

Seminar in Medical Image Segmentation

CSE 702, University at Buffalo SUNY

Syllabus for Fall 2007

Last updated: 10 Sept 2007

Instructor: Jason Corso (jcorso@cse)

Course Webpage: http://www.cse.buffalo.edu/~jcorso/t/2007fall_smis.

Syllabus in pdf: http://www.cse.buffalo.edu/~jcorso/t/2007fall_smis/syllabus.pdf.

Downloadable course material can be found on the UB Learns site.

Course Overview: The seminar will survey the recent literature in medical image segmentation. We treat the definition of segmentation loosely and include the related problems of detection, segmentation, and labeling. Topics include knowledge-based heuristics, voxel-based statistical classification, deformable models and level-sets, hierarchical modeling, medial-axis shape representations, graph-cuts, and learning-based approaches. We will focus on constructing a complete taxonomy of approaches in this area. Students will be required to make one paper presentation and do a project to explore a method, which can be new research, in detail. Familiarity with vision and medical image computing is suggested but not required.

Course Goals:

1. Breadth Goal: Each student will gain an understanding of the breadth of methods used in medical image segmentation.
2. Depth Goal: Each student will gain a detailed understanding of one particular approach.

Textbooks: Required material distributed by instructor or found on the UB Libraries electronical journal archive.

Meeting Times: Time is Wednesday at 3:30-6PM.

Location: Bell Hall 224

Office Hours: T1-3 and R1-2

Grading: Letter grading distributed as follows:

- Discussion (25%)
- Paper Presentation (25%)
- Project (50%)

Programming Language: Depends on student chosen project (generally, C++).

Calendar

	Week	Topics and Readings	Presenter
1	8/29	Introduction. Definition of problems and difficulties in medical image segmentation.	

2	9/5	Discussion of proposed taxonomy and review of some classical approaches. Primary Readings: (Bezdek <i>et al.</i> , 1993; Pham <i>et al.</i> , 2000) Secondary Readings: (Van Ginneken <i>et al.</i> , 2001; McInerney <i>et al.</i> , 1996; Clarke <i>et al.</i> , 1995; Noble & Boukerroui, 2006; Engle Jr., 1992)	
---	-----	---	--

Part I: Paper Reading and Presentations

Each week one student is responsible for preparing a 30 minute talk on the primary paper for that week. The class-time is split up into three parts. For the first 45 minutes, the instructor will give background material to the class and lead the discussion during which the class will define a set of questions to ask the presenter. During this time, the presenter for the week is not present. Following this initial discussion, the presenter will give his or her talk (30 minutes). For the remaining time (roughly an hour), the class will query the presenter with the prepared questions followed by a general discussion. (This process follows the Study Groups at the IPMI conference.)

3	9/12	Statistical Classification via Expectation-Maximization Primary Reading: (Leemput <i>et al.</i> , 2003) Secondary Readings: (Dempster <i>et al.</i> , 1977; Dellaert, 2002)	V. Singh
4	9/19	Statistical Classification in a Hierarchical Model Primary Reading: (Blekas <i>et al.</i> , 2005; Pohl <i>et al.</i> , 2007) Secondary Readings: (Dempster <i>et al.</i> , 1977; Dellaert, 2002)	C. Hoeflich (Blekas) C. Kao (Pohl)
5	9/26	Markov Random Fields Modeling for Medical Image Segmentation Primary Readings: (Held <i>et al.</i> , 1997) Secondary Readings: (Winkler, 1995, Ch. 3) (Zhang <i>et al.</i> , 2001; Rajapakse <i>et al.</i> , 1997)	R. Alomari
6	10/3	Graph-Shifts Segmentation: Dynamic Hierarchical Energy Minimization Primary Readings: (Corso <i>et al.</i> , 2007b; Corso <i>et al.</i> , 2007a) Secondary Readings: (Lafferty <i>et al.</i> , 2001; Kumar & Hebert, 2003; Tu, 2005)	A. Chen
7	10/10	Bayesian Segmentation by Weighted Aggregation Primary Readings: (Corso <i>et al.</i> , n.d.; Akselrod-Ballin <i>et al.</i> , 2006) Secondary Readings: (Corso <i>et al.</i> , 2006; Sharon <i>et al.</i> , 2000; Sharon <i>et al.</i> , 2001)	I. Nwogu
8	10/17	Hybrid Generative-Discriminative Models and 3D Region Competition Primary Readings: (Tu <i>et al.</i> , 2007) Secondary Readings: (Zhu & Yuille, 1996; Tu, 2005)	M. Yaqub
9	10/24	Minimum Description Length Active Shape Models Primary Readings: (Heimann <i>et al.</i> , 2005) Secondary Readings: (Cootes <i>et al.</i> , 1995; Cootes <i>et al.</i> , 2001; Davies <i>et al.</i> , 2002)	P. Noel
10	10/31	Class Cancelled For MICCAI 2007	
11	11/7	Deformable Medial-Axis Shape-Based Segmentation Primary Readings: (Pizer <i>et al.</i> , 2003) Secondary Readings: (Joshi <i>et al.</i> , 2001; McInerney <i>et al.</i> , 1996)	J. Evanko
12	11/14	Shape Regression Machine and Image-Based Regression Primary Readings: (Zhou & Comaniciu, 2007) Secondary Readings: (Zhou <i>et al.</i> , 2005; Viola & Jones, 2001; Freund & Schapire, 1997)	R. Rodrigues

Part II: Project Presentations

Each student doing a project will give a 20-minute conference style presentation of the work.

13	11/21	Class Cancelled for Thanksgiving Holiday	
14	11/28		
15	12/5		

References

Akselrod-Ballin, A., Galun, M., Gomori, M. J., Filippi, M., Valsasina, P., Basri, R., & Brandt, A. 2006. Integrated Segmentation and Classification Approach Applied to Multiple Sclerosis Analysis. *In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*.

Bezdek, J.C., Hall, L.O., & Clarke, L.P. 1993. Review of MR Image Segmentation Techniques Using Pattern Recognition. *Medical Physics*, **20**(4), 1033–1048.

Blekas, K., Galatsanos, N. P., Likas, A., & Lagaris, I. E. 2005. Mixture model analysis of DNA microarray images. *Medical Imaging, IEEE Transactions on*, **24**(7), 901–909.

Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Thatcher, R. W., & Silbiger, M. L. 1995. MRI Segmentation: Methods and Applications. *Magnetic Resonance Imaging*, **13**(3), 343–368.

Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. 1995. Active shape models—their training and application. *Comput. Vis. Image Underst.*, **61**(1), 38–59.

Cootes, T.F., Edwards, G.J., & Taylor, C.J. 2001. Active appearance models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **23**(6), 681–685.

Corso, J. J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., & Yuille, A. Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification. *IEEE Transactions on Medical Imaging*. (in press).

Corso, J. J., Sharon, E., & Yuille, A. 2006. Multilevel Segmentation and Integrated Bayesian Model Classification with an Application to Brain Tumor Segmentation. *Pages 790–798 of: Medical Image Computing and Computer Assisted Intervention*, vol. 2.

Corso, J. J., Yuille, A. L., Sicotte, N. L., & Toga, A. W. 2007a. Detection and Segmentation of Pathological Structures by the Extended Graph-Shifts Algorithm. *In: Proceedings of Medical Image Computing and Computer Aided Intervention (MICCAI)*.

Corso, J. J., Tu, Z., Yuille, A., & Toga, A. W. 2007b. Segmentation of Sub-Cortical Structures by the Graph-Shifts Algorithm. *Pages 183–197 of: Karssemeijer, N., & Lelieveldt, B. (eds), Proceedings of Information Processing in Medical Imaging*.

Davies, R. H., Twining, C. J., Cootes, T.F., Waterton, J. C., & Taylor, C.J. 2002. A Minimum Description Length Approach to Statistical Shape Modeling. *IEEE Transactions on Medical Imaging*, **21**(5), 525–537.

Dellaert, F. 2002. *The Expectation Maximization Algorithm*. Tech. rept. 20. Georgia Institute of Technology.

Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977. Maximum Likelihood From Incomplete Data via the EM Algorithm. *Journal of the Royal Statistical Society – Series B*, **39**(1), 1–38.

Engle Jr., R. 1992. Attempts to User Computers as Diagnostic Aids in Medical Decision Making: A Thirty-Year Experience. *Perspectives in Biology and Medicine*, **35**, 207–219.

Freund, Y., & Schapire, R. E. 1997. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. *Journal of Computer and System Science*, **55**(1), 119–139.

Heimann, T., Wolf, I., Williams, T. G., & Meinzer, H.-P. 2005. 3D Active Shape Models Using Gradient Descent Optimization of Description Length. *Pages 566–577 of: Proceedings of Information Processing in Medical Imaging*.

Held, K., Kops, E. R., Krause, B. J., Wells, W. M., III., Kikinis, R., & Muller-Gartner, H. W. 1997. Markov random field segmentation of brain MR images. *Medical Imaging, IEEE Transactions on*, **16**(6), 878–886.

Joshi, S., Pizer, S. M., Fletcher, P. T., Thall, A., & Tracton, G. 2001. Multi-scale 3D Deformable Model Segmentation Based on Medical Description. *Pages 64–77 of: Information Processing in Medical Imaging (IPMI 2001)*.

Kumar, S., & Hebert, M. 2003. Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification. *In: International Conference on Computer Vision*.

Lafferty, J., McCallum, A., & Pereira, F. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. *In: Proceedings of International Conference on Machine Learning*.

Leemput, K. Van, Maes, F., Vandermeulen, D., & Suetens, P. 2003. A Unifying Framework for Partial Volume Segmentation of Brain MR Images. *IEEE Transactions on Medical Imaging*, **22**(1), 105–119.

McInerney, T., , & Terzopoulos, D. 1996. Deformable Models in Medical Image Analysis: A Survey. *Medical Image Analysis*, **1**(2), 91–108.

Noble, J. A., & Boukerroui, D. 2006. Ultrasound Image Segmentation: A Survey. *Medical Imaging, IEEE Transactions on*, **25**(8), 987–1010.

Pham, D. L., Xu, C., & Prince, J. L. 2000. Current Methods in Medical Image Segmentation. *Annual Review of Biomedical Engineering*, **2**, 315–337.

Pizer, S. M., Fletcher, P. T., Joshi, S., Thall, A., Chen, J. Z., Fridman, Y., Fritsch, D. S., Gashi, A. G., Glotzer, J. M., Jiroutek, M. R., Lu, C., Muller, K. E., Tracton, G., Yushkevich, P., & Chaney, E. L. 2003. Deformable M-RepS for 3D Medical Image Segmentation. *International Journal of Computer Vision*, **55**, 85–106.

Pohl, K. M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R. W., Kikinis, R., Grimson, W. E. L., Shenton, M. E., & Wells, W. M. 2007. A Hierarchical Algorithm for MR Brain Image Parcellation. *IEEE Transactions on Medical Imaging, Special Issue on Mathematical Modeling in Biomedical Image Analysis*.

Rajapakse, J. C., Giedd, J. N., & Rapoport, J. L. 1997. Statistical Approach to Segmentation of Single-Channel Cerebral MR Images. *Medical Imaging, IEEE Transactions on*, **16**(2), 176–186.

Sharon, E., Brandt, A., & Basri, R. 2000. Fast Multiscale Image Segmentation. *Pages 70–77 of: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, vol. I.

Sharon, E., Brandt, A., & Basri, R. 2001. Segmentation and Boundary Detection Using Multiscale Intensity Measurements. *Pages 469–476 of: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*, vol. I.

Tu, Z. 2005. Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering. *In: Proceedings of International Conference on Computer Vision*.

Tu, Z., Narr, K. L., Dinov, I., Dollar, P., Thompson, P. M., & Toga, A. W. 2007. Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models. *IEEE Transactions on Medical Imaging*. (in press).

Van Ginneken, B., Ter Haar Romeny, B. M., & Viergever, M. A. 2001. Computer-Aided Diagnosis in Chest Radiography: A Survey. *Medical Imaging, IEEE Transactions on*, **20**(12), 1228–1241.

Viola, P., & Jones, M. 2001. Rapid Object Detection using a Boosted Cascade of Simple Features. *In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition*.

Winkler, G. 1995. *Image Analysis, Random Fields and Dynamic Monte Carlo Methods*. Springer.

Zhang, Y., Brady, M., & Smith, S. 2001. Segmentation of Brain MR Images Through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. *IEEE Transactions on Medical Imaging*, **20**(1), 45–57.

Zhou, S., Georgescu, B., Zhou, X. Sean, & Comaniciu, D. 2005. Image based Regression Using Boosting Method. *In: Proceedings of International Conference on Computer Vision*.

Zhou, S. K., & Comaniciu, D. 2007. Shape Regression Machine. *Pages 13–25 of: Karssemeijer, N., & Lelieveldt, B. (eds), Proceedings of Information Processing in Medical Imaging*.

Zhu, S. C., & Yuille, A. 1996. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **18**(9), 884–900.