Problem 1: Parametric Estimation

1. Since samples x_{1}, \ldots, x_{n} are drawn independently from the Bernoulli distribution,

$$
\begin{aligned}
p(D \mid \theta) & =\prod_{i=1}^{n}\left(p\left(x_{i} \mid \theta\right)\right) \\
& =\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \\
& =\theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{\left(n-\sum_{i=1}^{n} x_{i}\right)}
\end{aligned}
$$

Because $x_{i} \in\{0,1\}$, the previous equation can be expressed as $p(D \mid \theta)=\theta^{s}(1-\theta)^{(n-s)}$ with $s=\sum_{i=1}^{n} x_{i}$.
2. Since θ denotes the probability of getting head or tail and a uniform prior is assumed,

$$
\theta \sim U(0,1)= \begin{cases}1 & 0 \leq \theta \leq 1 \\ 0 & \text { else }\end{cases}
$$

According to Bayes parameter estimation:

$$
\begin{aligned}
p(\theta \mid D) & =\frac{p(D \mid \theta) p(\theta)}{p(D)} \\
& =\frac{p(D \mid \theta) p(\theta)}{\int_{0}^{1} p(D \mid \theta) p(\theta) d \theta}
\end{aligned}
$$

where

$$
p(D \mid \theta) p(\theta)= \begin{cases}\theta^{s}(1-\theta)^{(n-s)} & 0 \leq \theta \leq 1 \\ 0 & \text { else }\end{cases}
$$

and

$$
\begin{aligned}
& \int_{0}^{1} p(D \mid \theta) p(\theta) d \theta \\
= & \int_{0}^{1} \theta^{s}(1-\theta)^{(n-s)} d \theta \\
= & \frac{s!(n-s)!}{(n+1)!}
\end{aligned}
$$

Thus we can get

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{\int_{0}^{1} p(D \mid \theta) p(\theta) d \theta}=\frac{(n+1)!}{s!(n-s)!} \theta^{s}(1-\theta)^{n-s}
$$

for $0 \leq \theta \leq 1$
3.

$$
\begin{aligned}
p(x \mid D) & =\int_{0}^{1} p(x \mid \theta) p(\theta \mid D) d \theta \\
& =\int_{0}^{1} \theta^{x}(1-\theta)^{(1-x)} \frac{(n+1)!}{s!(n-s)!} \theta^{s}(1-\theta)^{n-s} d \theta \\
& =\frac{(n+1)!}{s!(n-s)!} \int_{0}^{1} \theta^{(x+s)}(1-\theta)^{(n+1-s-x)} d \theta \\
& =\frac{(n+1)!}{s!(n-s)!} \frac{(x+s)!(n+1-s-x)!}{(n+2)!} \\
& =\frac{(x+s)!(n+1-s-x)!}{s!(n-s)!(n+2)}
\end{aligned}
$$

Since $x \in\{0,1\}, p(x=0 \mid D)=\frac{s!(n-s+1)!}{s!(n-s)!(n+2)}=\frac{n-s+1}{n+2}=1-\frac{s+1}{n+2}$, $p(x=1 \mid D)=\frac{(1+s)!(n-s)!}{s!(n-s)!(n+2)}=\frac{s+1}{n+2}$, we can get:

$$
p(x \mid D)=\left(\frac{s+1}{n+2}\right)^{x}\left(1-\frac{s+1}{n+2}\right)^{1-x}
$$

4. According to maximum likelihood estimation,

$$
\hat{\theta}=\operatorname{argmax}_{\theta} p(D \mid \theta)=\operatorname{argmax}_{\theta}\left(\theta^{s}(1-\theta)^{(n-s)}\right)
$$

We can get $\hat{\theta}$ through:

$$
\frac{d p(D \mid \theta)}{d \theta}=s \theta^{(s-1)}(1-\theta)^{(n-s)}-(n-s) \theta^{s}(1-\theta)^{(n-s-1)}=0
$$

Thus

$$
\hat{\theta}=\frac{s}{n}
$$

and

$$
p(x \mid \hat{\theta})=\hat{\theta}^{x}(1-\hat{\theta})^{(1-x)}=\left(\frac{s}{n}\right)^{x}\left(1-\frac{s}{n}\right)^{(1-x)}
$$

Problem2: Nonparametric Methods

1. Because conditional densities are uniform within unit hyperspheres a distance of ten units apart. Which means, the n samples will be distributed inside two different unit hyperspheres based on their labels. If we are given a input x which belongs to ω_{i}, samples with the same label ω_{i} will be nearer to x than samples with the other label, because the two unit hyperspheres for the two classes have distance of ten units.
Thus, if x was classified to a wrong class, number of samples with the same label ω_{i} must be less than $(k+1) / 2$ such that the kNN method
will include more samples with the other label. Therefore, the probability of error is the probability of having number of samples in ω_{i} less than $(k+1) / 2$, which can be represented as:

$$
P_{n}(e)=\sum_{j=0}^{(k-1) / 2}\binom{n}{j} \frac{1}{2^{k}} \frac{1}{2^{(n-k)}}=\frac{1}{2^{n}} \sum_{j=0}^{(k-1) / 2}\binom{n}{j}
$$

2. For single-nearest neighbor rule, the probability of error is:

$$
P_{n}^{1}(e)=\left.P_{n}(e)\right|_{k=0}=\frac{1}{2^{n}}
$$

For $k>1$,

$$
P_{n}(e)=\frac{1}{2^{n}} \sum_{j=0}^{(k-1) / 2}\binom{n}{j}=\frac{1}{2^{n}}+\frac{1}{2^{n}} \sum_{j=1}^{(k-1) / 2}\binom{n}{j}>P_{n}^{1}(e)
$$

Thus, the single-nearest neighbor rule has a lower error rate than the k-nearest-neighbor error rate for $k>1$.
3. When $\frac{k-1}{2}<\frac{n}{2},\binom{n}{j}<\binom{n}{(k-1) / 2}$ for any $j<\frac{k-1}{2}$, thus we can have:

$$
\sum_{j=0}^{(k-1) / 2}\binom{n}{j}<\frac{k+1}{2}\binom{n}{(k-1) / 2}
$$

Furthermore, Since $\binom{n}{j}$ is an increasing function of j with $0 \leq j \leq n / 2$, and

$$
2^{n}=\sum_{j=0}^{n}\binom{n}{j}=2 \sum_{j=0}^{n / 2}\binom{n}{j}>2 \sum_{(k-1) / 2}^{n / 2}\binom{n}{j}
$$

we will have:

$$
2^{n}>2\left(\frac{n}{2}-\frac{k-1}{2}\right)\binom{n}{(k-1) / 2}
$$

Therefore:

$$
\left.P_{n}(e)<\frac{\frac{k+1}{2}\left(_{(k-1) / 2}^{n}\right.}{(k-1}\right)_{\binom{n}{(k-1) / 2}}^{2\left(\frac{n}{2}-\frac{k-1}{2}\right)^{n}}=\frac{\frac{k+1}{2}}{n-(k-1)}<\frac{a \sqrt{n}+1}{2 n-2 a \sqrt{n}+2}
$$

when $\frac{k-1}{2}<\frac{n}{2}$
Since $k<a \sqrt{n}, \frac{k-1}{2}<\frac{n}{2}$ is true when $n>a^{2}$ Therefore, as $n \rightarrow$ $\infty, P_{n}(e)<\frac{a \sqrt{n}+1}{2 n-2 a \sqrt{n}+2}$, since

$$
n \rightarrow \infty, \frac{a \sqrt{n}+1}{2 n-2 a \sqrt{n}+2} \rightarrow 0
$$

we can prove that $P_{n}(e) \rightarrow 0$, as $n \rightarrow \infty$

