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Plan

In lecture 3, we learned about estimating parametric models and how
these then form classifiers and define decision boundaries (lecture 2).
Now we turn back to the question of Dimensionality.
Recall the fish example, where we experimented with the length
feature first, then the lightness feature, and then decided upon a
combination of the width and lightness.
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FIGURE 1.2. Histograms for the length feature for the two categories. No single thresh-
old value of the length will serve to unambiguously discriminate between the two cat-
egories; using length alone, we will have some errors. The value marked l∗ will lead to
the smallest number of errors, on average. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 1.3. Histograms for the lightness feature for the two categories. No single
threshold value x∗ (decision boundary) will serve to unambiguously discriminate be-
tween the two categories; using lightness alone, we will have some errors. The value x∗

marked will lead to the smallest number of errors, on average. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 1.4. The two features of lightness and width for sea bass and salmon. The dark
line could serve as a decision boundary of our classifier. Overall classification error on
the data shown is lower than if we use only one feature as in Fig. 1.3, but there will
still be some errors. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

We developed some intuition saying the more features I add, the
better my classifier will be...

We will see that in theory this may be, but in practice, this is not the
case—the probability of error will increase after a certain number of
features (dimensionality) has been reached.
We will first explore this point and then discuss a set of methods for
dimension reduction.
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We developed some intuition saying the more features I add, the
better my classifier will be...
We will see that in theory this may be, but in practice, this is not the
case—the probability of error will increase after a certain number of
features (dimensionality) has been reached.
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Dimensionality

High Dimensions Often Test Our Intuitions

Consider a simple arrangement: you
have a sphere of radius r = 1 in a space
of D dimensions.

We want to compute what is the
fraction of the volume of the sphere
that lies between radius r = 1− ε and
r = 1.

Noting that the volume of the sphere
will scale with rD, we have:

VD(r) = KDrD (1)

where KD is some constant (depending
only on D).

VD(1)− VD(1− ε)

VD(1)
=

1− (1− ε)D

(2)
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Dimensionality

Let’s Build Some Better Intuition
Example from Bishop PRML

Dataset: Measurements taken
from a pipeline containing a
mixture of oil.

Three classes present
(different geometrical
configuration): homogeneous,
annular, and laminar.
Each data point is a 12
dimensional input vector
consisting of measurements
taken with gamma ray
densitometers, which measure
the attenuation of gamma
rays passing along narrow
beams through the pipe.
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Dimensionality

Let’s Build Some Better Intuition
Example from Bishop PRML

100 data points of features x6

and x7 are shown on the right.

Goal: Classify the new data
point at the ‘x’.

Suggestions on how we might
approach this classification
problem?
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Dimensionality

Let’s Build Some Better Intuition
Example from Bishop PRML

Observations we can make:

The cross is surrounded by
many red points and some green
points.

Blue points are quite far from
the cross.

Nearest-Neighbor Intuition:
The query point should be
determined more strongly by
nearby points from the training
set and less strongly by more
distant points.
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Dimensionality

Let’s Build Some Better Intuition
Example from Bishop PRML

One simple way of doing it is:

We can divide the feature space
up into regular cells.

For each, cell, we associated the
class that occurs most
frequently in that cell (in our
training data).

Then, for a query point, we
determine which cell it falls into
and then assign in the label
associated with the cell.

What problems may exist with
this approach?
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Dimensionality

Let’s Build Some Better Intuition
Example from Bishop PRML

The problem we are most interested in now is the one that becomes
apparent when we add more variables into the mix, corresponding to
problems of higher dimensionality.

In this case, the number of additional cells grows exponentially with
the dimensionality of the space.

Hence, we would need an exponentially large training data set to
ensure all cells are filled.

x1

D = 1
x1
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Dimensionality

Curse of Dimensionality

This severe difficulty when working in high dimensions was coined the
curse of dimensionality by Bellman in 1961.

The idea is that the volume of a space increases exponentially with
the dimensionality of the space.
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

How does the probability of error vary as we add more features, in
theory?

Consider the following two-class problem:

The prior probabilities are known and equal: P (ω1) = P (ω2) = 1/2.
The class-conditional densities are Gaussian with unit covariance:

p(x|ω1) ∼ N(µ1, I) (3)

p(x|ω2) ∼ N(µ2, I) (4)

where µ1 = µ, µ2 = −µ, and µ is an n-vector whose ith component
is (1/i)1/2.

The corresponding Bayesian Decision Rule is

decide ω1 if xTµ > 0 (5)
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

The probability of error is

P (error) =
1√
2π

∫ ∞

r/2
exp

[
−z2/2

]
dz (6)

where

r2 = ‖µ1 − µ2‖2 = 4
n∑

i=1

(1/i). (7)

Let’s take this integral for
granted... (For more detail, you
can look at DHS Problem 31 in
Chapter 2 and read Section 2.7.)

What can we say about this
result as more features are
added?

ω2ω1

x

p(x|ωi)P(ωi)

reducible
error

∫p(x|ω1)P(ω1) dx∫p(x|ω2)P(ω2) dx

R2R1

R1 R2

xB x*

FIGURE 2.17. Components of the probability of error for equal priors and (nonoptimal)
decision point x∗. The pink area corresponds to the probability of errors for deciding ω1

when the state of nature is in fact ω2; the gray area represents the converse, as given in
Eq. 70. If the decision boundary is instead at the point of equal posterior probabilities,
xB, then this reducible error is eliminated and the total shaded area is the minimum
possible; this is the Bayes decision and gives the Bayes error rate. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

The probability of error approaches 0 as n approach infinity because
1/i is a divergent series.

More intuitively, each additional feature is going to decrease the
probability of error as long as its means are different. In the general
case of varying means and but same variance for a feature, we have

r2 =
d∑

i=1

(
µi1 − µi2

σi

)2

(8)

Certainly, we prefer features that have big differences in the mean
relative to their variance.

We need to note that if the probabilistic structure of the problem is
completely known then adding new features is not going to decrease
the Bayes risk (or increase it).
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

So, adding dimensions is good....

x3

x1

x2

FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x1 − x2 subspace or a one-dimensional x1 subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

...in theory.

But, in practice, performance seems to not obey this theory.
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

Consider again the two-class problem, but this time with unknown
means µ1 and µ2.

Instead, we have m labeled samples x1, . . . ,xm.

Then, the best estimate of µ for each class is the sample mean (recall
last lecture).

µ =
1

m

m∑
i=1

xi (9)

where xi has been replaced by xi is xi comes from ω2. The
covariance matrix is I/m.
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

Probablity of error is given by

P (error) = P (xTµ ≥ 0|ω2) =
1√
2π

∫ ∞

γn

exp
[
−z2/2

]
dz (10)

because it has a Guassian form as n approaches infinity where

γn = E(z)/ [var(z)]1/2 (11)

E(z) =
n∑

i=1

(1/i) (12)

var(z) =

(
1 +

1

m

) n∑
i=1

(1/i) + n/m (13)
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

Probablity of error is given by

P (error) = P (xTµ ≥ 0|ω2) =
1√
2π

∫ ∞

γn

exp
[
−z2/2

]
dz

The key is that we can show

lim
n→∞

γn = 0 (14)

and thus the probability of error approaches one-half as the
dimensionality of the problem becomes very high.
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Dimensionality

Dimensionality and Classification Error?
Some parts taken from G. V. Trunk, TPAMI Vol. 1 No. 3 PP. 306-7 1979

Trunk performed an experiment to investigate the convergence rate of
the probability of error to one-half. He simulated the problem for
dimensionality 1 to 1000 and ran 500 repetitions for each dimension.
We see an increase in performance initially and then a decrease (as
the dimensionality of the problem grows larger than the number of
training samples).
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Dimension Reduction

Motivation for Dimension Reduction

The discussion on the curse of dimensionality should be enough!

Even though our problem may have a high dimension, data will often
be confined to a much lower effective dimension in most real world
problems.

Computational complexity is another important point: generally, the
higher the dimension, the longer the training stage will be (and
potentially the measurement and classification stages).

We seek an understanding of the underlying data to

Remove or reduce the influence of noisy or irrelevant features that
would otherwise interfere with the classifier;
Identify a small set of features (perhaps, a transformation thereof)
during data exploration.
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 0

We have n samples {x1,x2, . . . ,xn}.
How can we best represent the n samples by a single vector x0?

First, we need a distance function on the sample space. Let’s use the
Euclidean distance and the sum of squared distances criterion:

J0(x0) =
n∑

k=1

‖x0 − xk‖2 (15)

Then, we seek a value of x0 that minimizes J0.
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 0

We can show that the minimizer is indeed the sample mean:

m =
1

n

n∑
k=1

xk (16)

We can verify it by adding m−m into J0:

J0(x0) =
n∑

k=1

‖(x0 −m)− (xk −m)‖2 (17)

=
n∑

k=1

‖x0 −m‖2 +
n∑

k=1

‖xk −m‖2 (18)

Thus, J0 is minimized when x0 = m. Note, the second term is
independent of x0.
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 0

So, the sample mean is an initial dimension-reduced representation of
the data (a zero-dimensional one).

It is simple, but it not does reveal any of the variability in the data.

Let’s try to obtain a one-dimensional representation: i.e., let’s project
the data onto a line running through the sample mean.
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1

Let e be a unit vector in the direction of the line.
The standard equation for a line is then

x = m + ae (19)

where scalar a ∈ R governs which point along the line we are and
hence corresponds to the distance of any point x from the mean m.

Represent point xk by m + ake.
We can find an optimal set of coefficients by again minimizing the
squared-error criterion

J1(a1, . . . , an, e) =
n∑

k=1

‖(m + ake)− xk‖2 (20)

=
n∑

k=1

a2
k‖e‖2 − 2

n∑
k=1

akeT(xk −m) +
n∑

k=1

‖xk −m‖2

(21)
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1

Differentiating for ak and equating to 0 yields

ak = eT(xk −m) (22)

This indicates that the best value for ak is the projection of the point
xk onto the line e that passes through m.

How do we find the best direction for that line?
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1

What if we substitute the expression we computed for the best ak

directly into the J1 criterion:

J1(e) =
n∑

k=1

a2
k − 2

n∑
k=1

a2
k +

n∑
k=1

‖xk −m‖2 (23)

= −
n∑

k=1

[
eT(xk −m)

]2
+

n∑
k=1

‖xk −m‖2 (24)

= −
n∑

k=1

eT(xk −m)(xk −m)Te +
n∑

k=1

‖xk −m‖2 (25)
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1
The Scatter Matrix

Define the scatter matrix S as

S =
n∑

k=1

(xk −m)(xk −m)T (26)

This should be familiar – this is a multiple of the sample covariance
matrix.

Putting it in:

J1(e) = −eTSe +
n∑

k=1

‖xk −m‖2 (27)

The e that maximizes eTSe will minimize J1.
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1
Solving for e

We use Lagrange multipliers to maximize eTSe subject to the
constraint that ‖e‖ = 1.

u = eTSe− λeTe (28)

Differentiating w.r.t. e and setting equal to 0.

∂u

∂e
= 2Se− 2λe (29)

Se = λe (30)

Does this form look familiar?
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Dimension Reduction Principal Component Analysis

Dimension Reduction Version 1
Eigenvectors of S

Se = λe

This is an eigenproblem.

Hence, it follows that the best one-dimensional estimate (in a
least-squares sense) for the data is the eigenvector corresponding to
the largest eigenvalue of S.

So, we will project the data onto the largest eigenvector of bS and
translate it to pass through the mean.
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Dimension Reduction Principal Component Analysis

Principal Component Analysis

We’re already done...basically.

This idea readily extends to multiple dimensions, say d′ < d
dimensions.

We replace the earlier equation of the line with

x = m +
d′∑

i=1

aiei (31)

And we have a new criterion function

Jd′ =
n∑

k=1

∥∥∥∥∥
(

m +
d′∑

i=1

akiei

)
− xk

∥∥∥∥∥
2

(32)
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Dimension Reduction Principal Component Analysis

Principal Component Analysis

Jd′ is minimized when the vectors e1, . . . , ed′ are the d′ eigenvectors
fo the scatter matrix having the largest eigenvalues.

These vectors are orthogonal.

They form a natural set of basis vectors for representing any feature x.

The coefficients ai are called the principal components.

Visualize the basis vectors as the principal axes of a hyperellipsoid
surrounding the data (a cloud of points).

Principle components reduces the dimension of the data by restricting
attention to those directions of maximum variation, or scatter.
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Dimension Reduction Fisher Linear Discriminant

Fisher Linear Discriminant

Description vs. Discrimination

PCA is likely going to be useful for representing data.

But, there is no reason to assume that it would be good for
discriminating between two classes of data.

‘Q’ versus ‘O’.

Discriminant Analysis seeks directions that are efficient for
discrimination.
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Dimension Reduction Fisher Linear Discriminant

Intuition: Projection onto a Line

Consider the problem of projecting data from d dimensions onto a
line.

Board...

Finding the orientation of the line for which the projected samples is
the goal of classical discriminant analysis.
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Dimension Reduction Fisher Linear Discriminant

Let’s Formalize the Situation

Suppose we have a set of n d-dimensional samples with n1 in set D1,
and similarly for set D2.

Di = {x1, . . . ,xni}, i = {1, 2} (33)

We can form a linear combination of the components of a sample x:

y = wTx (34)

which yields a corresponding set of n samples y1, . . . , yn split into
subsets Y1 and Y2.
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Dimension Reduction Fisher Linear Discriminant

Geometrically, This is a Projection

If we constrain the norm of w to be 1 (i.e., ‖w‖ = 1) then we can
conceptualize that each yi is the projection of the corresponding xi

onto a line in the direction of w.

0.5 1 1.5

0.5

1

1.5

2

0.5 1 1.5
x1

-0.5

0.5

1

1.5

2

x2

w

w

x1

x2

FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Does the magnitude of w have any real significance?

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 33 / 103



Dimension Reduction Fisher Linear Discriminant

Geometrically, This is a Projection

If we constrain the norm of w to be 1 (i.e., ‖w‖ = 1) then we can
conceptualize that each yi is the projection of the corresponding xi

onto a line in the direction of w.

0.5 1 1.5

0.5

1

1.5

2

0.5 1 1.5
x1

-0.5

0.5

1

1.5

2

x2

w

w

x1

x2

FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Does the magnitude of w have any real significance?

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 33 / 103



Dimension Reduction Fisher Linear Discriminant

What is a Good Projection?

For our two-class setup, it should be clear that we want the projection
that will have those samples from class ω1 falling into one cluster (on
the line) and those samples from class ω2 falling into a separate
cluster (on the line).

However, this may not be possible depending on our underlying
classes.

So, how do we find the best direction w?
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Dimension Reduction Fisher Linear Discriminant

Separation of the Projected Means

Let mi be the d-dimensional sample mean for class i:

mi =
1

ni

∑
x∈Di

x . (35)

Then the sample mean for the projected points is

m̃i =
1

ni

∑
y∈Yi

y (36)

=
1

ni

∑
x∈Di

wTx (37)

= wTmi . (38)

And, thus, is simply the projection of mi.
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Dimension Reduction Fisher Linear Discriminant

Distance Between Projected Means

The distance between projected means is thus

|m̃1 − m̃2| = |wT (m1 −m2)| (39)

The scale of w: we can make this distance arbitrarily large by scaling
w.

Rather, we want to make this distance large relative to some measure
of the standard deviation. ...This story we’ve heard before.
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Dimension Reduction Fisher Linear Discriminant

The Scatter

To capture this variation, we compute the scatter

s̃2
i =

∑
y∈Yi

(y − m̃i)
2 (40)

which is essentially a scaled sampled variance.

From this, we can estimate the variance of the pooled data:

1

n

(
s̃2
1 + s̃2

2

)
. (41)

s̃2
1 + s̃2

2 is called the total within-class scatter of the projected
samples.
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Dimension Reduction Fisher Linear Discriminant

Fisher Linear Discriminant

The Fisher Linear Discriminant will select the w that maximizes

J(w) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

. (42)

It does so independently of the magnitude of w.

This term is the ratio of the distance between the projected means
scaled by the within-class scatter (the variation of the data).

Recall the similar term from earlier in the lecture which indicated the
amount a feature will reduce the probability of error is proportional to
the ratio of the difference of the means to the variance. FLD will
choose the maximum...

We need to rewrite J(·) as a function of w.
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Dimension Reduction Fisher Linear Discriminant

Within-Class Scatter Matrix

Define scatter matrices Si:

Si =
∑
x∈Di

(x−mi)(x−mi)
T (43)

and

SW = S1 + S2 . (44)

SW is called the within-class scatter matrix.

SW is symmetric and positive semidefinite.

In typical cases, when is SW nonsingular?
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Dimension Reduction Fisher Linear Discriminant

Within-Class Scatter Matrix

Deriving the sum of scatters.

s̃2
i =

∑
x∈Di

(
wTx−wTmi

)2
(45)

=
∑
x∈Di

wT (x−mi) (x−mi)
T w (46)

= wTSiw (47)

We can therefore write the sum of the scatters as an explicit function
of w:

s̃2
1 + s̃2

2 = wTSWw (48)
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Dimension Reduction Fisher Linear Discriminant

Between-Class Scatter Matrix

The separation of the projected means obeys

(m̃1 − m̃2)
2 =

(
wTm1 −wTm2

)2
(49)

= wT (m1 −m2) (m1 −m2)
T w (50)

= wTSBw (51)

Here, SB is called the between-class scatter matrix:

SB = (m1 −m2) (m1 −m2)
T (52)

SB is also symmetric and positive semidefinite.

When is SB nonsingular?
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Dimension Reduction Fisher Linear Discriminant

Rewriting the FLD J(·)

We can rewrite our objective as a function of w.

J(w) =
wTSBw
wTSWw

(53)

This is the generalized Rayleigh quotient.

The vector w that maximizes J(·) must satisfy

SBw = λSWw (54)

which is a generalized eigenvalue problem.

For nonsingular SW (typical), we can write this as a standard
eigenvalue problem:

S−1
W SBw = λw (55)
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Dimension Reduction Fisher Linear Discriminant

Simplifying

Since ‖w‖ is not important and SBw is always in the direction of
(m1 −m2), we can simplify

w∗ = S−1
W (m1 −m2) (56)

w∗ maximizes J(·) and is the Fisher Linear Discriminant.

The FLD converts a many-dimensional problem to a one-dimensional
one.

One still must find the threshold. This is easy for known densities,
but not so easy in general.
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Comparisons Classic

A Classic PCA vs. FLD comparison
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

PCA maximizes the total
scatter across all classes.

PCA projections are thus
optimal for reconstruction
from a low dimensional
basis, but not necessarily
from a discrimination
standpoint.

FLD maximizes the ratio of
the between-class scatter
and the within-class scatter.

FLD tries to “shape” the
scatter to make it more
effective for classification.

714 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  7,  JULY  1997

classification. This method selects W in [1] in such a way
that the ratio of the between-class scatter and the within-
class scatter is maximized.

Let the between-class scatter matrix be defined as

S NB i i
i

c

i
T

= - -
=
Â m m m mc hc h

1

and the within-class scatter matrix be defined as

SW k i
X

k i
T

i

c

k i

= - -
Œ=
ÂÂ x x

x

m mc hc h
1

where m i is the mean image of class Xi , and Ni  is the num-
ber of samples in class Xi . If SW  is nonsingular, the optimal
projection Wopt  is chosen as the matrix with orthonormal

columns which maximizes the ratio of the determinant of
the between-class scatter matrix of the projected samples to
the determinant of the within-class scatter matrix of the
projected samples, i.e.,

W
W S W

W S W
opt W

T
B

T
W

m

=

=

arg max

w w w1 2 K (4)

where wi i m= 1 2, , ,Kn s  is the set of generalized eigen-

vectors of SB  and SW  corresponding to the m largest gener-

alized eigenvalues l i i m= 1 2, , ,Kn s, i.e.,

S S i mB i i W iw w= =l , , , ,1 2 K

Note that there are at most c - 1 nonzero generalized eigen-
values, and so an upper bound on m is c - 1, where c is the
number of classes. See [4].

To illustrate the benefits of class specific linear projec-
tion, we constructed a low dimensional analogue to the
classification problem in which the samples from each class
lie near a linear subspace. Fig. 2 is a comparison of PCA
and FLD for a two-class problem in which the samples from
each class are randomly perturbed in a direction perpen-
dicular to a linear subspace. For this example, N = 20, n = 2,
and m = 1. So, the samples from each class lie near a line
passing through the origin in the 2D feature space. Both
PCA and FLD have been used to project the points from 2D
down to 1D. Comparing the two projections in the figure,
PCA actually smears the classes together so that they are no
longer linearly separable in the projected space. It is clear
that, although PCA achieves larger total scatter, FLD
achieves greater between-class scatter, and, consequently,
classification is simplified.

In the face recognition problem, one is confronted with
the difficulty that the within-class scatter matrix SW

n nŒ ¥
R

is always singular. This stems from the fact that the rank of
SW  is at most N - c, and, in general, the number of images
in the learning set N is much smaller than the number of
pixels in each image n. This means that it is possible to
choose the matrix W such that the within-class scatter of the
projected samples can be made exactly zero.

In order to overcome the complication of a singular SW ,
we propose an alternative to the criterion in (4). This

method, which we call Fisherfaces, avoids this problem by
projecting the image set to a lower dimensional space so
that the resulting within-class scatter matrix SW  is nonsin-
gular. This is achieved by using PCA to reduce the dimen-
sion of the feature space to N - c, and then applying the
standard FLD defined by (4) to reduce the dimension to c - 1.
More formally, Wopt  is given by

W W Wopt
T

fld
T

pca
T= (5)

where

W W S W

W
W W S W W

W W S W W

pca W

T
T

fld W

T
pca
T

B pca

T
pca
T

W pca

=

=

arg max

arg max

Note that the optimization for Wpca  is performed over

n ¥ (N - c) matrices with orthonormal columns, while the
optimization for Wfld  is performed over (N - c) ¥ m matrices

with orthonormal columns. In computing Wpca , we have

thrown away only the smallest c - 1 principal components.
There are certainly other ways of reducing the within-

class scatter while preserving between-class scatter. For
example, a second method which we are currently investi-
gating chooses W to maximize the between-class scatter of
the projected samples after having first reduced the within-
class scatter. Taken to an extreme, we can maximize the
between-class scatter of the projected samples subject to the
constraint that the within-class scatter is zero, i.e.,

W W S Wopt W

T
B=

Œ
arg max

:

(6)

where : is the set of n ¥ m matrices with orthonormal col-
umns contained in the kernel of SW .

Fig. 2. A comparison of principal component analysis (PCA) and
Fisher’s linear discriminant (FLD) for a two class problem where data
for each class lies near a linear subspace.
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Comparisons Case Study: Faces

Case Study: EigenFaces versus FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Analysis of classic pattern recognition techniques (PCA and FLD) to
do face recognition.

Fixed pose but varying illumination.

The variation in the resulting images caused by the varying
illumination will nearly always dominate the variation caused by an
identity change.
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Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection

Peter N. Belhumeur, Joao~  P. Hespanha, and David J. Kriegman

Abstract —We develop a face recognition algorithm which is insensitive to large variation in lighting direction and facial expression.
Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take
advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3D linear
subspace of the high dimensional image space—if the face is a Lambertian surface without shadowing. However, since faces are
not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than
explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the
face with large deviation. Our projection method is based on Fisher’s Linear Discriminant and produces well separated classes in a
low-dimensional subspace, even under severe variation in lighting and facial expressions. The Eigenface technique, another method
based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive
experimental results demonstrate that the proposed “Fisherface” method has error rates that are lower than those of the Eigenface
technique for tests on the Harvard and Yale Face Databases.

Index Terms —Appearance-based vision, face recognition, illumination invariance, Fisher’s linear discriminant.

——————————   ✦   ——————————

1 INTRODUCTION

Within the last several years, numerous algorithms have
been proposed for face recognition; for detailed surveys see
[1], [2]. While much progress has been made toward recog-
nizing faces under small variations in lighting, facial ex-
pression and pose, reliable techniques for recognition under
more extreme variations have proven elusive.

In this paper, we outline a new approach for face recogni-
tion—one that is insensitive to large variations in lighting
and facial expressions. Note that lighting variability includes
not only intensity, but also direction and number of light
sources. As is evident from Fig. 1, the same person, with the
same facial expression, and seen from the same viewpoint,
can appear dramatically different when light sources illumi-
nate the face from different directions. See also Fig. 4.

Our approach to face recognition exploits two observations:

1) All of the images of a Lambertian surface, taken from
a fixed viewpoint, but under varying illumination, lie
in a 3D linear subspace of the high-dimensional image
space [3].

2) Because of regions of shadowing, specularities, and
facial expressions, the above observation does not ex-
actly hold. In practice, certain regions of the face may
have variability from image to image that often devi-
ates significantly from the linear subspace, and, con-
sequently, are less reliable for recognition.

We make use of these observations by finding a linear
projection of the faces from the high-dimensional image

space to a significantly lower dimensional feature space
which is insensitive both to variation in lighting direction
and facial expression. We choose projection directions that
are nearly orthogonal to the within-class scatter, projecting
away variations in lighting and facial expression while
maintaining discriminability. Our method Fisherfaces, a
derivative of Fisher’s Linear Discriminant (FLD) [4], [5],
maximizes the ratio of between-class scatter to that of
within-class scatter.

The Eigenface method is also based on linearly project-
ing the image space to a low dimensional feature space [6],
[7], [8]. However, the Eigenface method, which uses princi-
pal components analysis (PCA) for dimensionality reduc-
tion, yields projection directions that maximize the total
scatter across all classes, i.e., across all images of all faces. In
choosing the projection which maximizes total scatter, PCA
retains unwanted variations due to lighting and facial
expression. As illustrated in Figs. 1 and 4 and stated by
Moses et al., “the variations between the images of the same
face due to illumination and viewing direction are almost
always larger than image variations due to change in face
identity” [9]. Thus, while the PCA projections are optimal
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Fig. 1. The same person seen under different lighting conditions can
appear dramatically different: In the left image, the dominant light
source is nearly head-on; in the right image, the dominant light source
is from above and to the right.
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Case Study: EigenFaces versus FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.
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image, the glasses were removed. If the person normally
wore glasses, those were used; if not, a random pair was bor-
rowed. Images 3-5 were acquired by illuminating the face in
a neutral expression with a Luxolamp in three positions. The
last five images were acquired under ambient lighting with
different expressions (happy, sad, winking, sleepy, and sur-
prised). For the Eigenface and correlation tests, the images
were normalized to have zero mean and unit variance, as this
improved the performance of these methods. The images
were manually centered and cropped to two different scales:
The larger images included the full face and part of the back-
ground while the closely cropped ones included internal
structures such as the brow, eyes, nose, mouth, and chin, but
did not extend to the occluding contour.

In this test, error rates were determined by the “leaving-
one-out” strategy [4]: To classify an image of a person, that
image was removed from the data set and the dimension-
ality reduction matrix W was computed. All images in the
database, excluding the test image, were then projected
down into the reduced space to be used for classification.
Recognition was performed using a nearest neighbor classi-
fier. Note that for this test, each person in the learning set is
represented by the projection of ten images, except for the
test person who is represented by only nine.

In general, the performance of the Eigenface method
varies with the number of principal components. Thus, be-
fore comparing the Linear Subspace and Fisherface methods
with the Eigenface method, we first performed an experi-

Interpolating between Subsets 1 and 5
Method Reduced Error Rate (%)

Space Subset 2 Subset 3 Subset 4
Eigenface 4 53.3 75.4 52.9

10 11.11 33.9 20.0
Eigenface 4 31.11 60.0 29.4
w/o 1st 3 10 6.7 20.0 12.9

Correlation 129 0.0 21.54 7.1
Linear Subspace 15 0.0 1.5 0.0

Fisherface 4 0.0 0.0 1.2

Fig. 6. Interpolation: When each of the methods is trained on images from both near frontal and extreme lighting (Subsets 1 and 5), the graph and
corresponding table show the relative performance under intermediate lighting conditions.

    

    

Fig. 7. The Yale database contains 160 frontal face images covering 16 individuals taken under 10 different conditions: A normal image under
ambient lighting, one with or without glasses, three images taken with different point light sources, and five different facial expressions.
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Is Linear Okay For Faces?
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Fact: all of the images of a Lambertian surface, taken from a fixed
viewpoint, but under varying illumination, lie in a 3D linear subspace
of the high-dimensional image space.

But, in the presence of shadowing, specularities, and facial
expressions, the above statement will not hold. This will ultimately
result in deviations from the 3D linear subspace and worse
classification accuracy.
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Comparisons Case Study: Faces

Method 1: Correlation
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Consider a set of N training images, {x1,x2, . . . ,xN}.
We know that each of the N images belongs to one of c classes and
can define a C(·) function to map the image x into a class ωc.

Pre-Processing – each image is normalized to have zero mean and
unit variance.

Why?

Gets rid of the light source intensity and the effects of a camera’s
automatic gain control.

For a query image x, we select the class of the training image that is
the nearest neighbor in the image space:

x∗ = arg min
{xi}

‖x− xi‖ then decide C(x∗) (57)

where we have vectorized each image.
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Comparisons Case Study: Faces

Method 1: Correlation
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

What are the advantages and disadvantages of the correlation based
method in this context?

Computationally expensive.

Require large amount of storage.

Noise may play a role.

Highly parallelizable.
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Comparisons Case Study: Faces

Method 2: EigenFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997. The original paper is
Turk and Pentland, “Eigenfaces for Recognition” Journal of Cognitive
Neuroscience, 3(1). 1991.

Quickly recall the main idea of PCA.

Define a linear projection of the original n-d image space into an m-d
space with m < n or m � n, which yields new vectors y:

yk = WTxk k = 1, 2, . . . , N (58)

where W ∈ Rn×m.

Define the total scatter matrix ST as

ST =
N∑

k=1

(xk − µ) (xk − µ)T (59)

where µ is the sample mean image.
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Comparisons Case Study: Faces

Method 2: EigenFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997. The original paper is
Turk and Pentland, “Eigenfaces for Recognition” Journal of Cognitive
Neuroscience, 3(1). 1991.

The scatter of the projected vectors {y1,y2, . . . ,yN} is

WTST W (60)

Wopt is chosen to maximize the determinant of the total scatter
matrix of the projected vectors:

Wopt = arg max
W
|WTST W | (61)

=
[
w1 w2 . . . wm

]
(62)

where {wi|i = 1, d, . . . ,m} is the set of n-d eigenvectors of ST

corresponding to the largest m eigenvalues.
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Comparisons Case Study: Faces

An Example:

Source: http://www.cs.princeton.edu/ cdecoro/eigenfaces/. (not sure
if this dataset include lighting variation...)
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Comparisons Case Study: Faces

Method 2: EigenFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997. The original paper is
Turk and Pentland, “Eigenfaces for Recognition” Journal of Cognitive
Neuroscience, 3(1). 1991.

What are the advantages and disadvantages of the eigenfaces method
in this context?

The scatter being maximized is due not only to the between-class
scatter that is useful for classification but also to the within-clas
scatter, which is generally undesirable for classification.

If PCA is presented faces with varying illumination, the projection
matrix Wopt will contain principal components that retain the
variation in lighting. If this variation is higher than the variation due
to class identity, then PCA will suffer greatly for classification.

Yields a more compact representation than the correlation-based
method.
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Comparisons Case Study: Faces

Method 3: Linear Subspaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Use Lambertian model directly.

Consider a point p on a Lambertian surface illuminated by a point
light source at infinity.

Let s ∈ R3 signify the product of the light source intensity with the
unit vector for the light source direction.

The image intensity of the surface at p when viewed by a camera is

E(p) = a(p)n(p)Ts (63)

where n(p) is the unit inward normal vector to the surface at point p,
and a(p) is the albedo of the surface at p (a scalar).

Hence, the image intensity of the point p is linear on s.
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Comparisons Case Study: Faces

Method 3: Linear Subspaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

So, if we assume no shadowing, given three images of a Lambertian
surface from the same viewpoint under three known, linearly
independent light source directions, the albedo and surface normal
can be recovered.

Alternatively, one can reconstruct the image of the surface under an
arbitrary lighting direction by a linear combination of the three
original images.

This fact can be used for classification.

For each face (class) use three or more images taken under different
lighting conditions to construct a 3D basis for the linear subspace.

For recognition, compute the distance of a new image to each linear
subspace and choose the face corresponding to the shortest distance.
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Comparisons Case Study: Faces

Method 3: Linear Subspaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Pros and Cons?

If there is no noise or shadowing, this method will achieve error free
classification under any lighting conditions (and if the surface is
indeed Lambertian).

Faces inevitably have self-shadowing.

Faces have expressions...

Still pretty computationally expensive (linear in number of classes).

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 56 / 103



Comparisons Case Study: Faces

Method 3: Linear Subspaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Pros and Cons?

If there is no noise or shadowing, this method will achieve error free
classification under any lighting conditions (and if the surface is
indeed Lambertian).

Faces inevitably have self-shadowing.

Faces have expressions...

Still pretty computationally expensive (linear in number of classes).

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 56 / 103



Comparisons Case Study: Faces

Method 4: FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Recall the Fisher Linear Discriminant setup.
The between-class scatter matrix

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T (64)

The within-class scatter matrix

SW =
c∑

i=1

∑
xk∈Di

(xk − µi) (xk − µi)
T (65)

The optimal projection Wopt is chosen as the matrix with orthonormal
columns which maximizes the ratio of the determinant of the
between-class scatter matrix of the projected vectors to the
determinant of the within-class scatter of the projected vectors:

Wopt = arg max
W

|WTSBW |
|WTSW W |

(66)
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Comparisons Case Study: Faces

Method 4: FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

The eigenvectors {wi|i = 1, 2, . . . ,m} corresponding to the m largest
eigenvalues of the following generalized eigenvalue problem comprise
Wopt:

SBwi = λiSWwi, i = 1, 2, . . . ,m (67)

This is a multi-class version of the FLD, which we will discuss in more
detail.

In face recognition, things get a little more complicated because the
within-class scatter matrix SW is always singular.

This is because the rank of SW is at most N − c and the number of
images in the learning set are commonly much smaller than the
number of pixels in the image.

This means we can choose W such that the within-class scatter is
exactly zero.
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Comparisons Case Study: Faces

Method 4: FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

To overcome this, project the image set to a lower dimensional space
so that the resulting within-class scatter matrix SW is nonsingular.

How?

PCA to first reduce the dimension to N − c and the FLD to reduce it
to c− 1.

WT
opt is given by the product WT

FLDWT
PCA where

WPCA = arg max
W
|WTST W | (68)

WFLD = arg max
W

|WTWT
PCASBWPCAW |

|WTWT
PCASW WPCAW |

(69)
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Comparisons Case Study: Faces

Experiment 1 and 2: Variation in Lighting
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Hypothesis: face recognition algorithms will perform better if they
exploit the fact that images of a Lambertian surface lie in a linear
subspace.

Used Hallinan’s Harvard Database which sampled the space of light
source directions in 15 degree incremements.

Used 330 images of five people (66 of each) and extracted five
subsets.

Classification is nearest neighbor in all cases.
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3 EXPERIMENTAL RESULTS

In this section, we present and discuss each of the afore-
mentioned face recognition techniques using two different
databases. Because of the specific hypotheses that we
wanted to test about the relative performance of the consid-
ered algorithms, many of the standard databases were in-
appropriate. So, we have used a database from the Harvard
Robotics Laboratory in which lighting has been systemati-
cally varied. Secondly, we have constructed a database at
Yale that includes variation in both facial expression and
lighting. 1

3.1 Variation in Lighting
The first experiment was designed to test the hypothesis
that under variable illumination, face recognition algo-
rithms will perform better if they exploit the fact that im-
ages of a Lambertian surface lie in a linear subspace. More
specifically, the recognition error rates for all four algo-
rithms described in Section 2 are compared using an im-
age database constructed by Hallinan at the Harvard Ro-
botics Laboratory [14], [15]. In each image in this data-
base, a subject held his/her head steady while being illu-
minated by a dominant light source. The space of light
source directions, which can be parameterized by spheri-
cal angles, was then sampled in 15$ increments. See Fig. 3.
From this database, we used 330 images of five people (66
of each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset are
shown in Fig. 4.

Subset 1 contains 30 images for which both the longitudi-
nal and latitudinal angles of light source direction are
within 15$ of the camera axis, including the lighting

1. The Yale database is available for download from http://cvc.yale.edu.

direction coincident with the camera’s optical axis.
Subset 2 contains 45 images for which the greater of the

longitudinal and latitudinal angles of light source di-
rection are 30$ from the camera axis.

Subset 3 contains 65 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 45$ from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60$ from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75$ from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.
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longitudinal and latitudinal angles of light source di-
rection are 45$ from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60$ from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75$ from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 62 / 103



Comparisons Case Study: Faces

Experiment 1: Variation in Lighting – Extrapolation
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Train on Subset 1.

Test of Subsets 1,2,and 3.716 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  7,  JULY  1997

vidual were projected into the feature space. The images
were cropped within the face so that the contour of the
head was excluded.2 For the Eigenface and correlation tests,
the images were normalized to have zero mean and unit
variance, as this improved the performance of these meth-
ods. For the Eigenface method, results are shown when ten
principal components were used. Since it has been sug-
gested that the first three principal components are primar-
ily due to lighting variation and that recognition rates can
be improved by eliminating them, error rates are also pre-
sented using principal components four through thirteen.

We performed two experiments on the Harvard Data-
base: extrapolation and interpolation. In the extrapolation
experiment, each method was trained on samples from
Subset 1 and then tested using samples from Subsets 1, 2,
and 3.3 Since there are 30 images in the training set, cor-
relation is equivalent to the Eigenface method using 29
principal components. Fig. 5 shows the result from this
experiment.

In the interpolation experiment, each method was trained
on Subsets 1 and 5 and then tested the methods on Subsets 2,
3, and 4. Fig. 6 shows the result from this experiment.

These two experiments reveal a number of interesting
points:

1) All of the algorithms perform perfectly when lighting
is nearly frontal. However, as lighting is moved off

2. We have observed that the error rates are reduced for all methods when
the contour is included and the subject is in front of a uniform background.
However, all methods performed worse when the background varies.

3. To test the methods with an image from Subset 1, that image was removed
from the training set, i.e., we employed the “leaving-one-out” strategy [4].

axis, there is a significant performance difference
between the two class-specific methods and the Ei-
genface method.

2) It has also been noted that the Eigenface method is
equivalent to correlation when the number of Eigen-
faces equals the size of the training set [17], and since
performance increases with the dimension of the ei-
genspace, the Eigenface method should do no better
than correlation [26]. This is empirically demonstrated
as well.

3) In the Eigenface method, removing the first three
principal components results in better performance
under variable lighting conditions.

4) While the Linear Subspace method has error rates that
are competitive with the Fisherface method, it re-
quires storing more than three times as much infor-
mation and takes three times as long.

5) The Fisherface method had error rates lower than the
Eigenface method and required less computation time.

3.2 Variation in Facial Expression, Eye Wear, and
Lighting

Using a second database constructed at the Yale Center for
Computational Vision and Control, we designed tests to de-
termine how the methods compared under a different range
of conditions. For sixteen subjects, ten images were acquired
during one session in front of a simple background. Subjects
included females and males (some with facial hair), and
some wore glasses. Fig. 7 shows ten images of one subject.
The first image was taken under ambient lighting in a neutral
facial expression and the person wore glasses. In the second

Extrapolating from Subset 1
Method Reduced Error Rate (%)

Space Subset 1 Subset 2 Subset 3
Eigenface 4 0.0 31.1 47.7

10 0.0 4.4 41.5
Eigenface 4 0.0 13.3 41.5
w/o 1st 3 10 0.0 4.4 27.7

Correlation 29 0.0 0.0 33.9
Linear Subspace 15 0.0 4.4 9.2

Fisherface 4 0.0 0.0 4.6

Fig. 5. Extrapolation: When each of the methods is trained on images with near frontal illumination (Subset 1), the graph and corresponding table show
the relative performance under extreme light source conditions.
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Comparisons Case Study: Faces

Experiment 2: Variation in Lighting – Interpolation
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Train on Subsets 1 and 5.

Test of Subsets 2, 3, and 4.BELHUMEUR ET AL.:  EIGENFACES VS. FISHERFACES: RECOGNITION USING CLASS SPECIFIC LINEAR PROJECTION 717

image, the glasses were removed. If the person normally
wore glasses, those were used; if not, a random pair was bor-
rowed. Images 3-5 were acquired by illuminating the face in
a neutral expression with a Luxolamp in three positions. The
last five images were acquired under ambient lighting with
different expressions (happy, sad, winking, sleepy, and sur-
prised). For the Eigenface and correlation tests, the images
were normalized to have zero mean and unit variance, as this
improved the performance of these methods. The images
were manually centered and cropped to two different scales:
The larger images included the full face and part of the back-
ground while the closely cropped ones included internal
structures such as the brow, eyes, nose, mouth, and chin, but
did not extend to the occluding contour.

In this test, error rates were determined by the “leaving-
one-out” strategy [4]: To classify an image of a person, that
image was removed from the data set and the dimension-
ality reduction matrix W was computed. All images in the
database, excluding the test image, were then projected
down into the reduced space to be used for classification.
Recognition was performed using a nearest neighbor classi-
fier. Note that for this test, each person in the learning set is
represented by the projection of ten images, except for the
test person who is represented by only nine.

In general, the performance of the Eigenface method
varies with the number of principal components. Thus, be-
fore comparing the Linear Subspace and Fisherface methods
with the Eigenface method, we first performed an experi-

Interpolating between Subsets 1 and 5
Method Reduced Error Rate (%)

Space Subset 2 Subset 3 Subset 4
Eigenface 4 53.3 75.4 52.9

10 11.11 33.9 20.0
Eigenface 4 31.11 60.0 29.4
w/o 1st 3 10 6.7 20.0 12.9

Correlation 129 0.0 21.54 7.1
Linear Subspace 15 0.0 1.5 0.0

Fisherface 4 0.0 0.0 1.2

Fig. 6. Interpolation: When each of the methods is trained on images from both near frontal and extreme lighting (Subsets 1 and 5), the graph and
corresponding table show the relative performance under intermediate lighting conditions.

    

    

Fig. 7. The Yale database contains 160 frontal face images covering 16 individuals taken under 10 different conditions: A normal image under
ambient lighting, one with or without glasses, three images taken with different point light sources, and five different facial expressions.
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Comparisons Case Study: Faces

Experiment 1 and 2: Variation in Lighting
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

Empirically demonstrated that the Eigenface method is equivalent to
correlation when the number of Eigenfaces equals the size of the
training set (Exp. 1).
In the Eigenface method, removing the first three principal
components results in better performance under variable lighting
conditions.
Linear Subspace has comparable error rates with the FisherFace
method, but it requires 3x as much storage and takes three times as
long.
The Fisherface method had error rates lower than the Eigenface
method and required less computation time.
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Comparisons Case Study: Faces

Experiment 3: Yale DB
Source: Belhumeur et al. IEEE TPAMI 19(7) 711–720. 1997.

Uses a second database of 16 subjects with ten images of images (5
varying in expression).

718 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  7,  JULY  1997

ment to determine the number of principal components
yielding the lowest error rate. Fig. 8 shows a plot of error
rate vs. the number of principal components, for the closely
cropped set, when the initial three principal components
were retained and when they were dropped.

The relative performance of the algorithms is self evident
in Fig. 9. The Fisherface method had error rates that were
better than half that of any other method. It seems that the
Fisherface method chooses the set of projections which per-
forms well over a range of lighting variation, facial expres-
sion variation, and presence of glasses.

Note that the Linear Subspace method faired compara-
tively worse in this experiment than in the lighting experi-
ments in the previous section. Because of variation in facial
expression, the images no longer lie in a linear subspace.
Since the Fisherface method tends to discount those por-
tions of the image that are not significant for recognizing an
individual, the resulting projections W tend to mask the
regions of the face that are highly variable. For example, the
area around the mouth is discounted, since it varies quite a
bit for different facial expressions. On the other hand, the
nose, cheeks, and brow are stable over the within-class

Fig. 8. As demonstrated on the Yale Database, the variation in performance of the Eigenface method depends on the number of principal compo-
nents retained. Dropping the first three appears to improve performance.

”Leaving-One-Out” of Yale Database
Method Reduced Error Rate (%)

Space Close Crop Full Face
Eigenface 30 24.4 19.4
Eigenface
w/o 1st 3 30 15.3 10.8

Correlation 160 23.9 20.0
Linear

Subspace
48 21.6 15.6

Fisherface 15 7.3 0.6

Fig. 9. The graph and corresponding table show the relative performance of the algorithms when applied to the Yale Database which contains
variation in facial expression and lighting.J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 66 / 103
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Comparisons Case Study: Faces

Can PCA outperform FLD for recognition?
Source: Mart́ınez and Kak. PCA versus LDA. PAMI 23(2), 2001.

There may be situations in which PCA might outperform FLD.

Can you think of such a situation?

PCA

LDA

D
PCA

LDA
D

Figure 1: There are two di�erent classes embedded in two di�erent \Gaussian-like" distributions. However, only twosample per class are supplied to the learning procedure (PCA or LDA). The classi�cation result of the PCA procedure(using only the �rst eigenvector) is more desirable than the result of the LDA. DPCA and DLDA represent the decisionthresholds obtained by using nearest-neighbor classi�cation.In this paper we will show that the switch from PCA to LDA may not always be warranted and maysometimes lead to faulty system design, especially if the size of the learning database is small.1 Our claim carriesintuitive plausibility, as can be established with the help of Fig. 1. This �gure shows two learning instances,marked by circles and crosses, for each class whose underlying (but unknown) distribution is shown by the dottedcurve. Taking all of the data into account, PCA will compute a vector that has largest variance associated withit. This is shown by the vertical line labeled PCA. On the other hand, LDA will compute a vector which bestdiscriminates between the two classes. This vector is shown by the diagonal line labeled LDA. The decisionthresholds yielded by the nearest neighbor approach for the two cases are marked DPCA and DLDA. As can beseen by the manner in which the decision thresholds intersect the ellipses corresponding to the class distributions,PCA will yield superior results.Although examples such as the one depicted in Fig. 1 are quite convincing with regard to the claim thatLDA is not always be superior to PCA, we still bear the burden of establishing our claim with the help of actualdata. This we will do in the rest of this paper with the help of a face databases: the AR-face database (a publiclyavailable data-set).As additional evidence in support of our claim, we should also draw the attention of the reader to someof the results of the September 96 FERET competition [15]. In particular, we wish to point to the LDA resultsobtained by the University of Maryland [2] that compare unfavorably with respect to a standard PCA approachas described in [18]. A notable characteristic of the data used in such experiments was that only one or twolearning samples per class were given to the system.Of course, as one would expect, given large and representative learning datasets, LDA should outperformPCA. Simply to con�rm this intuitive conclusion, we will also show results on the AR-database of faces. Inthis database, the sample size per class for learning is larger than was the case for the FERET competition.2For example, the database we will use to show LDA outperforming PCA has images of 13 di�erent facial shotscorresponding to di�erent expressions or illumination conditions and/or occlusions for each subject.1This is not to cast any aspersions on the system design employed by the previously cited contributions. Our claim has validityonly when the size of the learning database is insu�ciently large or non-uniformly distributed.2Note that FERET deals with a very large number of classes, but the number of classes is not the issue in this paper. Our mainconcern here is with the problems caused by insu�cient data per class available for learning.2

When we have few training data, then it may be preferable to
describe total scatter.
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Comparisons Case Study: Faces

Can PCA outperform FLD for recognition?
Source: Mart́ınez and Kak. PCA versus LDA. PAMI 23(2), 2001.

They tested on the AR face database and found affirmative results.

Figure 4: Shown here are performance curves for three di�erent ways of dividing the data into a training set and a testingset.

Figure 5: Performance curves for the high-dimensional case.8
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Extensions Multiple Discriminant Analysis

Multiple Discriminant Analysis

We can generalize the Fisher Linear Discriminant to multiple classes.

Indeed we saw it done in the Case Study on Faces. But, let’s cover it
with some rigor.

Let’s make sure we’re all at the same place: How many discriminant
functions will be involved in a c class problem?

Key: There will be c− 1 projection functions for a c class problem
and hence the projection will be from a d-dimensional space to a
(c− 1)-dimensional space.

d must be greater than or equal to c.
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Extensions Multiple Discriminant Analysis

MDA The Projection

The projection is accomplished by c− 1 discriminant functions:

yi = wT
i x i = 1, . . . , c− 1 (70)

which is summarized in matrix form as

y = WTx (71)

where W is the d× (c− 1) projection function.

W1

W2

FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors W1 and W2. Informally, multiple discriminant
methods seek the optimum such subspace, that is, the one with the greatest separation of
the projected distributions for a given total within-scatter matrix, here as associated with
W1. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Extensions Multiple Discriminant Analysis

MDA Within-Class Scatter Matrix

The generalization for the Within-Class Scatter Matrix is
straightforward:

SW =
c∑

i=1

Si (72)

where, as before,

Si =
∑
x∈Di

(x−mi)(x−mi)
T

and

mi =
1

ni

∑
x∈Di

x .
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Extensions Multiple Discriminant Analysis

MDA Between-Class Scatter Matrix

The between-class scatter matrix SB is not so easy to generalize.

Let’s define a total mean vector

m =
1

n

∑
x

x =
1

n

c∑
i=1

nimi (73)

Recall then total scatter matrix

ST =
∑
x

(x−m)(x−m)T (74)
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Extensions Multiple Discriminant Analysis

MDA Between-Class Scatter Matrix

Then it follows that

ST =
c∑

i=1

∑
x∈Di

(x−mi + mi −m)(x−mi + mi −m)T (75)

=
c∑

i=1

∑
x∈Di

(x−mi)(x−mi)
T +

c∑
i=1

∑
x∈Di

(mi −m)(mi −m)T

(76)

= SW +
c∑

i=1

ni(mi −m)(mi −m)T (77)

So, we can define this second term as a generalized between-class
scatter matrix.

The total scatter is the the sum of the within-class scatter and the
between-class scatter.
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Extensions Multiple Discriminant Analysis

MDA Objective
Page 1

We again seek a criterion that will maximize the between-class scatter
of the projected vectors to the within-class scatter of the projected
vectors.

Recall that we can write down the scatter in terms of these
projections:

m̃i =
1

ni

∑
y∈Yi

y and m̃ =
1

n

c∑
i=1

nim̃i (78)

S̃W =
c∑

i=1

∑
y∈Yi

(y − m̃i)(y − m̃i)
T (79)

S̃B =
c∑

i=1

ni(m̃i − m̃)(m̃i − m̃)T (80)
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Extensions Multiple Discriminant Analysis

MDA Objective
Page 2

Then, we can show

S̃W = WTSWW (81)

S̃B = WTSBW (82)

A simple scalar measure of scatter is the determinant of the scatter
matrix. The determinant is the product of the eigenvalues and thus is
the product of the variation along the principal directions.

J(W) =
|S̃B|
|S̃W |

=
|WTSBW|
|WTSWW|

(83)
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Extensions Multiple Discriminant Analysis

MDA Solution

The columns of an optimal W are the generalized eigenvectors that
correspond to the largest eigenvalues in

SBwi = λiSWwi (84)

If SW is nonsingular, then this can be converted to a conventional
eigenvalue problem. Or, we could notice that the rank of SB is at
most c− 1 and do some clever algebra...

The solution for W is, however, not unique and would allow arbitrary
scaling and rotation, but these would not change the ultimate
classification.
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Extensions Image PCA

IMPCA
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

Observation: To apply PCA and FLD on images, we need to first
“vectorize” them, which can lead to high-dimensional vectors. Solving
the associated eigen-problems is a very time-consuming process.

So, can we apply PCA on the images directly?

Yes!

This will be accomplished by what the authors’ call the image total
covariance matrix.
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Extensions Image PCA

IMPCA: Problem Set-Up
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

Define A ∈ Rm×n as our image.

Let w denote an n-dimensional column vector, which will represent
the subspace onto which we will project an image.

y = Aw (85)

which yields m-dimensional vector y.

You might think of w this as a “feature selector.”

We, again, want to maximize the total scatter...

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 80 / 103



Extensions Image PCA

IMPCA: Image Total Scatter Matrix
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

We have M total data samples.

The sample mean image is

M =
1

M

M∑
j=1

Aj (86)

And the projected sample mean is

m̃ =
1

M

M∑
j=1

yj (87)

=
1

M

M∑
j=1

Ajw (88)

= Mw (89)
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Extensions Image PCA

IMPCA: Image Total Scatter Matrix
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

The scatter of the projected samples is

S̃ =
M∑

j=1

(yj − m̃)(yj − m̃)T (90)

=
M∑

j=1

[
(Aj −M)w

][
(Aj −M)w

]T
(91)

tr(S̃) = wT

 M∑
j=1

(Aj −M)T(Aj −M)

w (92)
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Extensions Image PCA

IMPCA: Image Total Scatter Matrix
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

So, the image total scatter matrix is

SI =
M∑

j=1

(Aj −M)T(Aj −M) (93)

And, a suitable criterion, in a form we’ve seen before is

JI(w) = wTSIw (94)

We know already that the vectors w that maximize JI are the
orthonormal eigenvectors of SI corresponding to the largest
eigenvalues of SI .
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Extensions Image PCA

IMPCA: Experimental Results
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

Dataset is the ORL database

10 different images taken of 40 individuals.
Facial expressions and details are varying.
Even the pose can vary slightly: 20 degree rotation/tilt and 10% scale.
Size is normalized (92× 112).

1998 J. Yang, J.-Y. Yang / Pattern Recognition 35 (2002) 1997–1999

where, TSx denotes the total covariance matrix of projected
feature vectors of training images, and tr(TSx) denotes the
trace of TSx. Now, the problem is how to evaluate the co-
variance matrix TSx.

Suppose there are L known pattern classes, andM denotes
the total number of samples of all classes. The jth training
image is denoted by an m × n matrix Aj (j = 1; 2; : : : ; M),
and the mean image of all training sample is denoted by KA.

After the projection of training image onto X , we get the
projected feature vector

Yj = AjX; j = 1; 2; : : : ; M: (3)

Suppose the mean vector of all projected feature vectors is
denoted by KY , it is easy to get KY = KAX . Then, TSx can be
evaluated by

TSx =
1
M

M∑
j=1

(Yj − KY )(Yj − KY )T

=
1
M

M∑
j=1

[(Aj − KA)X ][(Aj − KA)X ]T: (4)

So

tr(TSx) = X T

(
1
M

M∑
j=1

(Aj − KA)T(Aj − KA)

)
X: (5)

Now, let us de<ne the matrix below

Gt =
1
M

M∑
j=1

(Aj − KA)T(Aj − KA): (6)

The matrix Gt is called image total covariance (scatter)
matrix. And, it is easy to verify that Gt is an n× n nonneg-
ative de<nite matrix by its de<nition.

Accordingly, the criterion in Eq. (2) can be expressed in
this form

Jp(X ) = X TGtX: (7)

2.2. Image principal component analysis

The criterion in Eq. (7) is called generalized total scatter
criterion. In fact, in the special case of image matrix being
row vectors, it is not hard to prove that the criterion is the
common total scatter criterion. The vector X maximizing the
criterion is called the optimal projection axe, and its physical
meaning is obvious, i.e., after projection of image matrix
onto X , the total scatter of projected samples is maximized.

It is evident that the optimal projection axe is the eigen-
vector corresponding to the maximal eigenvalue of Gt . Gen-
erally, in many cases, one optimal projection axe is not
enough, we usually select a set of projection axes subject
to the orthonormal constraints and maximizing the criterion
in Eq. (7). In fact, the optimal projection axes X1; : : : ; Xd of
IMPCA can be selected as the orthonormal eigenvectors of
Gt associated with the <rst d largest eigenvalues.

Fig. 1. Five images of one person in ORL face database.

2.3. Feature extraction method

The obtained optimal projection vectors X1; : : : ; Xd of IM-
PCA are used for feature extraction. Let

Yk = AXk ; k = 1; 2; : : : ; d: (8)

Then, we get a family of image projected feature vectors
Y1; : : : ; Yd, which are used to form an N = md dimensional
resulting projected feature vector of image A as follows:

Y =




Y1

Y2

...

Yd




=




AX1

AX2

...

AXd



: (9)

3. Experimental results

The proposed method is tested on the ORL database that
contains a set of face images taken at the Olivetti Research
Laboratory in Cambridge, UK. There are 10 diOerent images
for 40 individuals. For some persons, the images were taken
at diOerent times. And the facial expression (open=closed
eyes, smiling=non-smiling) and facial details (glasses=no
glasses) are variable. The images were taken against a dark
homogeneous background and the persons are in upright,
frontal position with tolerance for some tilting and rotation
of up to 20◦. Moreover, there is some variation in scale of
up to about 10%. All images are grayscale and normalized
with a resolution of 92×112. The <ve images of one person
in ORL are shown in Fig. 1.

In this experiment, we use the <rst <ve images of each
person for training and the remaining <ve for testing. Thus
the total amount of training samples and testing samples are
both 200. The proposed IMPCA is used for feature extrac-
tion. Here, since the size of image total covariance matrix
Gt is 92 × 92, it is very easy to work out its eigenvectors.
And the number of selected eigenvectors (projection vec-
tors) varies from 1 to 10. Note that if the projection vector
number is k, the dimension of corresponding projected fea-
ture vector is 112×k. Finally, a minimum distance classi<er
and a nearest neighbor classi<er are, respectively, employed
to classify in the projected feature space. The recognition
rates are shown in Table 1. The Eigenfaces [1] and Fisher-
faces [2] are used for feature extraction as well, and their
optimal performance lies in Table 2. Moreover, the CPU

The first five images of each person are used for training and the
second five are used for testing.
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Extensions Image PCA

IMPCA: Experimental Results
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

IMPCA varying the number of extracted eigenvectors (NN classifier):
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Table 1
Recognition rates (%) based on IMPCA projected features as the number of projection vectors varying from 1 to 10

Projection 1 2 3 4 5 6 7 8 9 10
vector number

Minimum distance 73.0 83.0 86.5 88.5 88.5 88.5 90.0 90.5 91.0 91.0
Nearest neighbor 85.0 92.0 93.5 94.5 94.5 95.0 95.0 95.5 93.5 94.0

Table 2
Comparison of the maximal recognition rates using the three meth-
ods

Recognition rate Eigenfaces Fisherfaces IMPCA

Minimum distance 89.5% (46) 88.5% (39) 91.0%
Nearest neighbor 93.5% (37) 88.5% (39) 95.5%

Note: The value in parentheses denotes the number of axes as
the maximal recognition rate is achieved.

Table 3
The CPU time consumed for feature extraction and classi<cation
using the three methods

Time (s) Feature Classi<cation Total
extraction time time time

Eigenfaces (37) 371.79 5.16 376.95
Fisherfaces (39) 378.10 5.27 383.37
IMPCA (112× 8) 27.14 25.04 52.18

time consumed for feature extraction and classi<cation using
the above methods under a nearest neighbor classi<er is
exhibited in Table 3.

Tables 1 and 2 indicate that our proposed IMPCA outper-
forms Eigenfaces and Fisherfaces. What’s more, in Table 3,
it is evident that the time consumed for feature extraction
using IMPCA is much less than that of the other two meth-
ods. So our methods are more preferable for image feature
extraction.
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Extensions Image PCA

IMPCA: Experimental Results
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

IMPCA vs. EigenFaces vs. FisherFaces for Recognition
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Extensions Image PCA

IMPCA: Discussion
Source: Yang and Yang: IMPCA vs. PCA, Pattern Recognition v35, 2002.

There is a clear speed-up because the amount of computation has
been greatly reduced.

However, this speed-up comes at some cost. What is that cost?

Why does IMPCA work in this case?

What is IMPCA really doing?
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Non-linear Dimension Reduction Locally Linear Embedding

Locally Linear Embedding
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

So far, we have covered a few methods for dimension reduction that
all make the underlying assumption the data in high dimension lives
on a planar manifold in the lower dimension.

The methods are easy to implement.
The methods do not suffer from local minima.

But, what if the data is non-linear?

the top eigenvectorsof thedatacovariancematrix. In classical(or metric)MDS,
one computesthe low dimensionalembeddingthat bestpreserves pairwisedis-
tancesbetweendatapoints. If thesedistancescorrespondto Euclideandistances,
the resultsof metric MDS are equivalent to PCA. Both methodsare simple to
implement,andtheir optimizationsdo not involve localminima.Thesevirtuesac-
countfor thewidespreaduseof PCA andMDS, despitetheir inherentlimitations
aslinearmethods.

Recently, we introducedaneigenvectormethod—calledlocally linearembedding
(LLE)—for the problemof nonlineardimensionalityreduction[4]. This problem
is illustratedby the nonlinearmanifold in Figure1. In this example,the dimen-
sionalityreductionby LLE succeedsin identifying theunderlyingstructureof the
manifold,while projectionsof thedataby PCA or metricMDS mapfaraway data
pointsto nearbypointsin the plane. Like PCA andMDS, our algorithmis sim-
ple to implement,andits optimizationsdo not involve local minima. At thesame
time, however, it is capableof generatinghighly nonlinearembeddings.Notethat
mixturemodelsfor localdimensionalityreduction[5, 6], whichclusterthedataand
performPCA within eachcluster, do not addressthe problemconsideredhere—
namely, how to maphigh dimensionaldatainto a singleglobalcoordinatesystem
of lowerdimensionality.

In this paper, we review theLLE algorithmin its mostbasicform andillustratea
potentialapplicationto audiovisualspeechsynthesis[3].
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Figure 1: The problemof nonlineardimensionalityreduction,as illustratedfor
threedimensionaldata(B) sampledfrom a two dimensionalmanifold(A). An un-
supervisedlearningalgorithmmustdiscover theglobal internalcoordinatesof the
manifold without signalsthat explicitly indicatehow the datashouldbe embed-
dedin two dimensions.Theshadingin (C) illustratestheneighborhood-preserving
mappingdiscoveredby LLE.
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Non-linear Dimension Reduction Locally Linear Embedding

The Non-Linear Problem
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

In non-linear dimension reduction, one must discover the global
internal coordinates of the manifold without signals that explicitly
indicate how the data should be embedded in the lower dimension (or
even how many dimensions should be used).

The LLE way of doing this is to make the assumption that, given
enough data samples, the local frame of a particular point xi is linear.
LLE proceeds to preserve this local structure while simultaneously
reducing the global dimension (indeed preserving the local structure
gives LLE the necessary constraints to discover the manifold).
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Non-linear Dimension Reduction Locally Linear Embedding

LLE: Neighborhoods
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

Suppose we have n real-valued vectors xi in dataset D each of
dimension D. We assume these data are sampled from some smooth
underlying manifold.

Furthermore, we assume that each data point and its neighbors lie on
or close to a locally linear patch of the manifold.

LLE characterizes the local geometry of these patches by linear
coefficients that reconstruct each data point from its neighbors.

If the neighbors form the D-dimensional simplex, then these
coefficients form the barycentric coordinates of the data point.
In the simplest form of LLE, one identifies K such nearest neighbors
based on the Euclidean distance.
But, one can use all points in a ball of fixed radius, or even more
sophisticated metrics.
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Non-linear Dimension Reduction Locally Linear Embedding

LLE: Neighborhoods
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

We can write down the reconstruction error with the following cost
function:

JLLE1(W) =
∑

i

∣∣∣∣xi −
∑

j

Wijxj

∣∣∣∣2 (95)

Notice that each row of the weight matrix W will be nonzero for only
K columns; i.e., W is a quite sparse matrix. I.e., if we define the set
N(xi) as the K neighbors of xi, then we enforce

Wij = 0 if xj /∈ N(xi) (96)

We will enforce that the rows sum to 1, i.e.,
∑

j Wij = 1. (This is for
invariance.)
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Non-linear Dimension Reduction Locally Linear Embedding

LLE: Neighborhoods
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

Note that the constrained weights that minimize these reconstruction
errors obey important symmetries: for any data point, they are
invariant to rotations, rescalings, and translations of that data point
and its neighbors.

This means that these weights characterize intrinsic geometric
properties of the neighborhood as opposed to any properties that
depend on a particular frame of reference.

If we suppose the data lie on a near a smooth nonlinear manifold of
dimension d � D. Then, to a good approximation, there exists a
linear mapping (a translation, rotation, and scaling) that maps the
high dimensional coordinates of each neighborhood to global internal
coordinates on the manifold.
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Non-linear Dimension Reduction Locally Linear Embedding

LLE: Neighborhoods
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

So, we expect that the characterization of the local neighborhoods
(W) in the original space to be equally valid for the local patches on
the manifold.

In other words, the same weights Wij that reconstruct point xi in the
original space should also reconstruct it in the embedded manifold
coordinate system.

First, let’s solve for the weights. And, then we’ll see how to use this
point to ultimately compute the global dimension reduction.
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Non-linear Dimension Reduction Locally Linear Embedding

Solving for the Weights
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

Solving for the weights W is a constrained least-squares problem.

Consider a particular x with K nearest neighbors ηj and weights wj

which sum to one. We can write the reconstruction error as

ε =

∣∣∣∣x−∑
j

wjηj

∣∣∣∣2 (97)

=

∣∣∣∣∑
j

wj(x− ηj)

∣∣∣∣2 (98)

=
∑
jk

wjwkCjk (99)

where Cjk is the covariance (x− ηj)(x− ηk)
T.
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Non-linear Dimension Reduction Locally Linear Embedding

Solving for the Weights
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

We need to add a Lagrange multiplier to enforce the constraint∑
j wj = 1 and then the weights can be solved in closed form.

The optimal weights, in terms of the local covariance matrix, are

wj =

∑
k C−1

jk∑
lm C−1

lm

. (100)

But, rather than explicitly inverting the covariance matrix, one can
solve the linear system ∑

k

Cjkwk = 1 (101)

and rescale the weights so that they sum to one.
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Non-linear Dimension Reduction Locally Linear Embedding

Stage 2: Neighborhood Preserving Mapping
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

Each high-dimensional input vector xi is mapped to a low-dimension
vector yi representing the global internal coordinates on the manifold.

LLE does this by choosing the d-dimension coordinates yi to
minimize the embedding cost function:

JLLE2(y) =
∑

i

∣∣∣∣yi −
∑

j

Wijyj

∣∣∣∣ (102)

The basis for the cost function is the same—locally linear
reconstruction errors—but here, the weights W are fixed and the
coordinates y are optimized.
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Non-linear Dimension Reduction Locally Linear Embedding

Stage 2: Neighborhood Preserving Mapping
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

This defines a quadratic:

JLLE2(y) =
∑

i

∣∣∣∣yi −
∑

j

Wijyj

∣∣∣∣ (103)

=
∑
ij

Mij(yT
i yj) (104)

where

Mij = δij −Wij −Wji +
∑

k

WkiWkj (105)

with δij is 1 if j 6= i and 0 otherwise.
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Non-linear Dimension Reduction Locally Linear Embedding

Stage 2: Neighborhood Preserving Mapping
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

To remove the degree of freedom for translation, we enforce the
coordinates to be centered at the origin:∑

i

yi = 0 (106)

To avoid degenerate solutions, we constrain the embedding vectors to
have unit covariance, with their outer-products satisfying

1

n

∑
i

yiyT
i = I (107)

The optimal embedding is found by the bottom d + 1 non-zero
eigenvectors, i.e., those d + 1 eigenvectors corresponding to the
smallest but non-zero d + 1 eigenvalues. The bottom eigenvector is
the unit vector the corresponds to the free translation, it is discarded.
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Putting It Together
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

LLE ALGORITHM

1. Computetheneighborsof eachdatapoint,
�� �

.

2. Computetheweights

 � �

thatbestreconstructeachdatapoint
�� �

from
its neighbors,minimizing thecostin eq.(1) by constrainedlinearfits.

3. Computethevectors
�$/�

bestreconstructedby theweights

 � �

, minimizing
thequadraticform in eq.(2) by its bottomnonzeroeigenvectors.

Figure2: Summaryof theLLE algorithm,mappinghigh dimensionaldatapoints,����
, to low dimensionalembeddingvectors,

�$0�
.

arechosen,theoptimalweights

 � �

andcoordinates
$ �

arecomputedby standard
methodsin linearalgebra.Thealgorithminvolvesa singlepassthroughthethree
stepsin Fig. 2 andfindsglobalminimaof thereconstructionandembeddingcosts
in Eqs.(1) and(2). As discussedin AppendixA, in the unusualcasewherethe
neighborsoutnumbertheinputdimensionality

� �213� � , theleastsquaresproblem
for findingtheweightsdoesnothaveauniquesolution,andaregularizationterm—
for example,onethatpenalizesthesquaredmagnitudesof the weights—mustbe
addedto thereconstructioncost.

Thealgorithm,asdescribedin Fig. 2, takesasinput the
�

high dimensionalvec-
tors,

�� �
. In many settings,however, theusermay not have accessto dataof this

form, but only to measurementsof dissimilarityor pairwisedistancebetweendif-
ferentdatapoints. A simplevariationof LLE, describedin AppendixC, canbe
appliedto input of this form. In this way, matricesof pairwisedistancescanbe
analyzedby LLE just aseasilyasMDS[2]; in factonly a smallfractionof all pos-
sible pairwisedistances(representingdistancesbetweenneighboringpoints and
their respective neighbors)arerequiredfor runningLLE.

3 Examples

The embeddingsdiscoveredby LLE areeasiestto visualizefor intrinsically two
dimensionalmanifolds.In Fig.1, for example,theinputtoLLE consisted

� �546�7�
datapointssampledoff the S-shapedmanifold. The resultingembeddingshows
how thealgorithm,using � �8 :9

neighborsperdatapoint,successfullyunraveled
theunderlyingtwo dimensionalstructure.

5

J. Corso (SUNY at Buffalo) Lecture 4 29 January 2010 99 / 103
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Example 1
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

K=12.

the top eigenvectorsof thedatacovariancematrix. In classical(or metric)MDS,
one computesthe low dimensionalembeddingthat bestpreserves pairwisedis-
tancesbetweendatapoints. If thesedistancescorrespondto Euclideandistances,
the resultsof metric MDS are equivalent to PCA. Both methodsare simple to
implement,andtheir optimizationsdo not involve localminima.Thesevirtuesac-
countfor thewidespreaduseof PCA andMDS, despitetheir inherentlimitations
aslinearmethods.

Recently, we introducedaneigenvectormethod—calledlocally linearembedding
(LLE)—for the problemof nonlineardimensionalityreduction[4]. This problem
is illustratedby the nonlinearmanifold in Figure1. In this example,the dimen-
sionalityreductionby LLE succeedsin identifying theunderlyingstructureof the
manifold,while projectionsof thedataby PCA or metricMDS mapfaraway data
pointsto nearbypointsin the plane. Like PCA andMDS, our algorithmis sim-
ple to implement,andits optimizationsdo not involve local minima. At thesame
time, however, it is capableof generatinghighly nonlinearembeddings.Notethat
mixturemodelsfor localdimensionalityreduction[5, 6], whichclusterthedataand
performPCA within eachcluster, do not addressthe problemconsideredhere—
namely, how to maphigh dimensionaldatainto a singleglobalcoordinatesystem
of lowerdimensionality.

In this paper, we review theLLE algorithmin its mostbasicform andillustratea
potentialapplicationto audiovisualspeechsynthesis[3].

-1 0 1 0
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Figure 1: The problemof nonlineardimensionalityreduction,as illustratedfor
threedimensionaldata(B) sampledfrom a two dimensionalmanifold(A). An un-
supervisedlearningalgorithmmustdiscover theglobal internalcoordinatesof the
manifold without signalsthat explicitly indicatehow the datashouldbe embed-
dedin two dimensions.Theshadingin (C) illustratestheneighborhood-preserving
mappingdiscoveredby LLE.

2
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Example 2
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

K=4.

Figure3: Theresultsof PCA(top)andLLE (bottom),appliedto imagesof asingle
face translatedacrossa two-dimensionalbackgroundof noise. Note how LLE
mapstheimageswith cornerfacesto thecornersof its twodimensionalembedding,
while PCA fails to preserve theneighborhoodstructureof nearbyimages.
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Figure3: Theresultsof PCA(top)andLLE (bottom),appliedto imagesof asingle
face translatedacrossa two-dimensionalbackgroundof noise. Note how LLE
mapstheimageswith cornerfacesto thecornersof its twodimensionalembedding,
while PCA fails to preserve theneighborhoodstructureof nearbyimages.
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Example 3
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

K=16.

Figure4: Imagesof lips mappedinto theembeddingspacedescribedby thefirst
two coordinatesof PCA (top) andLLE (bottom). Representative lips areshown
next to circledpointsin differentpartsof eachspace.Thedifferencesbetweenthe
two embeddingsindicatethepresenceof nonlinearstructurein thedata.

8

Figure4: Imagesof lips mappedinto theembeddingspacedescribedby thefirst
two coordinatesof PCA (top) andLLE (bottom). Representative lips areshown
next to circledpointsin differentpartsof eachspace.Thedifferencesbetweenthe
two embeddingsindicatethepresenceof nonlinearstructurein thedata.

8

If the lip images described a nearly linear manifold, these two methods would

yield similar results; thus the significant differences in these embeddings reveal the

presence of nonlinear structure.
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LLE Complexity
Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

Computing nearest neighbors scales O(Dn2) in the worst case. But,
in many situations, space partitioning methods can be used to find
the K nearest neighbors in O(n log n) time.

Computing the weights is O(DnK3).

Computing the projection is O(dn2).

All matrix computations are on very sparse matrices and can thus be
implemented quite efficiently.
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