Problem 1: No Free Lunch Theorem

1. For a particular algorithm h and a given training set D, the expected error over all two-category problems can be represented as:

$$
\epsilon[E \mid D, h]=\sum_{F} \sum_{x \notin D} P(x)[1-\delta(F(x), h(x))] P(F \mid D)
$$

where we suppose there are two categories ω_{1}, ω_{2}, if the majority in the dataset D is ω_{1}, we will have $h(x)=\omega_{1}$ for all x, thus, $1-\delta(F(x), h(x))=1$ iff $F(x)=\omega_{2}$. Therefore:

$$
\epsilon[E \mid D, h]=\sum_{F} \sum_{x \notin D} P(x) P\left(F(x)=\omega_{2} \mid D\right)
$$

Since we have no prior knowledge concerning $P(F \mid D), \sum_{F} P\left(F(x)=\omega_{2} \mid D\right)=$ 0.5 , thus we will have

$$
\epsilon[E \mid D, h]=\sum_{F} \sum_{x \notin D} P(x) P\left(F(x)=\omega_{2}\right)=\sum_{x \notin D} P(x) \sum_{F} P\left(F(x)=\omega_{2} \mid D\right)=0.5
$$

Similarly, if the majority in D is ω_{2}, we can still prove that $\epsilon[E \mid D, h]=0.5$.
Therefore, the averaged over all two-category problems of a given number of features, the off-training set error is 0.5 .
2. Similar to the previous step, if the majority in the dataset D is ω_{2}, we will have $h(x)=\omega_{1}$ for all x, thus, $1-\delta(F(x), h(x))=1$ iff $F(x)=\omega_{2}$. Therefore:

$$
\epsilon[E \mid D, h]=\sum_{F} \sum_{x \notin D} P(x) P\left(F(x)=\omega_{2} \mid D\right)
$$

Since we have no prior knowledge of $P(F \mid D), \sum_{F} P\left(F(x)=\omega_{2} \mid D\right)=0.5$, thus we will have
$\epsilon[E \mid D, h]=\sum_{F} \sum_{x \notin D} P(x) P\left(F(x)=\omega_{2}\right)=\sum_{x \notin D} P(x) \sum_{F} P\left(F(x)=\omega_{2} \mid D\right)=0.5$
Similarly, if the majority in D is ω_{1}, we can still prove that $\epsilon[E \mid D, h]=0.5$.
Therefore, the averaged over all two-category problems of a given number of features, the off-training set error is 0.5 .
3. For any fixed training set D, both the majority learning algorithm and the minority learning algorithm have the same average off-training set error as 0.5 , which is the same as random guess. For any given learning algorithm, the result can be regarded as a combination of these two algorithms: for some test data, the output is the same as the majority algorithm, while for others, the output is the same as the minority algorithm. If F is uniformly distributed, this illustrated the part 2 of the No Free Lunch Theorem:
For any fixed training set D, uniformly averaged over $F, \epsilon_{1}(E \mid F, D)-$ $\epsilon_{2}(E \mid F, D)=0$.

