


Introduction

When covering Bayesian Decision Theory, we assumed the full probabilistic
structure of the problem was know.
However, this is rarely the case in practice.
Instead, we have some knowledge of the problem and some example data
and we must estimate the probabilities.
In the discriminants chapter, we learned how to estimate linear boundaries
separating the data, assuming nothing about the specific structure of the
data. Here, we resort to assuming some structure to the data and estimate
the parameters of this structure.
Focus of this lecture is to study a pair of techniques for estimating the
parameters of the likelihood models (given a particular form of the density,
such as a Gaussian).

Parametric Models – For a particular class ωi, we consider a set of
parameters θi to fully define the likelihood model.

For the Guassian, θi = (µi,Σi).
Supervised Learning – we are working in a supervised situation where we
have an set of training data:

D = {(x,ω)1, (x,ω)2, . . . (x,ω)N} (1)
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Overview of the Methods

Intuitive Problem: Given a set of training data, D, containing labels
for c classes, train the likelihood models p(x|ωi,θi) by estimating the
parameters θi for i = 1, . . . , c.

Maximum Likelihood Parameter Estimation

Views the parameters as quantities that are fixed by unknown.
The best estimate of their value is the one that maximizes the
probability of obtaining the samples in D.

Bayesian Parameter Estimation

Views the parameters as random variables having some known prior
distribution.
The samples convert this prior into a posterior and revise our estimate
of the distribution over the parameters.
We shall typically see that the posterior is increasingly peaked for larger
D — Bayesian Learning.
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Maximum Likelihood Estimation

Preliminaries

Separate our training data according to class; i.e., we have c data sets
D1, . . . ,Dc.

Assume that samples in Di give no information for θj for all i != j.

Assume the samples in Dj have been drawn independently according
to the (unknown but) fixed density p(x|ωj).

We say these samples are i.i.d. — independent and identically
distributed.

Assume p(x|ωj) has some fixed parametric form and is fully described
by θj ; hence we write p(x|ωj ,θj).

We thus have c separate problems of the form:

Definition

Use a set D = {x1, . . . ,xn} of training samples drawn independently from
the density p(x|θ) to estimate the unknown parameter vector θ.
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Maximum Likelihood Estimation

Maximum (Log-)Likelihood

The maximum likelihood estimate of θ is the value θ̂ that
maximizes p(D|θ) or equivalently maximizes lD(θ).

θ̂ = argmax
θ

lD(θ) (5)
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|θ) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked θ̂ ; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood l(θ), shown at the bottom. Note that even
though they look similar, the likelihood p(D|θ) is shown as a function of θ whereas the
conditional density p(x|θ) is shown as a function of x. Furthermore, as a function of θ ,
the likelihood p(D|θ) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Maximum Likelihood Estimation

Necessary Conditions for MLE

For p parameters, θ
.
=

[
θ1 θ2 . . . θp

]T
.

Let ∇θ be the gradient operator, then ∇θ
.
=

[
∂

∂θ1
. . . ∂

∂θp

]T
.

The set of necessary conditions for the maximum likelihood
estimate of θ are obtained from the following system of p equations:

∇θl =

n∑

k=1

∇θ ln p(xk|θ) = 0 (6)

A solution θ̂ to (6) can be a true global maximum, a local maximum
or minimum or an inflection point of l(θ).

Keep in mind that θ̂ is only an estimate. Only in the limit of an
infinitely large number of training samples can we expect it to be the
true parameters of the underlying density.
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Maximum Likelihood Estimation

Gaussian Case with Known Σ and Unknown µ

For a single sample point xk:

ln p(xk|µ) = −1

2
ln
[
(2π)d|Σ|

]
− 1

2
(xk − µ)TΣ−1(xk − µ) (7)

∇µ ln p(xk|µ) = Σ−1(xk − µ) (8)

We see that the ML-estimate must satisfy

n∑

k=1

Σ−1(xk − µ̂) = 0 (9)

And we get the sample mean!

µ̂ =
1

n

n∑

k=1

xk (10)
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Maximum Likelihood Estimation

Univariate Gaussian Case with Unknown µ and σ2

The Log-Likelihood

Let θ = (µ,σ2). The log-likelihood of xk is

ln p(xk|θ) = −1

2
ln
[
2πσ2

]
− 1

2σ2
(xk − µ)2 (11)

∇θ ln p(xk|θ) =
[

1
σ2 (xk − µ)

− 1
2σ2 + (xk−µ)2

2σ2

]
(12)
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Bayesian Parameter Estimation

Bayesian Parameter Estimation Intuition
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

J. Corso (SUNY at Buffalo) Parametric Techniques 15 / 39



Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

J. Corso (SUNY at Buffalo) Parametric Techniques 15 / 39



Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

J. Corso (SUNY at Buffalo) Parametric Techniques 15 / 39



Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

J. Corso (SUNY at Buffalo) Parametric Techniques 15 / 39



Bayesian Parameter Estimation

General Assumptions
Bayesian Parameter Estimation

The form of the density p(x|θ) is assumed to be known (e.g., it is a
Gaussian).

The values of the parameter vector θ are not exactly known.

Our initial knowledge about the parameters is summarized in a prior
distribution p(θ).

The rest of our knowledge about θ is contained in a set D of n i.i.d.
samples x1, . . . ,xn drawn according to fixed p(x).

Goal

Our ultimate goal is to estimate p(x|D), which is as close as we can come
to estimating the unknown p(x).

J. Corso (SUNY at Buffalo) Parametric Techniques 15 / 39



Bayesian Parameter Estimation

Linking Likelihood and the Parameter Distribution

How do we relate the prior distribution on the parameters to the
samples?

Missing Data! The samples will convert our prior p(θ) to a posterior
p(θ|D), by integrating the joint density over θ:

p(x|D) =

∫
p(x,θ|D)dθ (19)

=

∫
p(x|θ,D)p(θ|D)dθ (20)

And, because the distribution of x is known given the parameters θ,
we simplify to

p(x|D) =

∫
p(x|θ)p(θ|D)dθ (21)

J. Corso (SUNY at Buffalo) Parametric Techniques 16 / 39







Bayesian Parameter Estimation

Linking Likelihood and the Parameter Distribution

p(x|D) =

∫
p(x|θ)p(θ|D)dθ

We can see the link between the likelihood p(x|θ) and the posterior
for the unknown parameters p(θ|D).

If the posterior p(θ|D) peaks very sharply for sample point θ̂, then we
obtain

p(x|D) # p(x|θ̂) . (22)

And, we will see that during Bayesian parameter estimation, the
distribution over the parameters will get increasingly “peaky” as the
number of samples increases.

What if the integral is not readily analytically computed?
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