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Overview and Plan

Covering Chapter 2 of DHS.

Bayesian Decision Theory is a fundamental statistical approach to the
problem of pattern classification.

Quantifies the tradeoffs between various classifications using
probability and the costs that accompany such classifications.

Assumptions:

Decision problem is posed in probabilistic terms.
All relevant probability values are known.
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Recall the Fish!

Recall our example from the first
lecture on classifying two fish as salmon
or sea bass.

And recall our agreement that any
given fish is either a salmon or a sea
bass; DHS call this the state of nature
of the fish.

Let’s define a (probabilistic) variable ω
that describes the state of nature.

ω = ω1 for sea bass (1)

ω = ω2 for salmon (2)

Let’s assume this two class case.

Salmon

Sea Bass
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Preliminaries

Prior Probability

The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.

In the fish example, it is the probability that we will see either a
salmon or a sea bass next on the conveyor belt.
Note: The prior may vary depending on the situation.

If we get equal numbers of salmon and sea bass in a catch, then the
priors are equal, or uniform.
Depending on the season, we may get more salmon than sea bass, for
example.

We write P (ω = ω1) or just P (ω1) for the prior the next is a sea bass.

The priors must exhibit exclusivity and exhaustivity. For c states of
nature, or classes:

1 =
c∑

i=1

P (ωi) (3)
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Preliminaries

Decision Rule From Only Priors

A decision rule prescribes what action to take based on observed
input.

Idea Check: What is a reasonable Decision Rule if

the only available information is the prior, and
the cost of any incorrect classification is equal?

Decide ω1 if P (ω1) > P (ω2); otherwise decide ω2.

What can we say about this decision rule?

Seems reasonable, but it will always choose the same fish.
If the priors are uniform, this rule will behave poorly.
Under the given assumptions, no other rule can do better! (We will see
this later on.)
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Preliminaries

Features and Feature Spaces

A feature is an observable variable.

A feature space is a set from which we can sample or observe values.

Examples of features:

Length
Width
Lightness
Location of Dorsal Fin

For simplicity, let’s assume that our features are all continuous values.

Denote a scalar feature as x and a vector feature as x. For a
d-dimensional feature space, x ∈ Rd.
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Preliminaries

Class-Conditional Density
or Likelihood

The class-conditional probability density function is the probability
density function for x, our feature, given that the state of nature is ω:

p(x|ω) (4)

Here is the hypothetical class-conditional density p(x|ω) for lightness
values of sea bass and salmon.

9 10 11 12 13 14 15

0.1

0.2

0.3

0.4

p(x|ωi)

x

ω1

ω2

FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ωi . If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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Preliminaries

Posterior Probability
Bayes Formula

If we know the prior distribution and the class-conditional density,
how does this affect our decision rule?

Posterior probability is the probability of a certain state of nature
given our observables: P (ω|x).

Use Bayes Formula:

P (ω,x) = P (ω|x)p(x) = p(x|ω)P (ω) (5)

P (ω|x) =
p(x|ω)P (ω)

p(x)
(6)

=
p(x|ω)P (ω)∑
i p(x|ωi)P (ωi)

(7)
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Preliminaries

Posterior Probability

Notice the likelihood and the prior govern the posterior. The p(x)
evidence term is a scale-factor to normalize the density.

For the case of P (ω1) = 2/3 and P (ω2) = 1/3 the posterior is

0.2

0.4

0.6

0.8

1

P(ωi|x)

x

ω1

ω2

9 10 11 12 13 14 15

FIGURE 2.2. Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2)

= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Decision Theory

Probability of Error

For a given observation x, we would be inclined to let the posterior
govern our decision:

ω∗ = arg max
i

P (ωi|x) (8)

What is our probability of error?

For the two class situation, we have

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

(9)

J. Corso (SUNY at Buffalo) Bayesian Decision Theory Lecture 2 January 2011 10 / 59



Decision Theory

Probability of Error

For a given observation x, we would be inclined to let the posterior
govern our decision:

ω∗ = arg max
i

P (ωi|x) (8)

What is our probability of error?

For the two class situation, we have

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

(9)

J. Corso (SUNY at Buffalo) Bayesian Decision Theory Lecture 2 January 2011 10 / 59



Decision Theory

Probability of Error

We can minimize the probability of error by following the posterior:

Decide ω1 if P (ω1|x) > P (ω2|x) (10)

And, this minimizes the average probability of error too:

P (error) =

∫ ∞

−∞
P (error|x)p(x)dx (11)

(Because the integral will be minimized when we can ensure each
P (error|x) is as small as possible.)
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Decision Theory

Bayes Decision Rule (with Equal Costs)

Decide ω1 if P (ω1|x) > P (ω2|x); otherwise decide ω2

Probability of error becomes

P (error|x) = min [P (ω1|x), P (ω2|x)] (12)

Equivalently, Decide ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2); otherwise
decide ω2

I.e., the evidence term is not used in decision making.

If we have p(x|ω1) = p(x|ω2), then the decision will rely exclusively
on the priors.

Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.

Take Home Message: Decision making relies on both the priors
and the likelihoods and Bayes Decision Rule combines them to
achieve the minimum probability of error.
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Decision Theory

Loss Functions

A loss function states exactly how costly each action is.

As earlier, we have c classes {ω1, . . . , ωc}.
We also have a possible actions {α1, . . . , αa}.
The loss function λ(αi|ωj) is the loss incurred for taking action αi

when the class is ωj .

The Zero-One Loss Function is a particularly common one:

λ(αi|ωj) =

{
0 i = j

1 i 6= j
i, j = 1, 2, . . . , c (13)

It assigns no loss to a correct decision and uniform unit loss to an
incorrect decision.
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Decision Theory

Expected Loss
a.k.a. Conditional Risk

We can consider the loss that would be incurred from taking each
possible action in our set.

The expected loss or conditional risk is by definition

R(αi|x) =
c∑

j=1

λ(αi|ωj)P (ωj |x) (14)

The zero-one conditional risk is

R(αi|x) =
∑
j 6=i

P (ωj |x) (15)

= 1− P (ωi|x) (16)

Hence, for an observation x, we can minimize the expected loss by
selecting the action that minimizes the conditional risk.

(Teaser) You guessed it: this is what Bayes Decision Rule does!
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Decision Theory

Overall Risk

Let α(x) denote a decision rule, a mapping from the input feature
space to an action, Rd 7→ {α1, . . . , αa}.

This is what we want to learn.

The overall risk is the expected loss associated with a given decision
rule.

R =

∮
R (α(x)|x) p (x) dx (17)

Clearly, we want the rule α(·) that minimizes R(α(x)|x) for all x.
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Decision Theory

Bayes Risk
The Minimum Overall Risk

Bayes Decision Rule gives us a method for minimizing the overall risk.

Select the action that minimizes the conditional risk:

α∗ = arg min
αi

R (αi|x) (18)

= arg min
αi

c∑
j=1

λ(αi|ωj)P (ωj |x) (19)

The Bayes Risk is the best we can do.
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Decision Theory

Two-Category Classification Examples

Consider two classes and two actions, α1 when the true class is ω1

and α2 for ω2.

Writing out the conditional risks gives:

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x) (20)

R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x) . (21)

Fundamental rule is decide ω1 if

R(α1|x) < R(α2|x) . (22)

In terms of posteriors, decide ω1 if

(λ21 − λ11)P (ω1|x) > (λ12 − λ22)P (ω2|x) . (23)

The more likely state of nature is scaled by the differences in loss
(which are generally positive).
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Decision Theory

Two-Category Classification Examples

Or, expanding via Bayes Rule, decide ω1 if

(λ21 − λ11)p(x|ω1)P (ω1) > (λ12 − λ22)p(x|ω2)P (ω2) (24)

Or, assuming λ21 > λ11, decide ω1 if

p(x|ω1)

p(x|ω2)
=

λ12 − λ22

λ21 − λ11

P (ω2)

P (ω1)
(25)

LHS is called the likelihood ratio.

Thus, we can say the Bayes Decision Rule says to decide ω1 if the
likelihood ratio exceeds a threshold that is independent of the
observation x.
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Discriminants

Pattern Classifiers Version 1: Discriminant Functions

Discriminant Functions are a useful way of representing pattern
classifiers.

Let’s say gi(x) is a discriminant function for the ith class.

This classifier will assign a class ωi to the feature vector x if

gi(x) > gj(x) ∀j 6= i , (26)

or, equivalently

i∗ = arg max
i

gi(x) , decide ωi∗ .
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Discriminants

Discriminants as a Network

We can view the discriminant classifier as a network (for c classes and
a d-dimensional input vector).

discriminant
functions

input

g1(x) g2(x) gc(x). . .

x1
x2 xd. . .x3

costs

action
(e.g., classification)

FIGURE 2.5. The functional structure of a general statistical pattern classifier which
includes d inputs and c discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pattern
accordingly. The arrows show the direction of the flow of information, though frequently
the arrows are omitted when the direction of flow is self-evident. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Discriminants

Bayes Discriminants
Minimum Conditional Risk Discriminant

General case with risks

gi(x) = −R(αi|x) (27)

= −
c∑

j=1

λ(αi|ωj)P (ωj |x) (28)

Can we prove that this is correct?

Yes! The minimum conditional risk corresponds to the maximum
discriminant.
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Discriminants

Minimum Error-Rate Discriminant

In the case of zero-one loss function, the Bayes Discriminant can be
further simplified:

gi(x) = P (ωi|x) . (29)
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Discriminants

Uniqueness Of Discriminants

Is the choice of discriminant functions unique?

No!

Multiply by some positive constant.

Shift them by some additive constant.

For monotonically increasing function f(·), we can replace each gi(x)
by f(gi(x)) without affecting our classification accuracy.

These can help for ease of understanding or computability.
The following all yield the same exact classification results for
minimum-error-rate classification.

gi(x) = P (ωi|x) =
p(x|ωi)P (ωi)∑
j p(x|ωj)P (ωj)

(30)

gi(x) = p(x|ωi)P (ωi) (31)

gi(x) = ln p(x|ωi) + lnP (ωi) (32)
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Discriminants

Visualizing Discriminants
Decision Regions

The effect of any decision rule is to divide the feature space into
decision regions.

Denote a decision region Ri for ωi.

One not necessarily connected region is created for each category and
assignments is according to:

If gi(x) > gj(x) ∀j 6= i, then x is in Ri . (33)

Decision boundaries separate the regions; they are ties among the
discriminant functions.
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Discriminants

Visualizing Discriminants
Decision Regions

0

0.1

0.2

0.3

decision
boundary

p(x|ω2)P(ω2)

R1

R2

p(x|ω1)P(ω1)

R2

0

5

0

5

FIGURE 2.6. In this two-dimensional two-category classifier, the probability densities
are Gaussian, the decision boundary consists of two hyperbolas, and thus the decision
region R2 is not simply connected. The ellipses mark where the density is 1/e times
that at the peak of the distribution. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Discriminants

Two-Category Discriminants
Dichotomizers

In the two-category case, one considers single discriminant

g(x) = g1(x)− g2(x) . (34)

What is a suitable decision rule?

The following simple rule is then used:

Decide ω1 if g(x) > 0; otherwise decide ω2. (35)

Various manipulations of the discriminant:

g(x) = P (ω1|x)− P (ω2|x) (36)

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P (ω1)

P (ω2)
(37)
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The Normal Density

Background on the Normal Density

This next section is a slight digression to introduce the Normal
Density (most of you will have had this already).

The Normal density is very well studied.

It easy to work with analytically.

Often in PR, an appropriate model seems to be a single typical value
corrupted by continuous-valued, random noise.

Central Limit Theorem (Second Fundamental Theorem of
Probability).

The distribution of the sum of n random variables approaches the
normal distribution when n is large.
E.g., http://www.stattucino.com/berrie/dsl/Galton.html
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The Normal Density

Expectation

Recall the definition of expected value of any scalar function f(x) in
the continuous p(x) and discrete P (x) cases

E [f(x)] =

∫ ∞

−∞
f(x)p(x)dx (38)

E [f(x)] =
∑

x

f(x)P (x) (39)

where we have a set D over which the discrete expectation is
computed.
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The Normal Density

Univariate Normal Density

Continuous univariate normal, or Gaussian, density:

p(x) =
1√

2πσ2
exp

[
−1

2

(
x− µ

σ

)2
]

. (40)

The mean is the expected value of x is

µ ≡ E [x] =

∫ ∞

−∞
xp(x)dx . (41)

The variance is the expected squared deviation

σ2 ≡ E [(x− µ)2] =

∫ ∞

−∞
(x− µ)2p(x)dx . (42)
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The Normal Density

Univariate Normal Density
Sufficient Statistics

Samples from the normal density tend to cluster around the mean and
be spread-out based on the variance.

x

2.5% 2.5%

σ

p(x)

µ + σ µ + 2σµ - σµ - 2σ µ 

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x − µ| ≤ 2σ , as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ . From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

The normal density is completely specified by the mean and the
variance. These two are its sufficient statistics.
We thus abbreviate the equation for the normal density as

p(x) ∼ N(µ, σ2) (43)
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The Normal Density

Entropy

Entropy is the uncertainty in the random samples from a distribution.

H(p(x)) = −
∫

p(x) ln p(x)dx (44)

The normal density has the maximum entropy for all distributions
have a given mean and variance.

What is the entropy of the uniform distribution?

The uniform distribution has maximum entropy (on a given interval).
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The Normal Density

Multivariate Normal Density
And a test to see if your Linear Algebra is up to snuff.

The multivariate Gaussian in d dimensions is written as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
. (45)

Again, we abbreviate this as p(x) ∼ N(µ,Σ).

The sufficient statistics in d-dimensions:

µ ≡ E [x] =

∫
xp(x)dx (46)

Σ ≡ E [(x− µ)(x− µ)T] =

∫
(x− µ)(x− µ)Tp(x)dx (47)
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The Normal Density

The Covariance Matrix

Σ ≡ E [(x− µ)(x− µ)T] =

∫
(x− µ)(x− µ)Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements σii are the variances of the respective
coordinate xi.

The off-diagonal elements σij are the covariances of xi and xj .

What does a σij = 0 imply?

That coordinates xi and xj are statistically independent.

What does Σ reduce to if all off-diagonals are 0?

The product of the d univariate densities.
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The Normal Density

Mahalanobis Distance

The shape of the density is determined
by the covariance Σ.

Specifically, the eigenvectors of Σ give
the principal axes of the hyperellipsoids
and the eigenvalues determine the
lengths of these axes.

The loci of points of constant density
are hyperellipsoids with constant
Mahalonobis distance:

(x− µ)TΣ−1(x− µ) (48)

x2

x1

µ

FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered
on the mean �. The ellipses show lines of equal probability density of the Gaussian.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copy-
right c© 2001 by John Wiley & Sons, Inc.
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The Normal Density

Linear Combinations of Normals

Linear combinations of jointly
normally distributed random
variables, independent or not,
are normally distributed.

For p(x) ∼ N((µ),Σ) and A, a
d-by-k matrix, define y = ATx.
Then:

p(y) ∼ N(ATµ,ATΣA) (49)

With the covariance matrix, we
can calculate the dispersion of
the data in any direction or in
any subspace.

0

µ

P
tµ

Atµ

N(µ,Σ)

P

N(At
µ, At

Σ A)

A

a

N(At
wµ, I)

Aw

At
wµ

σ

x1

x2

FIGURE 2.8. The action of a linear transformation on the feature space will con-
vert an arbitrary normal distribution into another normal distribution. One transforma-
tion, A, takes the source distribution into distribution N(At�, At�A). Another linear
transformation—a projection P onto a line defined by vector a—leads to N(µ, σ 2) mea-
sured along that line. While the transforms yield distributions in a different space, we
show them superimposed on the original x1x2-space. A whitening transform, Aw, leads
to a circularly symmetric Gaussian, here shown displaced. From: Richard O. Duda, Pe-
ter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.
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The Normal Density

General Discriminant for Normal Densities

Recall the minimum error rate discriminant,
gi(x) = ln p(x|ωi) + lnP (ωi).

If we assume normal densities, i.e., if p(x|ωi) ∼ N(µi,Σi), then the
general discriminant is of the form

gi(x) = −1

2
(x− µi)

TΣ−1
i (x− µi)−

d

2
ln 2π − 1

2
ln|Σi|+ lnP (ωi)

(50)
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The Normal Density

Simple Case: Statistically Independent Features
with Same Variance

What do the decision boundaries look like if we assume Σi = σ2I?

They are hyperplanes.

Let’s see why...
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FIGURE 2.10. If the covariance matrices for two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of
d − 1 dimensions, perpendicular to the line separating the means. In these one-, two-, and three-dimensional
examples, we indicate p(x|ωi) and the boundaries for the case P(ω1) = P(ω2). In the three-dimensional case,
the grid plane separates R1 from R2. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Let’s see why...
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The Normal Density

Simple Case: Σi = σ2I

The discriminant functions take on a simple form:

gi(x) = −‖x− µi‖2

2σ2
+ lnP (ωi) (51)

Think of this discriminant as a combination of two things
1 The distance of the sample to the mean vector (for each i).
2 A normalization by the variance and offset by the prior.
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The Normal Density

Simple Case: Σi = σ2I

But, we don’t need to actually compute the distances.

Expanding the quadratic form (x− µ)T(x− µ) yields

gi(x) = − 1

2σ2

[
xTx− 2µT

i x + µT
i µi

]
+ lnP (ωi) . (52)

The quadratic term xTx is the same for all i and can thus be ignored.

This yields the equivalent linear discriminant functions

gi(x) = wT
i x + wi0 (53)

wi =
1

σ2
µi (54)

wi0 = − 1

2σ2
µT

i µi + lnP (ωi) (55)

wi0 is called the bias.
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The Normal Density

Simple Case: Σi = σ2I
Decision Boundary Equation

The decision surfaces for a linear discriminant classifiers are
hyperplanes defined by the linear equations gi(x) = gj(x).

The equation can be written as

wT(x− x0) = 0 (56)

w = µi − µj (57)

x0 =
1

2
(µi + µj)−

σ2

‖µi − µj‖2
ln

P (ωi)

P (ωj)
(µi − µj) (58)

These equations define a hyperplane through point x0 with a normal
vector w.
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The Normal Density

Simple Case: Σi = σ2I
Decision Boundary Equation

The decision boundary changes with the prior.
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FIGURE 2.11. As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these one-, two- and
three-dimensional spherical Gaussian distributions. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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The Normal Density

General Case: Arbitrary Σi

The discriminant functions are quadratic (the only term we can drop
is the ln 2π term):

gi(x) = xTWix + wT
i x + wi0 (59)

Wi = −1

2
Σ−1

i (60)

wi = Σ−1
i µi (61)

wi0 = −1

2
µT

i Σ−1
i µi −

1

2
ln|Σi|+ lnP (ωi) (62)

The decision surface between two categories are hyperquadrics.
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The Normal Density

General Case: Arbitrary Σi

FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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The Normal Density

General Case: Arbitrary Σi

decision boundary

FIGURE 2.15. Arbitrary three-dimensional Gaussian distributions yield Bayes decision boundaries that are
two-dimensional hyperquadrics. There are even degenerate cases in which the decision boundary is a line.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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The Normal Density

General Case for Multiple Categories

R3

R2

R1

R4

R4

FIGURE 2.16. The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Quite A Complicated Decision Surface!
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Receiver Operating Characteristics

Signal Detection Theory

A fundamental way of analyzing
a classifier.

Consider the following
experimental setup:

σσ

µ2

x

p(x|ωi) ω1 ω2

x*µ1

FIGURE 2.19. During any instant when no external pulse is present, the probability
density for an internal signal is normal, that is, p(x|ω1) ∼ N(µ1, σ 2); when the external
signal is present, the density is p(x|ω2) ∼ N(µ2, σ

2). Any decision threshold x∗ will
determine the probability of a hit (the pink area under the ω2 curve, above x∗) and of a
false alarm (the black area under the ω1 curve, above x∗). From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.

Suppose we are interested in detecting a single pulse.

We can read an internal signal x.

The signal is distributed about mean µ2 when an external signal is
present and around mean µ1 when no external signal is present.

Assume the distributions have the same variances,
p(x|ωi) ∼ N(µi, σ

2).
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Receiver Operating Characteristics

Signal Detection Theory

The detector uses x∗ to decide if the external signal is present.

Discriminability characterizes how difficult it will be to decide if the
external signal is present without knowing x∗.

d′ =
|µ2 − µ1|

σ
(63)

Even if we do not know µ1, µ2, σ, or x∗, we can find d′ by using a
receiver operating characteristic or ROC curve, as long as we know
the state of nature for some experiments
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Receiver Operating Characteristics

Receiver Operating Characteristics
Definitions

A Hit is the probability that the internal signal is above x∗ given that
the external signal is present

P (x > x∗|x ∈ ω2) (64)

A Correct Rejection is the probability that the internal signal is
below x∗ given that the external signal is not present.

P (x < x∗|x ∈ ω1) (65)

A False Alarm is the probability that the internal signal is above x∗

despite there being no external signal present.

P (x > x∗|x ∈ ω1) (66)

A Miss is the probability that the internal signal is below x∗ given
that the external signal is present.

P (x < x∗|x ∈ ω2) (67)
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Receiver Operating Characteristics

Receiver Operating Characteristics

We can experimentally
determine the rates, in
particular the Hit-Rate and the
False-Alarm-Rate.

Basic idea is to assume our
densities are fixed (reasonable)
but vary our threshold x∗, which
will thus change the rates.

The receiver operating
characteristic plots the hit rate
against the false alarm rate.

What shape curve do we want?

P(x < x*|x ∈ ω2)

P(
x 

>
 x

*|
x

∈
 ω

2)

d'=0

d'=1

d'=2

d'=3

1

1

false alarm

hit

FIGURE 2.20. In a receiver operating characteristic (ROC) curve, the abscissa is the
probability of false alarm, P(x > x∗|x ∈ ω1), and the ordinate is the probability of hit,
P(x > x∗|x ∈ ω2). From the measured hit and false alarm rates (here corresponding to
x∗ in Fig. 2.19 and shown as the red dot), we can deduce that d ′ = 3. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Missing or Bad Features

Missing Features

Suppose we have built a classifier on multiple features, for example
the lightness and width.

What do we do if one of the features is not measurable for a
particular case? For example the lightness can be measured but the
width cannot because of occlusion.

Marginalize!

Let x be our full feature feature and xg be the subset that are
measurable (or good) and let xb be the subset that are missing (or
bad/noisy).

We seek an estimate of the posterior given just the good features
xg.
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Missing or Bad Features

Missing Features

P (ωi|xg) =
p(ωi,xg)

p(xg)
(68)

=

∫
p(ωi,xg,xb)dxb

p(xg)
(69)

=

∫
p(ωi|x)p(x)dxb

p(xg)
(70)

=

∫
gi(x)p(x)dxb∫

p(x)dxb
(71)

We will cover the Expectation-Maximization algorithm later.

This is normally quite expensive to evaluate unless the densities are
special (like Gaussians).
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Bayesian Belief Networks

Statistical Independence

Two variables xi and xj are independent if

p(xi, xj) = p(xi)p(xj) (72)

x1

x2

x3

FIGURE 2.23. A three-dimensional distribution which obeys p(x1, x3) = p(x1)p(x3);
thus here x1 and x3 are statistically independent but the other feature pairs are not. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Bayesian Belief Networks

Simple Example of Conditional Independence
From Russell and Norvig

Consider a simple example consisting of four variables: the weather,
the presence of a cavity, the presence of a toothache, and the
presence of other mouth-related variables such as dry mouth.

The weather is clearly independent of the other three variables.

And the toothache and catch are conditionally independent given the
cavity (one as no effect on the other given the information about the
cavity).

Weather Cavity

Toothache Catch
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Bayesian Belief Networks

Näıve Bayes Rule

If we assume that all of our individual features xi, i = 1, . . . , d are
conditionally independent given the class, then we have

p(ωk|x) ∝
d∏

i=1

p(xi|ωk) (73)

Circumvents issues of dimensionality.

Performs with surprising accuracy even in cases violating the
underlying independence assumption.
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Bayesian Belief Networks

An Early Graphical Model

We represent these statistical dependencies graphically.

Bayesian Belief Networks, or Bayes Nets, are directed acyclic
graphs.

Each link is directional.

No loops.

The Bayes Net factorizes the distribution into independent parts
(making for more easily learned and computed terms).
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Bayesian Belief Networks

Bayes Nets Components

Each node represents one variable
(assume discrete for simplicity).

A link joining two nodes is directional
and it represents conditional
probabilities.

The intuitive meaning of a link is that
the source has a direct influence on the
sink.

Since we typically work with discrete
distributions, we evaluate the
conditional probability at each node
given its parents and store it in a
lookup table called a conditional
probability table.

C D

A B

E

F G

P(c|a) P(d|b)

P(c|d)
P(e|c)

P(g|e)P(f|e)

P(a) P(b)

P(g|f)

FIGURE 2.24. A belief network consists of nodes (labeled with uppercase bold letters)
and their associated discrete states (in lowercase). Thus node A has states a1, a2, . . . ,

denoted simply a; node B has states b1, b2, . . . , denoted b, and so forth. The links be-
tween nodes represent conditional probabilities. For example, P(c|a) can be described
by a matrix whose entries are P(ci|aj). From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Bayesian Belief Networks

A More Complex Example
From Russell and Norvig

B
T
T
F
F

E
T
F
T
F

P(A)
.95

.29

.001

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)
T
F

.90

.05

A P(M)
T
F

.70

.01

.94

Key: given knowledge of the values of some nodes in the network, we can
apply Bayesian inference to determine the maximum posterior values of the
unknown variables!
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Bayesian Belief Networks

Full Joint Distribution on a Bayes Net

Consider a Bayes network with n variables x1, . . . , xn.

Denote the parents of a node xi as P(xi).

Then, we can decompose the joint distribution into the product of
conditionals

P (x1, . . . , xn) =
n∏

i=1

P (xi|P(xi)) (74)
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Bayesian Belief Networks

Belief at a Single Node

What is the distribution at a single
node, given the rest of the network and
the evidence e?

Parents of X, the set P are the nodes
on which X is conditioned.

Children of X, the set C are the nodes
conditioned on X.

A B

X

C D

P(x|b)P(x|a)

P(d|x)P(c|x)

parents of X

children of X

FIGURE 2.25. A portion of a belief network, consisting of a node X, having variable
values (x1, x2, . . .), its parents (A and B), and its children (C and D). From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

Use the Bayes Rule, for the case on the right:

P (a, b, x, c, d) = P (a, b, x|c, d)P (c, d) (75)

= P (a, b|x)P (x|c, d)P (c, d) (76)

or more generally,

P (C(x), x,P(x)|e) = P (C(x)|x, e)P (x|P(x), e)P (P(x)|, e) (77)
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