
Syntactic Methods (Strings and Grammars)

Lecture 9

Jason Corso

SUNY at Buffalo

April 2009

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 1 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.

Examples
String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.

3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Recognition with Strings

Take a different view and consider the situation where the patterns
are represented as sequences of nominal discrete items.
Examples

String of letters in English

DNA bases in a gene sequence (AGCTTC...)

There are a number of differences in the way we need to approach the
pattern recognition in this case.

1 The characters in the string are nominal and have no obvious notion of
distance.

2 Strings need not be of the same length.
3 Long-range interdepencies often exist in strings.

Notation
Assume each discrete character is taken from an alphabet A.
Use the same vector notation for a string: x =“AGCTTC”.
Call a particularly long string text.
Call a contiguous substring of x a factor.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 2 / 1



Recognition with Strings

Key String Problems

String Matching: Given x and text, determine whether x is a factor
of text, and, if so, where it appears.

Edit Distance: Given two strings x and y, compute the minimum
number of basic operations—character insertions, delections, and
exchanges—needed to transform x into y.

String Matching with Errors: Given x and text, find the locations
in text where the “cost” or “distance” of x to any factor of text is
minimal.

String Matching with the “Don’t–Care” Symbol: This is the
same as basic string matching, but with the special symbol–∅, the
don’t care symbol–which can match any other symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 3 / 1



Recognition with Strings

Key String Problems

String Matching: Given x and text, determine whether x is a factor
of text, and, if so, where it appears.

Edit Distance: Given two strings x and y, compute the minimum
number of basic operations—character insertions, delections, and
exchanges—needed to transform x into y.

String Matching with Errors: Given x and text, find the locations
in text where the “cost” or “distance” of x to any factor of text is
minimal.

String Matching with the “Don’t–Care” Symbol: This is the
same as basic string matching, but with the special symbol–∅, the
don’t care symbol–which can match any other symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 3 / 1



Recognition with Strings

Key String Problems

String Matching: Given x and text, determine whether x is a factor
of text, and, if so, where it appears.

Edit Distance: Given two strings x and y, compute the minimum
number of basic operations—character insertions, delections, and
exchanges—needed to transform x into y.

String Matching with Errors: Given x and text, find the locations
in text where the “cost” or “distance” of x to any factor of text is
minimal.

String Matching with the “Don’t–Care” Symbol: This is the
same as basic string matching, but with the special symbol–∅, the
don’t care symbol–which can match any other symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 3 / 1



Recognition with Strings

Key String Problems

String Matching: Given x and text, determine whether x is a factor
of text, and, if so, where it appears.

Edit Distance: Given two strings x and y, compute the minimum
number of basic operations—character insertions, delections, and
exchanges—needed to transform x into y.

String Matching with Errors: Given x and text, find the locations
in text where the “cost” or “distance” of x to any factor of text is
minimal.

String Matching with the “Don’t–Care” Symbol: This is the
same as basic string matching, but with the special symbol–∅, the
don’t care symbol–which can match any other symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 3 / 1



Recognition with Strings String Matching

String Matching

The most fundamental and useful operation in string matching is
testing whether a candidate string x is a factor of text.

Assume the number of characters in text is greater than that in x:
|text| > |x| or |text| � |x|.
Define a shift s as an offset needed to align the first character of x
with the character number s + 1 in text.

The basic problem of string matching is to find whether or not there
is a valid shift, one where there is a perfect match between each
character in x and the corresponding one in text.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 4 / 1



Recognition with Strings String Matching

String Matching

The most fundamental and useful operation in string matching is
testing whether a candidate string x is a factor of text.

Assume the number of characters in text is greater than that in x:
|text| > |x| or |text| � |x|.

Define a shift s as an offset needed to align the first character of x
with the character number s + 1 in text.

The basic problem of string matching is to find whether or not there
is a valid shift, one where there is a perfect match between each
character in x and the corresponding one in text.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 4 / 1



Recognition with Strings String Matching

String Matching

The most fundamental and useful operation in string matching is
testing whether a candidate string x is a factor of text.

Assume the number of characters in text is greater than that in x:
|text| > |x| or |text| � |x|.
Define a shift s as an offset needed to align the first character of x
with the character number s + 1 in text.

The basic problem of string matching is to find whether or not there
is a valid shift, one where there is a perfect match between each
character in x and the corresponding one in text.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 4 / 1



Recognition with Strings String Matching

String Matching

The most fundamental and useful operation in string matching is
testing whether a candidate string x is a factor of text.

Assume the number of characters in text is greater than that in x:
|text| > |x| or |text| � |x|.
Define a shift s as an offset needed to align the first character of x
with the character number s + 1 in text.

The basic problem of string matching is to find whether or not there
is a valid shift, one where there is a perfect match between each
character in x and the corresponding one in text.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 4 / 1



Recognition with Strings String Matching

String Matching

The most fundamental and useful operation in string matching is
testing whether a candidate string x is a factor of text.

Assume the number of characters in text is greater than that in x:
|text| > |x| or |text| � |x|.
Define a shift s as an offset needed to align the first character of x
with the character number s + 1 in text.

The basic problem of string matching is to find whether or not there
is a valid shift, one where there is a perfect match between each
character in x and the corresponding one in text.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 4 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Naive String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
while s ≤ n − m
if x[1 . . . m] = text[s + 1 . . . s + m]
then print "pattern occurs at shift" s

s ← s + 1
return

end

Although this algorithm will compute the string match, it does so
quite inefficiently. Worst case complexity is Θ((n−m + 1)m).

The weakness comes from the fact that it does not use any
information about a potential shift s to compute the next possible
one s.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 6 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Boyer-Moore String Matching

begin initialize A, x, n ← | text |, m ← |x|
s ← 0
F(x) ← last-occurrence function
G(x) ← good-suffix function
while s ≤ n − m

j ← m
while j > 0 and x[j] = text[s + j]

j ← j − 1
if j = 0
then print "pattern occurs at shift" s

s ← s + G(0)
else s ← max[G(j), j −F(text[s + j])]

return
end

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 8 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.

It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

Two key differences in the Boyer-Moore algorithm over the Naive
algorithm are

1 At each candidate shift s, the character comparisons are done in
reverse order.

2 The increment of a new shift need not be 1.

The real power in Boyer-Moore comes from two heuristics that govern
how much the shift can be safely incremented by without missing a
valid shift.

The bad-character heuristic utilizes the rightmost character in text
that does not match the aligned character in x.

The “bad-character” can be found as efficiently as possible because
evaluation occurs from right-to-left.
It will then propose to increment the shift by an amount to align the
rightmost occurrence of the bad character in x with the bad character
identified in text. Hence, we are guaranteed that no valid shifts have
been skipped.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 9 / 1



Recognition with Strings String Matching

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 10 / 1



Recognition with Strings String Matching

The good-suffix heuristic also proposes a safe shift and works in
parallel with with the bad-character heuristic.

A suffix of x is a factor of x that contains the final character in x.

A good suffix, or matching suffix, is a set of rightmost characters in
text, at shift s that match those in x.

The good suffix is likewise found efficiently due to the right-to-left
search.

It will propose to increment the shift so as to align the next
occurrence of the good suffix in x with that identified in text.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 11 / 1



Recognition with Strings String Matching

The good-suffix heuristic also proposes a safe shift and works in
parallel with with the bad-character heuristic.

A suffix of x is a factor of x that contains the final character in x.

A good suffix, or matching suffix, is a set of rightmost characters in
text, at shift s that match those in x.

The good suffix is likewise found efficiently due to the right-to-left
search.

It will propose to increment the shift so as to align the next
occurrence of the good suffix in x with that identified in text.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 11 / 1



Recognition with Strings String Matching

The good-suffix heuristic also proposes a safe shift and works in
parallel with with the bad-character heuristic.

A suffix of x is a factor of x that contains the final character in x.

A good suffix, or matching suffix, is a set of rightmost characters in
text, at shift s that match those in x.

The good suffix is likewise found efficiently due to the right-to-left
search.

It will propose to increment the shift so as to align the next
occurrence of the good suffix in x with that identified in text.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 11 / 1



Recognition with Strings String Matching

The good-suffix heuristic also proposes a safe shift and works in
parallel with with the bad-character heuristic.

A suffix of x is a factor of x that contains the final character in x.

A good suffix, or matching suffix, is a set of rightmost characters in
text, at shift s that match those in x.

The good suffix is likewise found efficiently due to the right-to-left
search.

It will propose to increment the shift so as to align the next
occurrence of the good suffix in x with that identified in text.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 11 / 1



Recognition with Strings String Matching

The good-suffix heuristic also proposes a safe shift and works in
parallel with with the bad-character heuristic.

A suffix of x is a factor of x that contains the final character in x.

A good suffix, or matching suffix, is a set of rightmost characters in
text, at shift s that match those in x.

The good suffix is likewise found efficiently due to the right-to-left
search.

It will propose to increment the shift so as to align the next
occurrence of the good suffix in x with that identified in text.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by 
bad-character heuristic

proposed by 
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 11 / 1



Recognition with Strings String Matching

The last-occurrence function, F(x) is simply a table containing
every letter in the alphabet and the position of its rightmost
occurrence in x.

The good-suffix function, G(x) creates a table that for each suffix
gives the location of its second right-most occurrence in x.

These tables can be computed only once and can be stored offline.
They hence do not significantly affect the computational complexity
of the method.

These heuristics make the Boyer-Moore string searching algorithm one
of the most attactive string-matching algorithms on serial computers.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 12 / 1



Recognition with Strings String Matching

The last-occurrence function, F(x) is simply a table containing
every letter in the alphabet and the position of its rightmost
occurrence in x.

The good-suffix function, G(x) creates a table that for each suffix
gives the location of its second right-most occurrence in x.

These tables can be computed only once and can be stored offline.
They hence do not significantly affect the computational complexity
of the method.

These heuristics make the Boyer-Moore string searching algorithm one
of the most attactive string-matching algorithms on serial computers.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 12 / 1



Recognition with Strings String Matching

The last-occurrence function, F(x) is simply a table containing
every letter in the alphabet and the position of its rightmost
occurrence in x.

The good-suffix function, G(x) creates a table that for each suffix
gives the location of its second right-most occurrence in x.

These tables can be computed only once and can be stored offline.
They hence do not significantly affect the computational complexity
of the method.

These heuristics make the Boyer-Moore string searching algorithm one
of the most attactive string-matching algorithms on serial computers.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 12 / 1



Recognition with Strings String Matching

The last-occurrence function, F(x) is simply a table containing
every letter in the alphabet and the position of its rightmost
occurrence in x.

The good-suffix function, G(x) creates a table that for each suffix
gives the location of its second right-most occurrence in x.

These tables can be computed only once and can be stored offline.
They hence do not significantly affect the computational complexity
of the method.

These heuristics make the Boyer-Moore string searching algorithm one
of the most attactive string-matching algorithms on serial computers.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 12 / 1



Recognition with Strings String Matching with “Don’t-Care” Symbols

String Matching with Wildcards

Formally, this is the same as string-matching, with the addition that
the symbol ∅ can match anything in either x or text.

An obvious thing to do is modify the Naive algorithm and include a
special condition, but this would maintain the computational
inefficiencies of the original method.

Extending Boyer-Moore is quite a challenge...

s

c h _ p a t e r s i n _ l o n g s t rr n g

p a t t r s

/

/

/

/

_

pattern match

text

x

/ /

FIGURE 8.11. The problem of string matching with don’t care symbol is the same as that in basic string
matching except that the ∅ symbol—in either text or x—can match any character. The figure shows the only
valid shift. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.J. Corso (SUNY at Buffalo) Lecture 9 April 2009 13 / 1



Recognition with Strings String Matching with “Don’t-Care” Symbols

String Matching with Wildcards

Formally, this is the same as string-matching, with the addition that
the symbol ∅ can match anything in either x or text.

An obvious thing to do is modify the Naive algorithm and include a
special condition, but this would maintain the computational
inefficiencies of the original method.

Extending Boyer-Moore is quite a challenge...

s

c h _ p a t e r s i n _ l o n g s t rr n g

p a t t r s

/

/

/

/

_

pattern match

text

x

/ /

FIGURE 8.11. The problem of string matching with don’t care symbol is the same as that in basic string
matching except that the ∅ symbol—in either text or x—can match any character. The figure shows the only
valid shift. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.J. Corso (SUNY at Buffalo) Lecture 9 April 2009 13 / 1



Recognition with Strings String Matching with “Don’t-Care” Symbols

String Matching with Wildcards

Formally, this is the same as string-matching, with the addition that
the symbol ∅ can match anything in either x or text.

An obvious thing to do is modify the Naive algorithm and include a
special condition, but this would maintain the computational
inefficiencies of the original method.

Extending Boyer-Moore is quite a challenge...

s

c h _ p a t e r s i n _ l o n g s t rr n g

p a t t r s

/

/

/

/

_

pattern match

text

x

/ /

FIGURE 8.11. The problem of string matching with don’t care symbol is the same as that in basic string
matching except that the ∅ symbol—in either text or x—can match any character. The figure shows the only
valid shift. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.J. Corso (SUNY at Buffalo) Lecture 9 April 2009 13 / 1



Recognition with Strings Edit Distance

Edit Distance

The fundamental idea behind edit distance is based on the
nearest-neighbor algorithm.

We store a full set of strings and their associated category labels.
During classification, a test string is compared to each stored string
and a “distance” is computed. Then, we assign the category of the
string with the shortest distance.

But, how do we compute the distance between two strings?

Edit distance is a possibility, which describes how many fundamental
operations are required to transform x into y, another string.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 14 / 1



Recognition with Strings Edit Distance

Edit Distance

The fundamental idea behind edit distance is based on the
nearest-neighbor algorithm.

We store a full set of strings and their associated category labels.
During classification, a test string is compared to each stored string
and a “distance” is computed. Then, we assign the category of the
string with the shortest distance.

But, how do we compute the distance between two strings?

Edit distance is a possibility, which describes how many fundamental
operations are required to transform x into y, another string.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 14 / 1



Recognition with Strings Edit Distance

Edit Distance

The fundamental idea behind edit distance is based on the
nearest-neighbor algorithm.

We store a full set of strings and their associated category labels.
During classification, a test string is compared to each stored string
and a “distance” is computed. Then, we assign the category of the
string with the shortest distance.

But, how do we compute the distance between two strings?

Edit distance is a possibility, which describes how many fundamental
operations are required to transform x into y, another string.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 14 / 1



Recognition with Strings Edit Distance

Edit Distance

The fundamental idea behind edit distance is based on the
nearest-neighbor algorithm.

We store a full set of strings and their associated category labels.
During classification, a test string is compared to each stored string
and a “distance” is computed. Then, we assign the category of the
string with the shortest distance.

But, how do we compute the distance between two strings?

Edit distance is a possibility, which describes how many fundamental
operations are required to transform x into y, another string.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 14 / 1



Recognition with Strings Edit Distance

The fundamental operations are as follows.

1 Substitions: a character in x is replaced by the corresponding
character in y.

2 Insertions: a chracter in y is inserted into x, thereby increasing the
length of x by one character.

3 Deletions: a character in x is deleted, thereby decreasing the length
of x by one character.

4 Transpositions: two neighboring characters in x change positions.
But, this is not really a fundamental operation because we can always
encode it by two substitutions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 15 / 1



Recognition with Strings Edit Distance

The fundamental operations are as follows.

1 Substitions: a character in x is replaced by the corresponding
character in y.

2 Insertions: a chracter in y is inserted into x, thereby increasing the
length of x by one character.

3 Deletions: a character in x is deleted, thereby decreasing the length
of x by one character.

4 Transpositions: two neighboring characters in x change positions.
But, this is not really a fundamental operation because we can always
encode it by two substitutions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 15 / 1



Recognition with Strings Edit Distance

The fundamental operations are as follows.

1 Substitions: a character in x is replaced by the corresponding
character in y.

2 Insertions: a chracter in y is inserted into x, thereby increasing the
length of x by one character.

3 Deletions: a character in x is deleted, thereby decreasing the length
of x by one character.

4 Transpositions: two neighboring characters in x change positions.
But, this is not really a fundamental operation because we can always
encode it by two substitutions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 15 / 1



Recognition with Strings Edit Distance

The fundamental operations are as follows.

1 Substitions: a character in x is replaced by the corresponding
character in y.

2 Insertions: a chracter in y is inserted into x, thereby increasing the
length of x by one character.

3 Deletions: a character in x is deleted, thereby decreasing the length
of x by one character.

4 Transpositions: two neighboring characters in x change positions.
But, this is not really a fundamental operation because we can always
encode it by two substitutions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 15 / 1



Recognition with Strings Edit Distance

The basic Edit Distance algorithm builds an m× n matrix of costs and
uses it to compute the distance. Below is a graphic describing the basic
idea. For more details read section 8.5.2 on your own.

deletion:
remove letter of  x

insertion:
insert letter of  y into x 

exchange:
replace letter of  x by letter of  y

no change

e x h a u s t e d

e

x

c

u

s

e

d

x

y

source

sink

j

i

0

0 n

m

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6 7

4 3 2 2 2 2 3 4 5 6

5 4 3 3 3 3 2 3 4 5

6 5 4 4 4 4 3 3 3 4

7 6 5 5 5 5 4 4 4 3

FIGURE 8.9. The edit distance calculation for strings x and y can be illustrated in a table. Algorithm 3 begins
at source, i = 0, j = 0, and fills in the cost matrix C, column by column (shown in red), until the full edit
distance is placed at the sink, C[i = m, j = n]. The edit distance between “excused” and “exhausted” is
thus 3. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.J. Corso (SUNY at Buffalo) Lecture 9 April 2009 16 / 1



Recognition with Strings String Matching with Errors

String Matching with Errors

Problem: Given a pattern x and text, find the shift for which the edit
distance between x and a factor of text is minimum.

Proceed in a similar manner to the Edit Distance algorithm, but need
to compute a second matrix of minimum edit values across the rows
and columns.

s = 11

h e _ p a c e _ t r i c t u r e s _ i n _ t

s t r u t r

sl d

c u e

character mismatch

best pattern match:
one character mismatch
edit distance = 1

FIGURE 8.10. The string-matching-with-errors problem is to find the shift s for which
the edit distance between x and an aligned factor of text is minimum. In this illustration,
the minimum edit distance is 1, corresponding to the character exchange u → i, and
the shift s = 11 is the location. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 17 / 1



Recognition with Strings String Matchup Summary

String Matching Round-Up

We’ve covered the basics of string matching.

How does these methods relate to the temporal ones we saw last
week?

While learning has found general use in pattern recognition, its
application in basic string matching has been quite limited.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 18 / 1



Grammatical Methods

Grammatical Methods

The earlier discussion on string matching paid no attention to any
models that might have underlied the creation of the sequence of
characters in the string.

In the case of grammatical methods, we are concerned with the set of
rules that were used to generate the strings.

In this case, the structure of the strings is fundamental. And, the
structure is often hierarchical.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 19 / 1



Grammatical Methods

Grammatical Methods

The earlier discussion on string matching paid no attention to any
models that might have underlied the creation of the sequence of
characters in the string.

In the case of grammatical methods, we are concerned with the set of
rules that were used to generate the strings.

In this case, the structure of the strings is fundamental. And, the
structure is often hierarchical.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 19 / 1



Grammatical Methods

Grammatical Methods

The earlier discussion on string matching paid no attention to any
models that might have underlied the creation of the sequence of
characters in the string.

In the case of grammatical methods, we are concerned with the set of
rules that were used to generate the strings.

In this case, the structure of the strings is fundamental. And, the
structure is often hierarchical.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 19 / 1



Grammatical Methods

<sentence>

<noun phrase> <verb phrase>

<adjective> <noun phrase>

<adjective>
The

<noun phrase>

history

<verb> <adverbial phrase>

sold
<preposition> <noun phrase>

over

<adjective> <noun phrase>

<noun>

copies

1000

<noun>

book

FIGURE 8.12. This derivation tree illustrates how a portion of English grammar can
transform the root symbol, here 〈sentence〉, into a particular sentence or string of ele-
ments, here English words, which are read from left to right. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 20 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Grammars

The structure can easily be specified in a grammar.

Formally, a grammar consists of four components.

1 Symbols: These are the characters taken from an alphabet A, as before.
They are often called primitive or terminal symbols. The null or empty
string ε of length 0 is also included.

2 Variables: These are also called nonterminal or intermediate symbols and
are taken from a set I.

3 Root Symbol: This is a special variable from which all sequences of
symbols are derived. The root symbol is taken from a set S.

4 Production Rules: The set of operations, P that specify how to transofrm
a set of variables and symbols into othe variables and symbols. These rules
determine the core structures that can be produced by the grammar.

Thus, we denote a grammar by G = (A, I,S,P).

The language generated by a grammar, L(G), is the set of all strings
(possibly infinite) that can be generated by G.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 21 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}.

P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S

p1 aBA
p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab



root S

p1 aBA
p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S

p1 aBA
p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA

p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA

p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S

p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA

p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA

p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA

p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA

p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA

p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA

p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Consider an abstract example:

Let A = {a,b,c}.

Let S = {S}.

Let I = {A,B,C}. P =



p1 : S → aSBA OR aBA
p2 : bB → bb
p3 : cA → cc
p4 : AB → BA
p5 : bA → bc
p6 : aB → ab


root S
p1 aBA
p6 abA
p4 abc

root S
p1 aSBA
p1 aaBABA
p6 aabABA
p2 aabBAA
p3 aabbAA
p4 aabbcA
p5 aabbcc

These are two examples of productions.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 22 / 1



Grammatical Methods Grammars

Another example...English.

The alphabet is all English words:
A = {the, history, book, sold, over, ...}.

The variables are the parts of speech:
I = {〈noun〉, 〈verb〉, 〈noun phrase〉, 〈adjective〉, . . . }.
The root symbol is S = {〈sentence〉}.
A restricted set of production rules is

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverb phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR . . .
〈adverb〉 → over OR frankly OR . . .


Of course, this subset of the rules for English grammar does not
prevent the generation of meaningless sentences like Squishy green
dreams hop heuristically.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 23 / 1



Grammatical Methods Grammars

Another example...English.

The alphabet is all English words:
A = {the, history, book, sold, over, ...}.
The variables are the parts of speech:
I = {〈noun〉, 〈verb〉, 〈noun phrase〉, 〈adjective〉, . . . }.

The root symbol is S = {〈sentence〉}.
A restricted set of production rules is

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverb phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR . . .
〈adverb〉 → over OR frankly OR . . .


Of course, this subset of the rules for English grammar does not
prevent the generation of meaningless sentences like Squishy green
dreams hop heuristically.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 23 / 1



Grammatical Methods Grammars

Another example...English.

The alphabet is all English words:
A = {the, history, book, sold, over, ...}.
The variables are the parts of speech:
I = {〈noun〉, 〈verb〉, 〈noun phrase〉, 〈adjective〉, . . . }.
The root symbol is S = {〈sentence〉}.

A restricted set of production rules is

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverb phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR . . .
〈adverb〉 → over OR frankly OR . . .


Of course, this subset of the rules for English grammar does not
prevent the generation of meaningless sentences like Squishy green
dreams hop heuristically.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 23 / 1



Grammatical Methods Grammars

Another example...English.

The alphabet is all English words:
A = {the, history, book, sold, over, ...}.
The variables are the parts of speech:
I = {〈noun〉, 〈verb〉, 〈noun phrase〉, 〈adjective〉, . . . }.
The root symbol is S = {〈sentence〉}.
A restricted set of production rules is

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverb phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR . . .
〈adverb〉 → over OR frankly OR . . .



Of course, this subset of the rules for English grammar does not
prevent the generation of meaningless sentences like Squishy green
dreams hop heuristically.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 23 / 1



Grammatical Methods Grammars

Another example...English.

The alphabet is all English words:
A = {the, history, book, sold, over, ...}.
The variables are the parts of speech:
I = {〈noun〉, 〈verb〉, 〈noun phrase〉, 〈adjective〉, . . . }.
The root symbol is S = {〈sentence〉}.
A restricted set of production rules is

P =



〈sentence〉 → 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 → 〈adjective〉〈noun phrase〉
〈verb phrase〉 → 〈verb phrase〉〈adverb phrase〉

〈noun〉 → book OR theorem OR . . .
〈verb〉 → describes OR buys OR . . .
〈adverb〉 → over OR frankly OR . . .


Of course, this subset of the rules for English grammar does not
prevent the generation of meaningless sentences like Squishy green
dreams hop heuristically.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 23 / 1



Grammatical Methods Types of String Grammars

Types of String Grammars

Type 0: Unrestricted or Free. There are no restrictions on the
production rules and thus there will be no constraints on the strings
they can produce.

These have found little use in pattern recognition because so little
information is provided when one knows a particular string has come
from a Type 0 grammar, and learning can be expensive.

Type 1: Context-Sensitive. A grammar is called context-sensitive if
every rewrite rule is of the form

αIβ → αxβ (1)

where both α and β are any strings of intermediate or terminal
symbols, I is an intermediate symbol, and x is an intermediate or
terminal symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 24 / 1



Grammatical Methods Types of String Grammars

Types of String Grammars

Type 0: Unrestricted or Free. There are no restrictions on the
production rules and thus there will be no constraints on the strings
they can produce.

These have found little use in pattern recognition because so little
information is provided when one knows a particular string has come
from a Type 0 grammar, and learning can be expensive.

Type 1: Context-Sensitive. A grammar is called context-sensitive if
every rewrite rule is of the form

αIβ → αxβ (1)

where both α and β are any strings of intermediate or terminal
symbols, I is an intermediate symbol, and x is an intermediate or
terminal symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 24 / 1



Grammatical Methods Types of String Grammars

Type 2: Context-Free. A grammar is called context-free if every
production rule is of the form

I → x (2)

where I is an intermediate symbol and x is an intermediate or
terminal symbol.

Any context free grammar can be converted into one in Chomsky
normal form (CNF), which has rules of the form:

A→ BC and A→ z (3)

where A,B, C are intermediate symbols and z is a terminal symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 25 / 1



Grammatical Methods Types of String Grammars

Type 2: Context-Free. A grammar is called context-free if every
production rule is of the form

I → x (2)

where I is an intermediate symbol and x is an intermediate or
terminal symbol.

Any context free grammar can be converted into one in Chomsky
normal form (CNF), which has rules of the form:

A→ BC and A→ z (3)

where A,B, C are intermediate symbols and z is a terminal symbol.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 25 / 1



Grammatical Methods Types of String Grammars

Type 3: Finite State of Regular. A grammar is called regular if
every production rule is of the form

α→ zβ OR α→ z (4)

where α and β are made up of intermediate symbols and z is a
terminal symbol.

These grammars can be generated by a finite state machine.

S A
the

mouse

cow

B
was

C

found

seen

D

by

under

E
the

F

barn

farmer

G

FIGURE 8.16. One type of finite-state machine consists of nodes that can emit terminal symbols (“the,”
“mouse,” etc.) and transition to another node. Such operation can be described by a grammar. For instance, the
rewrite rules for this finite-state machine include S → theA, A → mouseB OR cowB, and so on. Clearly these
rules imply this finite-state machine implements a type 3 grammar. The final internal node (shaded) would
lead to the null symbol ε. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 26 / 1



Grammatical Methods Types of String Grammars

Type 3: Finite State of Regular. A grammar is called regular if
every production rule is of the form

α→ zβ OR α→ z (4)

where α and β are made up of intermediate symbols and z is a
terminal symbol.

These grammars can be generated by a finite state machine.

S A
the

mouse

cow

B
was

C

found

seen

D

by

under

E
the

F

barn

farmer

G

FIGURE 8.16. One type of finite-state machine consists of nodes that can emit terminal symbols (“the,”
“mouse,” etc.) and transition to another node. Such operation can be described by a grammar. For instance, the
rewrite rules for this finite-state machine include S → theA, A → mouseB OR cowB, and so on. Clearly these
rules imply this finite-state machine implements a type 3 grammar. The final internal node (shaded) would
lead to the null symbol ε. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 26 / 1



Grammatical Methods Recognition with Grammars

Parsing – Recognition with Grammars

Given a test sentence, x, and c grammars, G1, G2, . . . , Gc, we want
to classify the test sentence according to which grammar could have
produced it.

Parsing is the process of finding a derivation in a grammar G that
leads to x, which is quite more difficult than directly forming a
derivation.

Bottom-Up Parsing starts with the test sentence x and seeks to
simplify it so as to represent it as the root symbol.

Top-Down Parsing starts with the root node and successively applies
productions from P with the goal of finding a derivation of the test
sentence x.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 27 / 1



Grammatical Methods Recognition with Grammars

Parsing – Recognition with Grammars

Given a test sentence, x, and c grammars, G1, G2, . . . , Gc, we want
to classify the test sentence according to which grammar could have
produced it.

Parsing is the process of finding a derivation in a grammar G that
leads to x, which is quite more difficult than directly forming a
derivation.

Bottom-Up Parsing starts with the test sentence x and seeks to
simplify it so as to represent it as the root symbol.

Top-Down Parsing starts with the root node and successively applies
productions from P with the goal of finding a derivation of the test
sentence x.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 27 / 1



Grammatical Methods Recognition with Grammars

Parsing – Recognition with Grammars

Given a test sentence, x, and c grammars, G1, G2, . . . , Gc, we want
to classify the test sentence according to which grammar could have
produced it.

Parsing is the process of finding a derivation in a grammar G that
leads to x, which is quite more difficult than directly forming a
derivation.

Bottom-Up Parsing starts with the test sentence x and seeks to
simplify it so as to represent it as the root symbol.

Top-Down Parsing starts with the root node and successively applies
productions from P with the goal of finding a derivation of the test
sentence x.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 27 / 1



Grammatical Methods Recognition with Grammars

Parsing – Recognition with Grammars

Given a test sentence, x, and c grammars, G1, G2, . . . , Gc, we want
to classify the test sentence according to which grammar could have
produced it.

Parsing is the process of finding a derivation in a grammar G that
leads to x, which is quite more difficult than directly forming a
derivation.

Bottom-Up Parsing starts with the test sentence x and seeks to
simplify it so as to represent it as the root symbol.

Top-Down Parsing starts with the root node and successively applies
productions from P with the goal of finding a derivation of the test
sentence x.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 27 / 1



Grammatical Methods Recognition with Grammars

Bottom-Up Parsing

The basic approach is to use candidate productions from P
“backwards”, which means we want to find the rules whose right
hand side matches part of the current string. Then, we replace that
part with a segment that could have produced it.

This is the general method of the Cocke-Younger-Kasami algorithm.

We need the grammar to be expressed in Chomsky normal form.

Recall, this means that all productions must be of the form A→ BC
or A→ z.

The method will build a parse table from the “bottom up.”

Entries in the table are candidate strings in a portion of a valid
derivation. If the table contains the source symbol S, then indeed we
can work forward from S to derive the test sentence x.

Denote the individual terminal characters in the string to be parsed as
xi for i = 1, . . . , n.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 28 / 1



Grammatical Methods Recognition with Grammars

Bottom-Up Parsing

The basic approach is to use candidate productions from P
“backwards”, which means we want to find the rules whose right
hand side matches part of the current string. Then, we replace that
part with a segment that could have produced it.

This is the general method of the Cocke-Younger-Kasami algorithm.

We need the grammar to be expressed in Chomsky normal form.

Recall, this means that all productions must be of the form A→ BC
or A→ z.

The method will build a parse table from the “bottom up.”

Entries in the table are candidate strings in a portion of a valid
derivation. If the table contains the source symbol S, then indeed we
can work forward from S to derive the test sentence x.

Denote the individual terminal characters in the string to be parsed as
xi for i = 1, . . . , n.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 28 / 1



Grammatical Methods Recognition with Grammars

Bottom-Up Parsing

The basic approach is to use candidate productions from P
“backwards”, which means we want to find the rules whose right
hand side matches part of the current string. Then, we replace that
part with a segment that could have produced it.

This is the general method of the Cocke-Younger-Kasami algorithm.

We need the grammar to be expressed in Chomsky normal form.

Recall, this means that all productions must be of the form A→ BC
or A→ z.

The method will build a parse table from the “bottom up.”

Entries in the table are candidate strings in a portion of a valid
derivation. If the table contains the source symbol S, then indeed we
can work forward from S to derive the test sentence x.

Denote the individual terminal characters in the string to be parsed as
xi for i = 1, . . . , n.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 28 / 1



Grammatical Methods Recognition with Grammars

Bottom-Up Parsing

The basic approach is to use candidate productions from P
“backwards”, which means we want to find the rules whose right
hand side matches part of the current string. Then, we replace that
part with a segment that could have produced it.

This is the general method of the Cocke-Younger-Kasami algorithm.

We need the grammar to be expressed in Chomsky normal form.

Recall, this means that all productions must be of the form A→ BC
or A→ z.

The method will build a parse table from the “bottom up.”

Entries in the table are candidate strings in a portion of a valid
derivation. If the table contains the source symbol S, then indeed we
can work forward from S to derive the test sentence x.

Denote the individual terminal characters in the string to be parsed as
xi for i = 1, . . . , n.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 28 / 1



Grammatical Methods Recognition with Grammars

Bottom-Up Parsing

The basic approach is to use candidate productions from P
“backwards”, which means we want to find the rules whose right
hand side matches part of the current string. Then, we replace that
part with a segment that could have produced it.

This is the general method of the Cocke-Younger-Kasami algorithm.

We need the grammar to be expressed in Chomsky normal form.

Recall, this means that all productions must be of the form A→ BC
or A→ z.

The method will build a parse table from the “bottom up.”

Entries in the table are candidate strings in a portion of a valid
derivation. If the table contains the source symbol S, then indeed we
can work forward from S to derive the test sentence x.

Denote the individual terminal characters in the string to be parsed as
xi for i = 1, . . . , n.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 28 / 1



Grammatical Methods Recognition with Grammars

Consider an example grammar G with two terminal symbols, A = {a, b},
three intermediate symbols, I = {A,B, C}, the root symbol S, and four
production rules,

P =


p1 : S → AB OR BC
p2 : A → BA OR a
p3 : B → CC OR b
p4 : C → AB OR a

 .

The following is the parse table for the string x = “baaba”.

B

i 

j 

5

4

3

2

1

1 2 3 4 5

A,C A,C B A,C

S,A B S,C S,A

B B

S,A,C

S,A,C

0

0

b a a b a

strings of length 1

strings of length 2

strings of length 3

strings of length 4

strings of length 5

target string x

FIGURE 8.13. The bottom-up parsing algorithm fills the parse table with symbols that
might be part of a valid derivation. The pink lines are not provided by the algorithm,
but when read downward from the root symbol they confirm that a valid derivation
exists. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 29 / 1



Grammatical Methods Recognition with Grammars

If the top cell contains the root symbol S then the string is parsed.

See Algorithm 4 on Pg. 427 DHS for the full algorithm.

The time complexity of the algorithm is O(n3) and the space
complexity is O(n2) for a string of length n.

We will not cover grammar inference, learning the grammar.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 30 / 1



Grammatical Methods Recognition with Grammars

If the top cell contains the root symbol S then the string is parsed.

See Algorithm 4 on Pg. 427 DHS for the full algorithm.

The time complexity of the algorithm is O(n3) and the space
complexity is O(n2) for a string of length n.

We will not cover grammar inference, learning the grammar.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 30 / 1



Grammatical Methods Recognition with Grammars

If the top cell contains the root symbol S then the string is parsed.

See Algorithm 4 on Pg. 427 DHS for the full algorithm.

The time complexity of the algorithm is O(n3) and the space
complexity is O(n2) for a string of length n.

We will not cover grammar inference, learning the grammar.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 30 / 1



Grammatical Methods Recognition with Grammars

If the top cell contains the root symbol S then the string is parsed.

See Algorithm 4 on Pg. 427 DHS for the full algorithm.

The time complexity of the algorithm is O(n3) and the space
complexity is O(n2) for a string of length n.

We will not cover grammar inference, learning the grammar.

J. Corso (SUNY at Buffalo) Lecture 9 April 2009 30 / 1


