even though medical data
is typically constrained due to the domain, be it nat-
ural language reports, imaging studies, intra-operative
video recordings, or doctor-patient queries, it can be
very complex and sampled from some unknown high-
dimensional, qualitative or quantitative space. Study-
ing the underlying statistics of this data is important not
only in its own right, but also because of the potential
benefits to medical informatics. For example, a typical
magnetic resonance image volume of the brain for tu-
mor diagnosis is 256 × 256 pixels per 25 slices giving
a huge space (R1638400) of possible images. Clearly,
as in natural images [1], this space is highly structured
and one can study an informative subspace. Learning
this structure and modeling the informative subspaces
would inform solutions to many issues in medical infor-
matics: reduction in storage demand in large databases,
reduction in bandwidth demands of network transmis-
sion, and more powerful statisical inference in segmen-
tation, retrieval, and others.

To that end, we present a statistical analysis of the ap-
pearance of enhancing brain tumor (glioblastoma mul-
tiforme) in multimodal magnetic resonance images.
Brain tumor demonstrates a complicated distribution
of intensities across multiple modalities [2]. In Fig-
ure 1, we show some example slices of tumor and

Figure 1: Example slices for brain tumor (left-column)
and edema (right-column).

edema (swelling). Multiple modalities are necessary to
perform a full analysis of the imaging study: the T1
modality with a contrast agent (referred to as T1 Post)
is typically used to discriminate enhancing tumor re-
gions from normal brain, and T2 or FLAIR modality is
used for the edema region.

In comparison to the large corpus of literature for
brain and brain tumor segmentation, there are relatively
few papers that explicitly study the underlying statis-
tics. First, we note three papers that model normal
brain tissue in MR because they are relevant. Wells
et al. [3] propose a mixture of Gaussians over all the
tissue classes with one component per class. Estima-
tion of the bias field is integration into the Expectation-
Maximization based algorithm for estimating the tissue
classes. The work by Gering et al. [4] uses a multi-layer
Markov random field to model normal brain tissue that
incorporates voxel intensities, spatial (local and global)
coherence and user input. Fischl et al. [5] use a single
Gaussian to model the intensity distribution for each of
37 different classes of tissue in the brain. Coupled with
statistical atlases and spatial coherence models, these
simple class models segment normal tissue well. Mov-
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Model-Aware Affinity and Class Prior

• For model-aware affinity, use class-dependent weighted distance:

• Coefficients          are set based on expert, domain knowledge.

• Feature statistic is simply average intensity.

• The class prior term

• encodes obvious hard constraints (e.g. tumor cannot be next to non-data),

• remaining set to uniform. 
30

P (Xuv|su, sv, cu, cv) = exp
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Fig. 5. Class intensity histograms in each channel independently.

D. Model-Aware Affinity Definition

For the model-aware affinity term (5), we use a class
dependent weighted distance:

P (Xuv|su, sv,mu,mv) = exp

(
−

M∑

c=1

θc
mumv

∣∣sc
u − sc

v

∣∣
)

,

(17)

where superscript c indicates vector element at index c (the
channel c). The class dependent coefficients are set manually
using expert domain knowledge. They are presented in Table I
(we abbreviate non-data, ND). For a given class-pair, the
modalities that do not present any relevant phenomena are
set to zero and the remaining are set uniformly according
to the principle of maximum entropy. For example, edema is
detectable in the FLAIR or T2 channel, and thus at the Brain–
Edema boundary, only the FLAIR and T2 channels are used.
We will experiment with techniques to automatically compute
the coefficients in future work.

Note that the coefficients are symmetric (i.e., equal for
Brain, Tumor and Tumor, Brain), and we have included only
those pairs not excluded by the hard constraints discussed
above. The sole feature statistic that we accumulate for each
node in the graph (SWA step 3c) is the average intensity. The
feature statistics, model choice and model-aware affinity form
is specific to our problem; many other choices could also be
made in this and other domains for these functions.

!!!!!!!!cu, cv

m T1 T1CE FLAIR T2

ND, Brain 1/4 1/4 1/4 1/4
Brain, Brain 1/4 1/4 1/4 1/4
Brain, Tumor 0 1 0 0
Tumor, Tumor 0 1 0 0
Brain, Edema 0 0 1/2 1/2
Tumor, Edema 0 1/2 1/4 1/4
Edema, Edema 0 0 1/2 1/2

TABLE I
COEFFICIENTS USED IN MODEL-AWARE AFFINITY CALCULATION. ROWS

ARE (SYMMETRIC) CLASS PAIRS AND COLUMNS ARE MODALITIES.

E. Implementation and Computational Efficiency

The multilevel approach based on the segmentation by
weighted aggregation algorithm is linear in the number of
input pixels (

∣∣V0
∣∣) [10]. With the addition of the Bayesian

model-aware affinity calculation a multiplicative factor in
the number of models squared is imposed. This number is
typically small, four in this case, and in our experience has
not greatly affected the computational efficiency.

However, the memory requirement of the multilevel algo-
rithm is great. The burden is not in the graph nodes, which will
typically number O(2 ∗ |V|) since each coarsening procedure
cuts the number of nodes in half, roughly. Instead, the cost
is maintaining the soft assignment during the agglomeration
is huge, even in the case of a sparse initial graph. Sharon et
al. [11] give suggestions for dealin with such memory cost.
In our implementation, we rely on an out-of-core memory
buffer to store the node relationships at each layer in the graph
hierarchy.

The algorithm is implemented in pure Java (v1.5) with no
native bindings. On a typical image volume of size 256×256×
24, the entire volume is completely segmented and classified
in less than 1 minute using a 3Ghz P4 linux machine with a
heap size of 1.5GB and less than 2 minutes using a 1.67Ghz
PowerPC Mac OS X laptop with a heap size of 1.5GB. These
times are orders of magnitude faster than the current state of
the art in medical image segmentation, specifically brain tumor
segmentation. For example, the execution time given in [2] is
about 90 minutes on a 2Ghz Xeon machine.

F. Results

In this section, we show some results, both qualitative and
quantitative, from the experiments. For space reasons, in most
cases we show a single, indicative slice from the volume. In
the classification figures, we use green to represent the tumor
label and red to represent edema. The colors used to depict
different segments in the hierarchy are arbitrary.

1) Hierarchy Examples: Figure 6 shows an example seg-
mentation hierarchy overlayed on the T1 with contrast image.
In this typical example, we can see that even at finer levels
(4 and 5), the agglomeration process begins to capture the
subregions of the enhancing and necrotic tumor tissues. At
level 6, the entire necrotic region in the tumor is segmented,
and then the complete tumor is grouped at level 7.
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Class Likelihood Model

• Each class is modeled with a 
Gaussian mixture model.

• Likelihood is computed directly 
against this model.

• For some structures more node 
statistics must be used:

• Shape moments

• Surface curvature

• Location

• Relational 

31
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D. Model-Aware Affinity Definition

For the model-aware affinity term (5), we use a class
dependent weighted distance:

P (Xuv|su, sv,mu,mv) = exp

(
−

M∑
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θc
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∣∣sc
u − sc

v
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)

,

(17)

where superscript c indicates vector element at index c (the
channel c). The class dependent coefficients are set manually
using expert domain knowledge. They are presented in Table I
(we abbreviate non-data, ND). For a given class-pair, the
modalities that do not present any relevant phenomena are
set to zero and the remaining are set uniformly according
to the principle of maximum entropy. For example, edema is
detectable in the FLAIR or T2 channel, and thus at the Brain–
Edema boundary, only the FLAIR and T2 channels are used.
We will experiment with techniques to automatically compute
the coefficients in future work.

Note that the coefficients are symmetric (i.e., equal for
Brain, Tumor and Tumor, Brain), and we have included only
those pairs not excluded by the hard constraints discussed
above. The sole feature statistic that we accumulate for each
node in the graph (SWA step 3c) is the average intensity. The
feature statistics, model choice and model-aware affinity form
is specific to our problem; many other choices could also be
made in this and other domains for these functions.

!!!!!!!!cu, cv

m T1 T1CE FLAIR T2

ND, Brain 1/4 1/4 1/4 1/4
Brain, Brain 1/4 1/4 1/4 1/4
Brain, Tumor 0 1 0 0
Tumor, Tumor 0 1 0 0
Brain, Edema 0 0 1/2 1/2
Tumor, Edema 0 1/2 1/4 1/4
Edema, Edema 0 0 1/2 1/2

TABLE I
COEFFICIENTS USED IN MODEL-AWARE AFFINITY CALCULATION. ROWS

ARE (SYMMETRIC) CLASS PAIRS AND COLUMNS ARE MODALITIES.

E. Implementation and Computational Efficiency

The multilevel approach based on the segmentation by
weighted aggregation algorithm is linear in the number of
input pixels (

∣∣V0
∣∣) [10]. With the addition of the Bayesian

model-aware affinity calculation a multiplicative factor in
the number of models squared is imposed. This number is
typically small, four in this case, and in our experience has
not greatly affected the computational efficiency.

However, the memory requirement of the multilevel algo-
rithm is great. The burden is not in the graph nodes, which will
typically number O(2 ∗ |V|) since each coarsening procedure
cuts the number of nodes in half, roughly. Instead, the cost
is maintaining the soft assignment during the agglomeration
is huge, even in the case of a sparse initial graph. Sharon et
al. [11] give suggestions for dealin with such memory cost.
In our implementation, we rely on an out-of-core memory
buffer to store the node relationships at each layer in the graph
hierarchy.

The algorithm is implemented in pure Java (v1.5) with no
native bindings. On a typical image volume of size 256×256×
24, the entire volume is completely segmented and classified
in less than 1 minute using a 3Ghz P4 linux machine with a
heap size of 1.5GB and less than 2 minutes using a 1.67Ghz
PowerPC Mac OS X laptop with a heap size of 1.5GB. These
times are orders of magnitude faster than the current state of
the art in medical image segmentation, specifically brain tumor
segmentation. For example, the execution time given in [2] is
about 90 minutes on a 2Ghz Xeon machine.

F. Results

In this section, we show some results, both qualitative and
quantitative, from the experiments. For space reasons, in most
cases we show a single, indicative slice from the volume. In
the classification figures, we use green to represent the tumor
label and red to represent edema. The colors used to depict
different segments in the hierarchy are arbitrary.

1) Hierarchy Examples: Figure 6 shows an example seg-
mentation hierarchy overlayed on the T1 with contrast image.
In this typical example, we can see that even at finer levels
(4 and 5), the agglomeration process begins to capture the
subregions of the enhancing and necrotic tumor tissues. At
level 6, the entire necrotic region in the tumor is segmented,
and then the complete tumor is grouped at level 7.
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Example of the Segmentation Pyramid
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Example of the Segmentation Pyramid

33

4 5 6

7 8 9

10 11 12

Caudate

Putamen

Ventricle

Can see the relevant structures emerging.
Preliminary results from sub-cortical project (began Sept. 2006).
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Example of the Segmentation Pyramid
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Fig. 6. Example of tumor detection and segmentation overlayed on T1 with
contrast channel. A single slice from the 3D volume is shown at various levels
in the hierarchy from fine (top row) to coarse (bottom row).

Fig. 7. Class labels overlayed on a slice layer. T is tumor and E is edema.

We see that the edema, in contrast, is never grouped into one
segment before joining with the tumor. In Figure 7, we show
a more drastic example of this phenomenon on a different
image. This is a good example of the need for robust extraction
routines, the results of which are shown in the bottom right
part of the figure.

In Figure 8, we show another example and include all
four image channels to exemplify the complex multichannel
presentation fo the GBM tumor. In this case, there is no good
distinction between the necrotic region and the enhancing
region of the tumor, but the algorithm is able to correctly
segment the tumor. In the right column of the figure, we show
the classification for this slice. The “single voxel” example is
the classification result of independently applying Bayes rule
to each voxel in the original image using the same models as
in the multilevel algorithm. It’s clear that even with the strong
mixture models, the independent voxel classification rule is not
robust to deviations in an individual image. We show further
quantitative comparisons later in this section. Notice that even
the multilevel algorithm has classified a spurrious satellite
lesion in near the ventricle. This error has occurred because of

Results on Training Set
Tumor Edema

Algorithm Jac Prec Rec Jac Prec Rec
Single Voxel Classifier 42% 48% 85% 43% 49% 78%

Saliency-Based Extractor 44% 51% 64% 47% 55% 76%
Model-Based Extractor 62% 75% 81% 54% 66% 72%

Results on Testing Set
Tumor Edema

Algorithm Jac Prec Rec Jac Prec Rec
Single Voxel Classifier 49% 55% 81% 56% 66% 76%

Saliency-Based Extractor 48% 61% 63% 56% 66% 71%
Model-Based Extractor 66% 80% 79% 61% 78% 71%

TABLE II
VOLUME OVERLAP RESULTS (MEAN SCORES).

the anomalous enhancement in the T1 with contrasst channel
in the ventricle.

2) Quantitative Results: In Table II, we show the volume
overlap results comparing the multilevel segmentation methods
and the single voxel classifier. The single voxel classifier uses
the same learned models and applies a Bayes classification rule
to each voxel independently. The multilevel algorithm using
the model-aware affinity is used on the second two rows. We
show the average Jaccard score, the precision, and the recall
over all studies in each set. Let T be the true positive, Fp be the
false positive, and Fn be the false negative. The Jaccard score
is T/(T+Fp+Fn). The precision is T/(T+Fn), and the recall
is T/(T + Fp). From the scores, we see that the multilevel
methods greatly outperform the independent voxel classifier,
and the model-based extractor outperforms the saliency-based
extractor. It’s also evident that the generative models being
used generalize to the testing set; in fact, the scores are slightly
better on the testing set than the training set. The two sets were
chosen arbitrarily, and there are two very difficult cases in the
training set whose statistics differ from the rest of the dataset.
We also show a comparison of these three method in Figure 9
for 11 slices of a single image volume. This figure provides
a visual example of the comparative properties of the three
methods.

In Table III, we show the volumetric estimates for all twenty
studies in the dataset. These results are presented in metric
space, but have an implicit error due to the gross anisotropy
of the volumes we are using. In Table IV, we present two
measurements of the error in the surface estimate of the extract
tumor and edema regions. The “mean” column contains the
average distance (Euclidean, in metric space) from the voxels
on the extracted surface to the nearest voxel on the ground
truth surface. Likewise, the “median” column contains the
median distance. The results in both of these tables are based
on the multilevel segmentation algorithm using the model-
based extractor.

In most cases, the median distance is 0 indicating that the
majority of the voxels on the automatically extracted surface
exactly lie on the ground truth surface. However, it’s clear
from the scores in the mean column and manual inspection
that there are some examples with spurrious false positives.
These are cases showing atypical intensity statistics similar to
the example shown in Figure 8. Thus, it is evident that the
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Fig. 8. Example hierarchy on image TE01 from the test set. The top row is comprised of the following channels: T1, T1 with contrast, FLAIR, and T2.

Tumor Edema
Study ID Truth Auto Truth Auto

TR01 93335 79894 138972 151524
TR02 17344 12516 20709 38145
TR03 71211 30769 122168 188732
TR04 798 1552 10143 11730
TR05 25411 34776 122829 118247
TR06 7643 13826 10768 16470
TR07 31829 34699 34733 38670
TR08 24594 26570 134487 162264
TR09 64486 79718 253682 268981
TR10 220243 227251 90120 36970
TE01 24851 38817 262421 213046
TE02 54352 51054 171869 153000
TE03 46651 41242 65919 70784
TE04 10499 8177 81740 74495
TE05 46783 57454 101198 84437
TE06 41395 39328 37355 29709
TE07 36826 24079 72625 36251
TE08 52256 39348 140799 146390
TE09 16503 19989 220270 241509
TE10 95422 92311 183315 186080

TABLE III
METRIC VOLUME ESTIMATION RESULTS (UNITS ARE MM3).

limitation of the i.i.d. generative models has been reached in
these cases. The results would certainly be improved by more
complex generative models incorporating shape and texture
information; yet, the complex nature of the GBM tumor make
it difficult to integrate such information.

3) Improvement With Model-Aware Affinity: Intuitively, the
capability to use refined affinity functions depending on the

Tumor Edema
Study ID Mean Median Mean Median

TR01 1.23 0 1.01 0
TR02 7.73 0 76.40 97.68
TR03 3.71 1.8 3.03 0
TR04 5.11 0.86 1.95 0
TR05 1.56 0 0.56 0
TR06 7.63 1.22 13.60 6.5
TR07 10.28 0 7.02 0
TR08 1.17 0 1.12 0
TR09 4.11 0 0.71 0
TR10 0.68 0 5.57 1.72

TE01 29.97 0.78 2.52 0
TE02 1.56 0 2.49 0
TE03 1.12 0 0.54 0
TE04 0.39 0 1.24 0
TE05 1.02 0 0.77 0
TE06 0.74 0 19.69 26.78
TE07 20.23 2.32 10.25 1.83
TE08 2.23 0 1.63 0
TE09 2.14 0 2.04 0
TE10 4.54 0 3.36 0

TABLE IV
METRIC SURFACE ERROR RESULTS (UNITS ARE MM).

model classes should result in a more accurate segmentation
with difficult regions being extracted when they would other-
wise be missed. Figure 10 shows a comparison between using
(rows 1 and 2) and not using (row 3) model-aware affinities.
We see that with our extension, the segmentation algorithm is
able to more accurately delineate the complex edema structure.
To quantify the improvement, we have computed the Jaccard,

mm3
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Fig. 8. Example hierarchy on image TE01 from the test set. The top row is comprised of the following channels: T1, T1 with contrast, FLAIR, and T2.

Tumor Edema
Study ID Truth Auto Truth Auto

TR01 93335 79894 138972 151524
TR02 17344 12516 20709 38145
TR03 71211 30769 122168 188732
TR04 798 1552 10143 11730
TR05 25411 34776 122829 118247
TR06 7643 13826 10768 16470
TR07 31829 34699 34733 38670
TR08 24594 26570 134487 162264
TR09 64486 79718 253682 268981
TR10 220243 227251 90120 36970
TE01 24851 38817 262421 213046
TE02 54352 51054 171869 153000
TE03 46651 41242 65919 70784
TE04 10499 8177 81740 74495
TE05 46783 57454 101198 84437
TE06 41395 39328 37355 29709
TE07 36826 24079 72625 36251
TE08 52256 39348 140799 146390
TE09 16503 19989 220270 241509
TE10 95422 92311 183315 186080

TABLE III
METRIC VOLUME ESTIMATION RESULTS (UNITS ARE MM3).

limitation of the i.i.d. generative models has been reached in
these cases. The results would certainly be improved by more
complex generative models incorporating shape and texture
information; yet, the complex nature of the GBM tumor make
it difficult to integrate such information.

3) Improvement With Model-Aware Affinity: Intuitively, the
capability to use refined affinity functions depending on the

Tumor Edema
Study ID Mean Median Mean Median

TR01 1.23 0 1.01 0
TR02 7.73 0 76.40 97.68
TR03 3.71 1.8 3.03 0
TR04 5.11 0.86 1.95 0
TR05 1.56 0 0.56 0
TR06 7.63 1.22 13.60 6.5
TR07 10.28 0 7.02 0
TR08 1.17 0 1.12 0
TR09 4.11 0 0.71 0
TR10 0.68 0 5.57 1.72

TE01 29.97 0.78 2.52 0
TE02 1.56 0 2.49 0
TE03 1.12 0 0.54 0
TE04 0.39 0 1.24 0
TE05 1.02 0 0.77 0
TE06 0.74 0 19.69 26.78
TE07 20.23 2.32 10.25 1.83
TE08 2.23 0 1.63 0
TE09 2.14 0 2.04 0
TE10 4.54 0 3.36 0

TABLE IV
METRIC SURFACE ERROR RESULTS (UNITS ARE MM).

model classes should result in a more accurate segmentation
with difficult regions being extracted when they would other-
wise be missed. Figure 10 shows a comparison between using
(rows 1 and 2) and not using (row 3) model-aware affinities.
We see that with our extension, the segmentation algorithm is
able to more accurately delineate the complex edema structure.
To quantify the improvement, we have computed the Jaccard,

mm



©  Jason Corso         UCLA  LONI/CCB and CIVS

Classification Comparison

38

1 2 3 4 5 6

M
an

u
al

S
in

gl
e 

V
o
x
el

S
al

ie
n
cy

M
o
d
el

s



©  Jason Corso         UCLA  LONI/CCB and CIVS

Classification Comparison

39

7 8 9 10 11
M

an
u
al

S
in

gl
e 

V
o
x
el

S
al

ie
n
cy

M
o
d
el

s



©  Jason Corso         UCLA  LONI/CCB and CIVS

Results

Comparing SWA with Model-Aware Affinities to Original SWA
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Implementation Details

• Built with Java and Swing.

• Uses ImageIO:  supports many image formats using the LONI 
medical image plugins.

• Developed new core data structures to support transparent out-
of-core data manipulation, which is often necessary when 
working with medical imaging (especially hierarchical).

• Developed with principled OO techniques:

• Polymorphic Model-Class design for “plug-and-play” affinity 
function and likelihood measurements based on specific 
application.

• Design patterns to make it easy to generate an application 
specific segmentation algorithm built with atop same core 
software. 

• Computational time:  90x60x90 volume segmented in about 2 
minutes on a 2Ghz PowerPC G5.

• Extraction time depends on method.

41
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Results - Tool for Interactive Analysis Using Models
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Conclusions

• Main contribution:

• Classes as hidden variables for bridging graph-based affinities and model-
based techniques.

• Incorporated into the SWA algorithm.

• Computational time:  90x60x90 volume segmented & classified in 
about 2 minutes on a PowerPC G5 (in Java).

• Software contribution:

• A complete system for experimenting with the Bayesian computational 
methods, including learning, segmentation, visualization, and analysis.

• Future:

• Better models with more feature statistics,

• Learning the model-aware affinity class dependent parameters,

• Leverage the efficiency of graph-based bottom-up methods with the 
comprehensive and optimality of top-down generative models.

• Thanks for listening.
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Research Overview

• Concepts

• Automatic Knowledge discovery

• Domain expert knowledge

• Models

• Bayesian methodology (generative modeling)

• Manual creation

• Model discovery (e.g. learning grammars, manifold learning)

• Inference

• Estimate the models (find instances of the concepts) in data

• Efficient and robust

• Integrate bottom-up, feed-forward with top-down models

• Applications

• Medical Informatics

• Surgical planning

• Various related biomedical application (e.g. tissue microarrays)

45

Statistical
Learning


