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@ Until now, we've assumed our training samples are “labeled” by their
category membership.

@ Methods that use labeled samples are said to be supervised;
otherwise, they're said to be unsupervised.
@ However:

e Why would one even be interested in learning with unlabeled samples?

e Is it even possible in principle to learn anything of value from unlabeled
samples?
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@ Collecting and labeling a large set of sample patterns can be
surprisingly costly.

e E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.
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@ Extend to a larger training set by using semi-supervised learning.
run without supervision on a large, unlabeled set.

e Train a classifier on a small set of samples, then tune it up to make it

@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.
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@ Collecting and labeling a large set of sample patterns can be
surprisingly costly.
e E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.
@ Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.

@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

© To detect the gradual change of pattern over time.

@ To find features that will then be useful for categorization.
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Why Unsupervised Learning?

o

© © 0

Collecting and labeling a large set of sample patterns can be
surprisingly costly.
e E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.
Extend to a larger training set by using semi-supervised learning.
e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.
e Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.
To detect the gradual change of pattern over time.
To find features that will then be useful for categorization.
To gain insight into the nature or structure of the data during the
early stages of an investigation.
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o What is data clustering?

e Grouping of objects into meaningful categories

o Given a representation of N objects, find k clusters based on a
measure of similarity.
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o What is data clustering?
e Grouping of objects into meaningful categories
o Given a representation of N objects, find k clusters based on a
measure of similarity.

o Why data clustering?
o Natural Classification: degree of similarity among forms.
o Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
e Compression: for organizing data.
o Applications: can be used by any scientific field that collects data!
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o What is data clustering?
e Grouping of objects into meaningful categories
o Given a representation of N objects, find k clusters based on a
measure of similarity.

o Why data clustering?
o Natural Classification: degree of similarity among forms.
o Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
e Compression: for organizing data.
o Applications: can be used by any scientific field that collects data!

@ Google Scholar: 1500 clustering papers in 2007 alone!
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@ 800,000 scientific papers clustered into 776 topics based on how often
the papers were cited together by authors of other papers
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disjoint subsets D;'s:

@ Given a set of N unlabeled examples D = z1,25,...,xN in a
d-dimensional feature space, D is partitioned into a number of

k

where D; UD; =0,i# j ,
a given criterion ®.

where the points in each subset are similar to each other according to

(1)
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d-dimensional feature space, D is partitioned into a number of
disjoint subsets D;'s:

@ Given a set of N unlabeled examples D = z1,25,...,xN in a
_ 1k )
D =Uj_D;

a given criterion ®.

where D; UD; =0,i# j ,
where the points in each subset are similar to each other according to

(1)
@ A partition is denoted by
m = (D1, Dy, ..., Dy) (2)
and the problem of data clustering is thus formulated as
7 = argmin f(m) ,
™

(3)
where f(+) is formulated according to ®.
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@ Randomly initialize 1, u2,

ooy He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;

Data Point
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@ Randomly initialize 1, u2,

-y He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;
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First choose k arbitrary centers
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@ Randomly initialize 1, u2,

-y He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;
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@ Randomly initialize 1, u2,

-y He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;
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@ Randomly initialize 1, u2,

ooy He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;

ok
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Recompute centers
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@ Randomly initialize 1, u2,

-y He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;
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@ Randomly initialize 1, u2,

-y He
@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;

K
X

Points already

assigned to nearest

April 2010

Do
9/41



@ Choose starting centers iteratively.

o Let D(z) be the distance from z to the nearest existing center, take
x as new center with probability oc D(z)?.

@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;

o (refer to the slides by D. Author and S. Vassolvitskii for details)
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@ What is a cluster?

@ How to define pair-wise similarity?
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@ What is a cluster?

@ How to define pair-wise similarity?

© Which features and normalization scheme?
@ How many clusters?
© Which clustering method?

O Are the discovered clusters and partition valid?
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@ What is a cluster?

@ How to define pair-wise similarity?

© Which features and normalization scheme?

@ How many clusters?

© Which clustering method?

O Are the discovered clusters and partition valid?

@ Does the data have any clustering tendency?
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@ Compact Clusters

@ Connected Clusters

o Within-cluster distance < between-cluster connectivity

o Within-cluster connectivity > between-cluster connectivity
o ldeal cluster: compact and isolated.
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User's Dilemma

Representation (features)?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

@ There's no universal representation; they're domain dependent.
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@ A good representation leads to compact and isolated clusters.
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How do we weigh the features?

Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

@ Two different meaningful groupings produced by different weighting

schemes.

Mammals Predators
\s. Vs.
Birds Non-

Predators

Large wight on

Large weight on
appearance features activity features

http://www.ofai.at/~elias.pampalk/kdd03/animals/
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@ The samples are generated by 6 independent classes, yet:

ground truth

k=5
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o Clustering algorithms find clusters, even if there are no natural

clusters in the data.
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@ Which clustering algorithm is the best?
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@ Each algorithm imposes a structure on data.

@ Good fit between model and data = success.

GMM; k=3

Spectral; k=3

Spectral; k=2

=
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@ Recall the Gaussian distribution:

N(z|p, %) = Cn)IRS12 exp [—%(X —p)TE T (x - N)]

(4)
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@ Recall the Gaussian distribution:

N B) = s o0 [_;X TR u)] (4)

@ It forms the basis for the important Mixture of Gaussians density.
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@ Recall the Gaussian distribution:

N B) = s o0 [_;x TR u)] (4)

@ It forms the basis for the important Mixture of Gaussians density.
@ The Gaussian mixture is a linear superposition of Gaussians in the
form:

k=1

K
p(x) =Y meN (x|, Zi) -

(5)
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@ Recall the Gaussian distribution:

N B) = s o0 [_;x TR u>] (4)

@ It forms the basis for the important Mixture of Gaussians density.
form:

@ The Gaussian mixture is a linear superposition of Gaussians in the

K
p(x) =Y meN (x|, Zi) -

k=1

govern the relative importance between the various Gaussians in the
mixture density. >, m, = 1.

=] 5

()
@ The 7 are non-negative scalars called mixing coefficients and they
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Gaussian Mixture Models

p(a?)“
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Gaussian Mixture Models

p(m)“

0.5

J. Corso (SUNY at Buffalo) April 2010 21 /41



@ Define a K-dimensional binary random variable z.
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@ Define a K-dimensional binary random variable z.

@ z has a 1-of-K representation such that a particular element zj is 1
and all of the others are zero. Hence:

2z € {Oa 1}

szzl
k
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@ Define a K-dimensional binary random variable z.

@ z has a 1-of-K representation such that a particular element zj is 1
and all of the others are zero. Hence:

2z € {Oa 1}

(6)
Z 2z =1
k
coefficients:

(7)
@ The marginal distribution over z is specified in terms of the mixing

plzr =1) =,
And, recall, 0 <7, <1land ), m = 1.

(8)
o =
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Gaussian Mixture Models

@ Since z has a 1-of-K representation, we can also write this
distribution as

K
p(z) =[] = (9)
k=1
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Gaussian Mixture Models

@ Since z has a 1-of-K representation, we can also write this
distribution as

K
p(z) =[] = (9)
k=1

@ The conditional distribution of x given z is a Gaussian:

p(x|zr = 1) = N(x|py, i) (10)
K

p(x|z) = T N (xly,, Sk)* (11)
k=1
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Gaussian Mixture Models

@ We are interested in the marginal distribution of x:

p(x) =Y p(x,2) (12)
= ZP(Z)P(X!Z) (13)

= H TRt N (e g, ) (14)

z k=1

N (x| g, Zie) (15)

Mw
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Gaussian Mixture Models

@ We are interested in the marginal distribution of x:
p(x) = Zp(& z) (12)
= Z p(2)p(x|2) (13)

= H TRt N (e g, ) (14)

z k=1

Mw

N (x| g, Zie) (15)

@ So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.

J. Corso (SUNY at Buffalo) Lecture 9 April 2010 24 / 41



Gaussian Mixture Models

@ We are interested in the marginal distribution of x:
p(x) = Zp(& z) (12)
= Z p(2)p(x|2) (13)

= H TRt N (e g, ) (14)

z k=1

Mw

N (x| g, Zie) (15)

@ So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.

o If we have N observations x1,...,xy, then because of our chosen
representation, it follows that we have a latent variable z,, for each
observed data point x,,.
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@ We need to also express the conditional probability of z given x.
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@ We need to also express the conditional probability of z given x.
e Denote this conditional p(z; = 1|x) as v(zx).
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@ We need to also express the conditional probability of z given x.

e Denote this conditional p(z; = 1|x) as v(zx).
o We can derive this value with Bayes' theorem:

Y(zk) = plz = 1|x) =

p(ze = )p(x[z = 1)

Yy p(z = )p(x|z; = 1)

7I-I~C'/\/‘(X|/J’ka zk)
ZJI'{:1 WjN(XWja %))
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@ We need to also express the conditional probability of z given x.
e Denote this conditional p(z; = 1|x) as v(zx).

o We can derive this value with Bayes' theorem:

) = p(z, = 1|x) = p(zr = 1)p(x|z = 1) 16
v(2k) = p(2k = 1[x) S p(z = Dp(x|z; = 1) "
WkN(X|Nk’2k)
Zgl'{:l WjN(X|Hj;2j)

(17)
@ View 7y as the prior probability of z; = 1 and the quantity y(zj) as
the corresponding posterior probability once we have observed x.
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@ We need to also express the conditional probability of z given x.
e Denote this conditional p(z; = 1|x) as v(zx).

o We can derive this value with Bayes' theorem:

) = p(z, = 1|x) = p(zr = 1)p(x|z = 1) 16
v(2k) = p(2k = 1[x) S p(z = Dp(x|z; = 1) "
WkN(X|Nk’Ek)
Zgl'{:l WjN(X|Hj;2j)

(17)
@ View 7y as the prior probability of z; = 1 and the quantity y(zj) as
the corresponding posterior probability once we have observed x.

@ 7(zx) can also be viewed as the responsibility that component k takes
for explaining the observation x.

=] 5
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Sampling

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample Z.
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the marginal distribution p(z). Denote this sample Z.

@ Then, sample from the conditional distribution p(x|2).
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Sampling

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample Z.

@ Then, sample from the conditional distribution p(x|2).

@ The figure below-left shows samples from a three-mixture and colors
the samples based on their z. The figure below-middle shows samples
from the marginal p(x) and ignores z. On the right, we show the
v(zx) for each sampled point, colored accordingly.
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Sampling

@ To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample Z.
@ Then, sample from the conditional distribution p(x|2).

@ The figure below-left shows samples from a three-mixture and colors
the samples based on their z. The figure below-middle shows samples
from the marginal p(x) and ignores z. On the right, we show the
v(zx) for each sampled point, colored accordingly.
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Maximum-Likelihood

@ Suppose we have a set of N observations {x1,...,xx} that we wish
to model with a GMM.

DAy
April 2010 27 / 41



Maximum-Likelihood

@ Suppose we have a set of N observations {x1,...,xx} that we wish
to model with a GMM.

given by x|

o Consider this data set as an N x d matrix X in which the nt" row is
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Maximum-Likelihood

@ Suppose we have a set of N observations {x1,...,xx} that we wish
to model with a GMM.

o Consider this data set as an N x d matrix X in which the nt" row is
given by x|

@ Similarly, the corresponding latent variables define an N x K matrix

Z with rows z .
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Maximum-Likelihood

@ Suppose we have a set of N observations {x1,...,xx} that we wish
to model with a GMM.

o Consider this data set as an N x d matrix X in which the nt" row is
given by x|
@ Similarly, the corresponding latent variables define an NV x K matrix

Z with rows z .

@ The log-likelihood of the corresponding GMM is given by

N K
Inp(X|m, 1, =) = 3 In [Z TN (g, ) (18)
n=1 k=1
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Maximum-Likelihood

@ Suppose we have a set of N observations {x1,...,xx} that we wish
to model with a GMM.

o Consider this data set as an N x d matrix X in which the nt" row is
given by x|

@ Similarly, the corresponding latent variables define an NV x K matrix
Z with rows z .

@ The log-likelihood of the corresponding GMM is given by

N K
Inp(X|m, 1, =) = 3 In [Z TN (g, ) (18)
n=1 k=1

o Ultimately, we want to find the values of the parameters 7, p, 35 that
maximize this function.

Q>

[m] = = =
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Gaussian Mixture Models Maximum-Likelihood

@ However, maximizing the log-likelihood terms for GMMs is much
more complicated than for the case of a single Gaussian. Why?
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Gaussian Mixture Models Maximum-Likelihood

@ However, maximizing the log-likelihood terms for GMMs is much
more complicated than for the case of a single Gaussian. Why?

o The difficulty arises from the sum over k inside of the log-term. The
log function no longer acts directly on the Gaussian, and no
closed-form solution is available.
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Maximum-Likelihood

parameters.

@ There is a significant problem when we apply MLE to estimate GMM
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parameters.

@ There is a significant problem when we apply MLE to estimate GMM

@ Consider simply covariances defined by 3 = a,%I.
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by 3 = a,%I.

@ Suppose that one of the components of the mixture model, j, has its

mean p,; exactly equal to one of the data points so that u; = x;, for
some 7.
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by 3 = a,%I.

@ Suppose that one of the components of the mixture model, j, has its
mean p,; exactly equal to one of the data points so that u; = x;, for
some n.

@ This term contributes

1

21y
N (xn|xpn,051) = R

(19)
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Maximum-Likelihood

There is a significant problem when we apply MLE to estimate GMM
parameters.

Consider simply covariances defined by X, = a,%I.

Suppose that one of the components of the mixture model, 7, has its
mean p,; exactly equal to one of the data points so that u; = x;, for
some n.

This term contributes

1

(2m) 72,
Consider the limit 0; — 0 to see that this term goes to infinity and
hence the log-likelihood will also go to infinity.

N3¢, [0, 021) = (19)
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Maximum-Likelihood

@ There is a significant problem when we apply MLE to estimate GMM
parameters.

@ Consider simply covariances defined by 3 = a,%I.

@ Suppose that one of the components of the mixture model, j, has its
mean p,; exactly equal to one of the data points so that u; = x;, for
some n.

@ This term contributes

1
N(xn\xn,ajgl) =

(27r)(1/2)0'j

o Consider the limit o; — 0 to see that this term goes to infinity and
hence the log-likelihood will also go to infinity.

@ Thus, the maximization of the log-likelihood function is not a
well posed problem because such a singularity will occur
whenever one of the components collapses to a single, specific
data point. o
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Gaussian Mixture Models Maximum-Likelihood
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o Expectation-Maximization or EM is an elegant and powerful

method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.
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o Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

@ Recall the conditions that must be satisfied at a maximum of the
likelihood function.
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o Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

@ Recall the conditions that must be satisfied at a maximum of the
likelihood function.

@ For the mean p,, setting the derivatives of In p(X|m, p, ) w.r.t.
to zero yields

oy TN ey )
0_ _n; S TN (xlu;, 33y e = ) (20)
N
== 2 () Bl — ) @)
n=1

Qe

[m] = = =
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o Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

@ Recall the conditions that must be satisfied at a maximum of the
likelihood function.

@ For the mean p,, setting the derivatives of In p(X|m, p, ) w.r.t.
to zero yields

o N D)
0_ _n; S TN (xlu;, 33y e = ) (20)
N
== 2 () Bl — ) @)

n=1

@ Note the natural appearance of the responsibility terms on the RHS
[m] = = =

Q>
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Expectation-Maximization for GMMs

@ Multiplying by 2;1, which we assume is non-singular, gives

N
1
= N Zl'y(znk)xn (22)
n=

where

n=1
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Expectation-Maximization for GMMs

@ Multiplying by 2;1, which we assume is non-singular, gives

N
1
= N Zl'y(znk)xn (22)
n=

where
N
N, = Z’Y(an) (23)
n=1

@ We see the k™ mean is the weighted mean over all of the points in
the dataset.
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Expectation-Maximization for GMMs

@ Multiplying by 2;1, which we assume is non-singular, gives

N
1
Mo =N > (k)% (22)
n=1
where

n=1

@ We see the k™ mean is the weighted mean over all of the points in
the dataset.
@ Interpret Nj as the number of points assigned to component k.
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Expectation-Maximization for GMMs

@ Multiplying by 2;1, which we assume is non-singular, gives

N
1
Mo =N > (k)% (22)
n=1
where

n=1

@ We see the k™ mean is the weighted mean over all of the points in
the dataset.

@ Interpret Nj as the number of points assigned to component k.

@ We find a similar result for the covariance matrix:
1 N
D=5 Zlv(znk)(fvn — ) (w0 — )" (24)
n=
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ctation-Maximization for GMMs

@ We also need to maximize Inp(X|m, p, ¥) with respect to the mixing
coefficients 7.
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Expectation-Maximization for GMMs

@ We also need to maximize Inp(X|m, p, ¥) with respect to the mixing
coefficients 7.
o Introduce a Lagrange multiplier to enforce the constraint ), m, = 1.

K
Inp(X|me, 1, Z) + A [ > e — 1 (25)
k=1
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Expectation-Maximization for GMMs

@ We also need to maximize Inp(X|m, p, ¥) with respect to the mixing
coefficients 7.
o Introduce a Lagrange multiplier to enforce the constraint ), m, = 1.

K
In p(X|7, u, ) + (Z T — 1) (25)
k=1
@ Maximizing it yields:

0- 5 2(en) + (26)
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Expectation-Maximization for GMMs

@ We also need to maximize Inp(X|m, p, ¥) with respect to the mixing
coefficients 7.

o Introduce a Lagrange multiplier to enforce the constraint ), m, = 1.

K
In p(X|7, u, ) + (Z T — 1) (25)
k=1
@ Maximizing it yields:
1
- = 2
0 Ah:gg;q(z"k)+_A (26)

o After multiplying both sides by m and summing over k, we get

A=-N (27)
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Expectation-Maximization for GMMs

We also need to maximize Inp(X|m, p, ¥) with respect to the mixing
coefficients 7.

o Introduce a Lagrange multiplier to enforce the constraint ), m, = 1.

K
Inp(X|m, pu, X) + A <Z T — 1) (25)
k=1

@ Maximizing it yields:
1
0=+ > (k) + A (26)
n=1
o After multiplying both sides by m and summing over k, we get
A=-—-N (27)
@ Eliminate X\ and rearrange to obtain:
Ny
= 28
T = (28)
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@ So, we're done, right? We've computed the maximum likelihood
solutions for each of the unknown parameters.
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@ So, we're done, right? We've computed the maximum likelihood
solutions for each of the unknown parameters.

e Wrong!

way:

@ The responsibility terms depend on these parameters in an intricate

V(zk) = p(z = 1x) =

TN (x|, 2i)
2]1'11 WjN(XWja %))
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@ So, we're done, right? We've computed the maximum likelihood
solutions for each of the unknown parameters.
e Wrong!

@ The responsibility terms depend on these parameters in an intricate
way:

) TN (x|, 2
1) = plen = 1) = e e 2
Zj:l ﬂ-jN(X“J’ja %))
@ But, these results do suggest an iterative scheme for finding a
solution to the maximum likelihood problem.

© Chooce some initial values for the parameters, 7, u, 3.

@ Use the current parameters estimates to compute the posteriors on the
latent terms, i.e., the responsibilities.

© Use the responsibilities to update the estimates of the parameters.

© Repeat 2 and 3 until convergence.

Q>

[m] = = =

e Corso (SN acBurale) T T S Al 2010 % /41
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o EM generally tends to take more steps than the K-Means clustering
algorithm.

@ Each step is more computationally intense than with K-Means too.

@ So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

@ Care must be taken to avoid singularities in the MLE solution.
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o EM generally tends to take more steps than the K-Means clustering
algorithm.

@ Each step is more computationally intense than with K-Means too.

@ So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

@ Care must be taken to avoid singularities in the MLE solution.

@ There will generally be multiple local maxima of the likelihood
function and EM is not guaranteed to find the largest of these.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

@ Initialize the means, pu,, the covariances, 3, and mixing coefficients, .
Evaluate the initial value of the log-likelihood.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

@ Initialize the means, pu,, the covariances, 3, and mixing coefficients, .
Evaluate the initial value of the log-likelihood.
@ E-Step Evaluate the responsibilities using the current parameter values:
TN (x| gy, 2
S TN (X, 25)

v(zk) =
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

@ Initialize the means, pu,, the covariances, 3, and mixing coefficients, .
Evaluate the initial value of the log-likelihood.

@ E-Step Evaluate the responsibilities using the current parameter values:
TN (x| py, Eie)
K

Ej:1 ﬂ'jN(X“"jv %)

© M-Step Update the parameters using the current responsibilities

v(zk) =

1 N
urllew = E ny(znk)xn

n=1

1 N
new new new\ T
3t = — E Y(znk)(Xn — py ) (Xn — py,
Ny,
n=1
7z_new _ Nk
e = =
N
where
N
Ni = A(znk)
n=1
J. Corso (SUNY at Buffalo) Lecture 9 April 2010
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Expectation-Maximization for GMMs

© Evaluate the log-likelihood

N K
Inp (X", 57, w™) = S I | S AN (el S | (39)
n=1

k=1
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Expectation-Maximization for GMMs

© Evaluate the log-likelihood

N
In p(Xlunew’ znew new Z In Z 7Tk Xn ‘Hnew QEW)

n=1

@ Check for convergence of either the parameters of the log-likelihood. If the
convergence is not satisfied, set the parameters:

new

B=p
3 — ynew
new
™ =T
and goto step 2.
J. Corso (SUNY at Buffalo) Lecture 9 April 2010
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@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.
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function is

@ Denote the set of all model parameters as 8, and so the log-likelihood

Inp(X|6) = In [E (X, Z|0)] (37)
Z
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@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.

function is

@ Denote the set of all model parameters as 8, and so the log-likelihood

Inp(X|6) = In [Zp(x,zw)]
Z
the log.

(37)
@ Note how the summation over the latent variables appears inside of

o Even if the joint distribution p(X,Z|0) belongs to the exponential
family, the marginal p(X|0) typically does not.
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A More General View of EM

@ The goal of EM is to find maximum likelihood solutions for models
having latent variables.

@ Denote the set of all model parameters as 8, and so the log-likelihood
function is

Inp(X|0) = In [Z (X, Z|0)] (37)
Z

@ Note how the summation over the latent variables appears inside of
the log.

o Even if the joint distribution p(X,Z|0) belongs to the exponential
family, the marginal p(X|0) typically does not.
o If, for each sample x,, we were given the value of the latent variable
Z,, then we would have a complete data set, {X,Z}, with which
maximizing this likelihood term would be straightforward.
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A More General EM

@ However, in practice, we are not given the latent variables values.
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A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 6°9).
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@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 6°9).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°¢), which is given by

Q(0,6°%) = > p(Z[X,6°) Inp(X, Z[6) (38)
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A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 6°9).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°¢), which is given by

Q(0,6°%) = > p(Z[X,6°) Inp(X, Z[6) (38)
Z

@ Then, in the M-step, we revise the parameters to 8" by maximizing
this function:

0" = argmax Q(6, 6°'9) (39)
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A More General EM

@ However, in practice, we are not given the latent variables values.

@ So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

o In the E-Step, we use the current parameter values 8°'¢ to find the
posterior distribution of the latent variables given by p(Z|X, 6°9).

@ This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(8,8°¢), which is given by

Q(0,6°%) = > p(Z[X,6°) Inp(X, Z[6) (38)
Z

@ Then, in the M-step, we revise the parameters to 8" by maximizing
this function:

0" = argmax Q(6, 6°'9) (39)

o Note that the log acts directly on the joint distribution p(X,Z|6) and
so the M-step maximization will likely be tractable.
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