
Problem 1: Parametric Estimation

1. Since samples x1, ..., xn are drawn independently from the Bernoulli dis-
tribution,

p(D|θ) =

n∏
i=1

(p(xi|θ))

=

n∏
i=1

θxi(1− θ)(1−xi)

= θ
∑n

i=1 xi(1− θ)(n−
∑n

i=1 xi)

Because xi ∈ {0, 1}, the previous equation can be expressed as
p(D|θ) = θs(1− θ)(n−s) with s =

∑n
i=1 xi.

2. Since θ denotes the probability of getting head or tail and a uniform prior
is assumed,

θ ∼ U(0, 1) =

{
1 0 ≤ θ ≤ 1

0 else

According to Bayes parameter estimation:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫ 1

0
p(D|θ)p(θ)dθ

where

p(D|θ)p(θ) =

{
θs(1− θ)(n−s) 0 ≤ θ ≤ 1

0 else

and ∫ 1

0

p(D|θ)p(θ)dθ

=

∫ 1

0

θs(1− θ)(n−s)dθ

=
s!(n− s)!
(n+ 1)!

Thus we can get

p(θ|D) =
p(D|θ)p(θ)∫ 1

0
p(D|θ)p(θ)dθ

=
(n+ 1)!

s!(n− s)!
θs(1− θ)n−s

for 0 ≤ θ ≤ 1
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3.

p(x|D) =

∫ 1

0

p(x|θ)p(θ|D)dθ

=

∫ 1

0

θx(1− θ)(1−x) (n+ 1)!

s!(n− s)!
θs(1− θ)n−sdθ

=
(n+ 1)!

s!(n− s)!

∫ 1

0

θ(x+s)(1− θ)(n+1−s−x)dθ

=
(n+ 1)!

s!(n− s)!
(x+ s)!(n+ 1− s− x)!

(n+ 2)!

=
(x+ s)!(n+ 1− s− x)!

s!(n− s)!(n+ 2)

Since x ∈ {0, 1}, p(x = 0|D) =
s!(n− s+ 1)!

s!(n− s)!(n+ 2)
=
n− s+ 1

n+ 2
= 1− s+ 1

n+ 2
,

p(x = 1|D) =
(1 + s)!(n− s)!
s!(n− s)!(n+ 2)

=
s+ 1

n+ 2
, we can get:

p(x|D) = (
s+ 1

n+ 2
)
x

(1− s+ 1

n+ 2
)
1−x

4. According to maximum likelihood estimation,

θ̂ = argmaxθp(D|θ) = argmaxθ(θ
s(1− θ)(n−s))

We can get θ̂ through:

dp(D|θ)
dθ

= sθ(s−1)(1− θ)(n−s) − (n− s)θs(1− θ)(n−s−1) = 0

Thus
θ̂ =

s

n

and
p(x|θ̂) = θ̂x(1− θ̂)(1−x) = (

s

n
)x(1− s

n
)(1−x)

...

Problem2: Nonparametric Methods

1. Because conditional densities are uniform within unit hyperspheres a dis-
tance of ten units apart. Which means, the n samples will be distributed
inside two different unit hyperspheres based on their labels. If we are
given a input x which belongs to ωi, samples with the same label ωi will
be nearer to x than samples with the other label, because the two unit
hyperspheres for the two classes have distance of ten units.
Thus, if x was classified to a wrong class, number of samples with the
same label ωi must be less than (k + 1)/2 such that the kNN method
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will include more samples with the other label. Therefore, the probability
of error is the probability of having number of samples in ωi less than
(k + 1)/2, which can be represented as:

Pn(e) =

(k−1)/2∑
j=0

(
n
j

)
1

2k
1

2(n−k)
=

1

2n

(k−1)/2∑
j=0

(
n
j

)
2. For single-nearest neighbor rule, the probability of error is:

P 1
n(e) = Pn(e)|k=0 =

1

2n

For k > 1,

Pn(e) =
1

2n

(k−1)/2∑
j=0

(
n
j

)
=

1

2n
+

1

2n

(k−1)/2∑
j=1

(
n
j

)
> P 1

n(e)

Thus, the single-nearest neighbor rule has a lower error rate than the
k-nearest-neighbor error rate for k > 1.

3. When
k − 1

2
<
n

2
,
(
n
j

)
<
(

n
(k−1)/2

)
for any j <

k − 1

2
, thus we can have:

(k−1)/2∑
j=0

(
n

j

)
<
k + 1

2

(
n

(k − 1)/2

)
Furthermore, Since

(
n
j

)
is an increasing function of j with 0 ≤ j ≤ n/2,

and

2n =

n∑
j=0

(
n

j

)
= 2

n/2∑
j=0

(
n

j

)
> 2

n/2∑
(k−1)/2

(
n

j

)
we will have:

2n > 2(
n

2
− k − 1

2
)

(
n

(k − 1)/2

)
Therefore:

Pn(e) <

k + 1

2

(
n

(k−1)/2

)
2(
n

2
− k − 1

2
)
(

n
(k−1)/2

) =

k + 1

2
n− (k − 1)

<
a
√
n+ 1

2n− 2a
√
n+ 2

when
k − 1

2
<
n

2

Since k < a
√
n,

k − 1

2
<

n

2
is true when n > a2 Therefore, as n →

∞, Pn(e) <
a
√
n+ 1

2n− 2a
√
n+ 2

, since

n→∞, a
√
n+ 1

2n− 2a
√
n+ 2

→ 0
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we can prove that Pn(e)→ 0, as n→∞
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