


Introduction to Non-Metric Methods

Introduction to Non-Metric Methods

We cover such problems involving nominal data in this
chapter—that is, data that are discrete and without any natural
notion of similarity or even ordering.

For example (DHS), some teeth are small and fine (as in baleen
whales) for straining tiny prey from the sea; others (as in sharks) come
in multiple rows; other sea creatures have tusks (as in walruses), yet
others lack teeth altogether (as in squid). There is no clear notion of
similarity for this information about teeth.

Most of the other methods we study will involve real-valued feature
vectors with clear metrics.

We may also consider problems involving data tuples and data strings.
And for recognition of these, decision trees and string grammars,
respectively.

J. Corso (SUNY at Buffalo) Trees 2 / 33





Decision Trees

20 Questions

I am thinking of a person. Ask me up to 20 yes/no questions to
determine who this person is that I am thinking about.

Consider your questions wisely...

How did you ask the questions?

What underlying measure led you the questions, if any?

Most importantly, iterative yes/no questions of this sort require no
metric and are well suited for nominal data.

J. Corso (SUNY at Buffalo) Trees 3 / 33



Decision Trees

20 Questions

I am thinking of a person. Ask me up to 20 yes/no questions to
determine who this person is that I am thinking about.

Consider your questions wisely...

How did you ask the questions?

What underlying measure led you the questions, if any?

Most importantly, iterative yes/no questions of this sort require no
metric and are well suited for nominal data.

J. Corso (SUNY at Buffalo) Trees 3 / 33



Decision Trees

20 Questions

I am thinking of a person. Ask me up to 20 yes/no questions to
determine who this person is that I am thinking about.

Consider your questions wisely...

How did you ask the questions?

What underlying measure led you the questions, if any?

Most importantly, iterative yes/no questions of this sort require no
metric and are well suited for nominal data.

J. Corso (SUNY at Buffalo) Trees 3 / 33





Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33



Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33



Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33



Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33



Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33



Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.

J. Corso (SUNY at Buffalo) Trees 5 / 33







Decision Trees CART

CART for Decision Tree Learning

Assume we have a set of D labeled training data and we have decided
on a set of properties that can be used to discriminate patterns.

Now, we want to learn how to organize these properties into a
decision tree to maximize accuracy.

Any decision tree will progressively split the data into subsets.

If at any point all of the elements of a particular subset are of the
same category, then we say this node is pure and we can stop
splitting.

Unfortunately, this rarely happens and we have to decide between
whether to stop splitting and accept an imperfect decision or instead
to select another property and grow the tree further.

J. Corso (SUNY at Buffalo) Trees 7 / 33



Decision Trees CART

CART for Decision Tree Learning

Assume we have a set of D labeled training data and we have decided
on a set of properties that can be used to discriminate patterns.

Now, we want to learn how to organize these properties into a
decision tree to maximize accuracy.

Any decision tree will progressively split the data into subsets.

If at any point all of the elements of a particular subset are of the
same category, then we say this node is pure and we can stop
splitting.

Unfortunately, this rarely happens and we have to decide between
whether to stop splitting and accept an imperfect decision or instead
to select another property and grow the tree further.

J. Corso (SUNY at Buffalo) Trees 7 / 33



Decision Trees CART

CART for Decision Tree Learning

Assume we have a set of D labeled training data and we have decided
on a set of properties that can be used to discriminate patterns.

Now, we want to learn how to organize these properties into a
decision tree to maximize accuracy.

Any decision tree will progressively split the data into subsets.

If at any point all of the elements of a particular subset are of the
same category, then we say this node is pure and we can stop
splitting.

Unfortunately, this rarely happens and we have to decide between
whether to stop splitting and accept an imperfect decision or instead
to select another property and grow the tree further.

J. Corso (SUNY at Buffalo) Trees 7 / 33



Decision Trees CART

CART for Decision Tree Learning

Assume we have a set of D labeled training data and we have decided
on a set of properties that can be used to discriminate patterns.

Now, we want to learn how to organize these properties into a
decision tree to maximize accuracy.

Any decision tree will progressively split the data into subsets.

If at any point all of the elements of a particular subset are of the
same category, then we say this node is pure and we can stop
splitting.

Unfortunately, this rarely happens and we have to decide between
whether to stop splitting and accept an imperfect decision or instead
to select another property and grow the tree further.

J. Corso (SUNY at Buffalo) Trees 7 / 33



Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?
3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33



Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?
3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33



Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?

2 Which property should be tested at a node?
3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33



Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?

3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33



Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?
3 When should a node be declared a leaf?

4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33







Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?
3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?

J. Corso (SUNY at Buffalo) Trees 8 / 33



Decision Trees CART

Number of Splits

The number of splits at a node, or its branching factor B, is
generally set by the designer (as a function of the way the test is
selected) and can vary throughout the tree.

Note that any split with a factor greater than 2 can easily be
converted into a sequence of binary splits.

So, DHS focuses on only binary tree learning.

But, we note that in certain circumstances for learning and inference,
the selection of a test at a node or its inference may be
computationally expensive and a 3- or 4-way split may be more
desirable for computational reasons.

J. Corso (SUNY at Buffalo) Trees 9 / 33





Decision Trees CART

Number of Splits

The number of splits at a node, or its branching factor B, is
generally set by the designer (as a function of the way the test is
selected) and can vary throughout the tree.

Note that any split with a factor greater than 2 can easily be
converted into a sequence of binary splits.

So, DHS focuses on only binary tree learning.

But, we note that in certain circumstances for learning and inference,
the selection of a test at a node or its inference may be
computationally expensive and a 3- or 4-way split may be more
desirable for computational reasons.

J. Corso (SUNY at Buffalo) Trees 9 / 33



Decision Trees CART

Number of Splits

The number of splits at a node, or its branching factor B, is
generally set by the designer (as a function of the way the test is
selected) and can vary throughout the tree.

Note that any split with a factor greater than 2 can easily be
converted into a sequence of binary splits.

So, DHS focuses on only binary tree learning.

But, we note that in certain circumstances for learning and inference,
the selection of a test at a node or its inference may be
computationally expensive and a 3- or 4-way split may be more
desirable for computational reasons.

J. Corso (SUNY at Buffalo) Trees 9 / 33



Decision Trees CART

Query Selection and Node Impurity

The fundamental principle underlying tree creation is that of
simplicity: we prefer decisions that lead to a simple, compact
tree with few nodes.

We seek a property query T at each node N that makes the data
reaching the immediate descendant nodes as “pure” as possible.

Let i(N) denote the impurity of a node N .

In all cases, we want i(N) to be 0 if all of the patterns that reach the
node bear the same category, and to be large if the categories are
equally represented.

Entropy impurity is the most popular measure:

i(N) = −
∑

j

P (ωj) logP (ωj) . (1)

It will be minimized for a node that has elements of only one class
(pure).

J. Corso (SUNY at Buffalo) Trees 10 / 33







Decision Trees CART

Query Selection and Node Impurity

The fundamental principle underlying tree creation is that of
simplicity: we prefer decisions that lead to a simple, compact
tree with few nodes.

We seek a property query T at each node N that makes the data
reaching the immediate descendant nodes as “pure” as possible.

Let i(N) denote the impurity of a node N .

In all cases, we want i(N) to be 0 if all of the patterns that reach the
node bear the same category, and to be large if the categories are
equally represented.

Entropy impurity is the most popular measure:

i(N) = −
∑

j

P (ωj) logP (ωj) . (1)

It will be minimized for a node that has elements of only one class
(pure).

J. Corso (SUNY at Buffalo) Trees 10 / 33





Decision Trees CART

For the two-category case, a useful definition of impurity is that
variance impurity:

i(N) = P (ω1)P (ω2) (2)

Its generalization to the multi-class is the Gini impurity:

i(N) =
∑

i !=j

P (ωi)P (ωj) = 1−
∑

j

P 2(ωj) (3)

which is the expected error rate at node N if the category is selected
randomly from the class distribution present at the node.

The misclassification impurity measures the minimum probability
that a training pattern would be misclassified at N :

i(N) = 1−max
j

P (ωj) (4)

J. Corso (SUNY at Buffalo) Trees 11 / 33



Decision Trees CART

For the two-category case, a useful definition of impurity is that
variance impurity:

i(N) = P (ω1)P (ω2) (2)

Its generalization to the multi-class is the Gini impurity:

i(N) =
∑

i !=j

P (ωi)P (ωj) = 1−
∑

j

P 2(ωj) (3)

which is the expected error rate at node N if the category is selected
randomly from the class distribution present at the node.

The misclassification impurity measures the minimum probability
that a training pattern would be misclassified at N :

i(N) = 1−max
j

P (ωj) (4)

J. Corso (SUNY at Buffalo) Trees 11 / 33



Decision Trees CART

For the two-category case, a useful definition of impurity is that
variance impurity:

i(N) = P (ω1)P (ω2) (2)

Its generalization to the multi-class is the Gini impurity:

i(N) =
∑

i !=j

P (ωi)P (ωj) = 1−
∑

j

P 2(ωj) (3)

which is the expected error rate at node N if the category is selected
randomly from the class distribution present at the node.

The misclassification impurity measures the minimum probability
that a training pattern would be misclassified at N :

i(N) = 1−max
j

P (ωj) (4)

J. Corso (SUNY at Buffalo) Trees 11 / 33



Decision Trees CART

0 1
P

i(P)

m
isc

la
ss

ifi
ca

tio
n

entropy

G
ini/variance

0.5

FIGURE 8.4. For the two-category case, the impurity functions peak at equal class fre-
quencies and the variance and the Gini impurity functions are identical. The entropy,
variance, Gini, and misclassification impurities (given by Eqs. 1–4, respectively) have
been adjusted in scale and offset to facilitate comparison here; such scale and offset do
not directly affect learning or classification. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

For the two-category case, the impurity functions peak at equal class
frequencies.

J. Corso (SUNY at Buffalo) Trees 12 / 33



Decision Trees CART

Query Selection

Key Question: Given a partial tree down to node N , what
feature s should we choose for the property test T?

The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible.

The impurity gradient is

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) , (5)

where NL and NR are the left and right descendants, respectively, PL

is the fraction of data that will go to the left sub-tree when property
T is used.

The strategy is then to choose the feature that maximizes ∆i(N).

If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.

J. Corso (SUNY at Buffalo) Trees 13 / 33



Decision Trees CART

Query Selection

Key Question: Given a partial tree down to node N , what
feature s should we choose for the property test T?

The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible.

The impurity gradient is

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) , (5)

where NL and NR are the left and right descendants, respectively, PL

is the fraction of data that will go to the left sub-tree when property
T is used.

The strategy is then to choose the feature that maximizes ∆i(N).

If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.

J. Corso (SUNY at Buffalo) Trees 13 / 33





Decision Trees CART

Query Selection

Key Question: Given a partial tree down to node N , what
feature s should we choose for the property test T?

The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible.

The impurity gradient is

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) , (5)

where NL and NR are the left and right descendants, respectively, PL

is the fraction of data that will go to the left sub-tree when property
T is used.

The strategy is then to choose the feature that maximizes ∆i(N).

If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.

J. Corso (SUNY at Buffalo) Trees 13 / 33





Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33




