


@ Key Question: Given a partial tree down to nod hat
feature s should we choose for the property te

@ The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible o
@ The impurity gradient is
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where N, and Ng are the left and right descéndants, respectively, Py,
Is the fraction of data that will go~to the left sub-tree when property
T is used.
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Query Selection

@ Key Question: Given a partial tree down to node N, what
feature s should we choose for the property test 717

@ The obvious heuristic is to choose the feature that yields as big a
decrease In the impurity as possible.

@ The impurity gradient is
Ai(N) =4i(N) — Pri(Nr) — (1 = P)i(Ng) , (5)

where Ny, and Np are the left and right descendants, respectively, Pr,
is the fraction of data that will go to the left sub-tree when property
T is used.

@ The strategy is then to choose the feature that maximizes Ai(NV).
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CART

@ Key Question: Given a partial tree down to node N, what
feature s should we choose for the property test 77

@ The obvious heuristic is to choose the feature tha;,yieldzas big a

decrease in the impurity as possible. C O\J \/

@ The impurity gradient is

A’i(N)ZZ( PLZ NL 1—P%4NR ]

where N, and Ng are the left and right dant %?y Pr

Is the fraction of data that will go to the | ft m operty
T is used.

@ The strategy is then to choose the feature that maximizes Ai(V).

@ If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.




@ For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).



What can we say about this strategy?

@ For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

@ In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

e In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” (1 consists of all
patterns in some subset of the categories and C5 has the remainder.
When searching for the feature s, we also need to search over possible

category groupings.
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What can we say about this strategy?

@ For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

@ In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

e In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” (1 consists of all
patterns in some subset of the categories and C5 has the remainder.
When searching for the feature s, we also need to search over possible

category groupings.
@ Thisis a local, greedy optimization strategy.

@ Hence, there i1s no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.
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What can we say about this strategy?

@ For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

@ In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

e In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” (1 consists of all
patterns in some subset of the categories and C5 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

@ Thisis a local, greedy optimization strategy.

@ Hence, there i1s no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

@ In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.
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CART

@ In the case of selecting a multiway split with branching factor B, the
following is the direct generalization of the impurity gradient function:

B
Ai(s) = i(N) = >  Pyi(Ny) (6)
k=1
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@ In the case of selecting a multiway split with branching factor B, the
following is the direct generalization of the impurity gradient function:

B
Ai(s) = i(N) — >  Pyi(Ng) (6)
k=1

@ This direct generalization is biased toward higher branching factors.
e To see this, consider the uniform splitting case.



A Note About Multiway Splits

@ In the case of selecting a multiway split with branching factor B, the
following is the direct generalization of the impurity gradient function:

B
Ai(s) = i(N) — )  Pri(Ng) (6)
k=1

@ This direct generalization is biased toward higher branching factors.
e To see this, consider the uniform splitting case.

@ So, we need to normalize each:

Ai(s)
— Zle Pk log Pk

And then we can again choose the feature that maximizes this
normalized criterion.

AZB(S) —

J. Corso (SUNY at Buffalo) Trees 15 / 33



@ |f we continue to grow the tree until each leaf node has its lowest
impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize

well.
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@ |f we continue to grow the tree until each leaf node has its lowest
impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize

well.

@ Conversely, if we stop growing the tree too early, the error on the
training data will not be sufficiently low and performance will again

suffer.
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@ If we continue to grow the tree until each leaf node has its lowest

impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize

well.

@ Conversely, if we stop growing the tree too early, the error on the
training data will not be sufficiently low and performance will again

suffer.

@ So, how to stop splitting?



S~ W N = @

If we continue to grow the tree until each leaf node has its lowest
impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize
well.

Conversely, if we stop growing the tree too early, the error on the
training data will not be sufficiently low and erformance il again
suffer. {

/l

V

So, how to stop splitting?
Cross-validation...
Threshold on the impurity gradient. k

Incorporate a tree-complexity term and minimize.

Statistical significance of the impurity gradient. —_—D Dd)ﬂl

|
|



CART

@ Splitting is stopped if the best candidate split at a node reduces the

(8)
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@ Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, 5:

max Ai(s) < 0 . (8)

S —

@ Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.



Stopping by Thresholding the Impurity Gradient

@ Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, 3

max Ai(s) < 3 . (8)
S
@ Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

@ Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.
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Stopping by Thresholding the Impurity Gradient

@ Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, 3

max Ai(s) < B . (8)

@ Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

@ Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

@ Drawback: But, how do we set the value of the threshold 37
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@ Define a new globa# inction

« - size + Z i(N) . (9)

which trades comWexity for a€curacy. Here, size could represent the
number of nodes or links and « is some positive constant.
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@ Define a new global criterion function

« - size + Z i(N) . (9)

leaf nodes

which trades complexity for accuracy. Here, size could represent the
number of nodes or links and « is some positive constant.

@ The strategy is then to split until a minimum of this global criterion
function has been reached.



Stopping with a Complexity Term

@ Define a new global criterion function

o - size + Z i(N) . (9)

leaf nodes

which trades complexity for accuracy. Here, size could represent the
number of nodes or links and « is some positive constant.

@ The strategy is then to split until a minimum of this global criterion
function has been reached.

@ Given the entropy impurity, this global measure is related to the
minimum description length principle.

e The sum of the impurities at the leaf nodes is a measure of uncertainty
in the training data given the model represented by the tree.
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@ Define a new global criterion function

@ size+  » i(N) . (9)
N\

leaf nodes

which trades complexity for accuracy. Here, size could represent the
number of nodes or links and « is some positive constant.

@ The strategy is then to split until a minimum of this global criterion
function has been reached.

@ Given the entropy impurity, this global measure is related to the
minimum description length principle.

e The sum of the impurities at the leaf nodes is a measure of uncertainty
In the training data given the model represented by the tree.

@ But, again, how do we set the constant a?
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@ During construction, estimate the distribution of the impurity
gradients A7 for the current collection of nodes.
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@ During construction, estimate the distribution of the impurity
gradients A7 for the current collection of nodes.

@ For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.



Stopping by Testing the Statistical Significance

@ During construction, estimate the distribution of the impurity
gradients Az for the current collection of nodes.

@ For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

@ More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs

significantly from a random split.
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Stopping by Testing the Statistical Significance

@ During construction, estimate the distribution of the impurity
gradients Az for the current collection of nodes.

@ For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

@ More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

@ Suppose we have n samples at node V. A particular split s sends Pn
patterns to the left branch and (1 — P)n patterns to the right branch.
A random split would place P,, of the w; samples to the left, P,, of
the wy samples to the left and corresponding amounts to the right.
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Decision Trees CART

@ The chi-squared statistic calculates the deviation of a particular split s
from this random one:

N7 — Mg )?
5 X2 - Z ( LLnie ) (10)

where n;z, i1s the number of w; patterns sent to the left under s, and
n;. = Pn; 1s the number ex ed by the random rule.
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@ The chi-squared statistic calculates the deviation of a particular split s
from this random one:

2 (ML, — ie)?
1L, — Tlge
=) (10)

1=1

where n;s, is the number of wj patterns sent to the left under s, and
nie = Pn; I1s the number expected by the random rule.

@ The larger the chi-squared statistic, the more the candidate split
deviates from a random one.
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@ The chi-squared statistic calculates the deviation of a particular split s
from this random one:

2 (ML, — ie)?
1L, — Tlge
=) (10)

1=1

where n;s, is the number of wj patterns sent to the left under s, and
nie = Pn; I1s the number expected by the random rule.

@ The larger the chi-squared statistic, the more the candidate split
deviates from a random one.

@ When it is greater than a critical value (based on desired significance
bounds), we reject the null hypothesis (the random split) and proceed
with s.

J. Corso (SUNY at Buffalo) Trees 20 / 33



@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity

reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.



@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity

reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

@ Pruning is the principal alternative strategy for tree construction.
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@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

@ Pruning is the principal alternative strategy for tree construction.

@ In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.
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Pruning

@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

@ Pruning is the principal alternative strategy for tree construction.

@ In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.

@ Any pair that yields a satisfactory increase in impurity (a small one) is
eliminated and the common ancestor node is declared a leaf.
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Pruning

@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

@ Pruning is the principal alternative strategy for tree construction.

@ In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.

@ Any pair that yields a satisfactory increase in impurity (a small one) is
eliminated and the common ancestor node is declared a leaf.

@ Unbalanced trees often result from this style of pruning/merging.
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Pruning

@ Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

@ Pruning is the principal alternative strategy for tree construction.

@ In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.

@ Any pair that yields a satisfactory increase in impurity (a small one) is
eliminated and the common ancestor node is declared a leaf.

@ Unbalanced trees often result from this style of pruning/merging.

@ Pruning avoids the “local”-ness of the earlier methods and uses all of
the training data, but it does so at added computational cost during
the tree construction.
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@ This part is easy...a particular leaf node should make the label
assignment based on the distribution of samples in it during training.
Take the label of the maximally represented class.

@ We will see clear justificati or this in the next chapter on Decision
Theory.
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@ The selection of features will ultimately play a major role in accuracy,
generalization, and complexity.
@ This is an instance of the Ugly Duckling<pginciple.




Decision Trees CART

@ Furthermore, the use of multiple variables in selecting a decision rule
may greatly improve the accuracy and generalization.
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@ ID3 is another tree growing method.



@ ID3 is another tree growing method.

@ |t assumes nominal inputs.



@ |ID3 is another tree growing method.

@ |t assumes nominal inputs.

@ Every split has a branching factor B;, where B; is the number of
discrete attribute bins of the variable 5 chosen for splitting.



@ |ID3 is another tree growing method.

@ |t assumes nominal inputs.

@ Every split has a branching factor B;, where B; is the number of
discrete attribute bins of the variable 5 chosen for splitting.

@ These are, hence, seldom binary.
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ID3 Is another tree growing method.

It assumes nominal inputs.

Every split has a branching factor B;, where B; is the number of
discrete attribute bins of the variable 5 chosen for splitting.

"hese are, hence, seldom binary.

"he number of levels in the trees are equal to the number of input
variables.
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Every split has a branching factor B;, where B; is the number of
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ID3 is

another tree growing method.

It assumes nominal inputs.

Every split has a branching factor B;, where B; is the number of

hese

variab

The a
variab

discrete attribute bins of the variable 5 chosen for splitting.

are, hence, seldom binary.

"he number of levels in the trees are equal to the number of input

€S.

gorithm continues until all nodes are pure or there are no more
es on which to split.

One can follow this by pruning.



@ T his is a successor to the ID3 method.



@ T his is a successor to the ID3 method.

@ It handles real valued variables like CART and uses the ID3 multiway
splits for nominal data.



@ This is a successor to the ID3 method.

@ It handles real valued variables like CART and uses the ID3 multiway
splits for nominal data.

@ Pruning is performed based on statistical significance tests.
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Example from T. Mitchell Book: PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Milc High Weak Yes
D5 Rain Coo Norma Weak Yes
D6 Rain Coo Normal  Strong No
D7 Overcast Coo Normal  Strong Yes
D8 Sunny Milc High Weak No
D9 Sunny Coo Norma Weak Yes
D10 Rain Milc Norma Weak Yes
D11 Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13  Overcast Hot Normal  Weak Yes
D14 Rain Mild High Strong No
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Decision Trees Example

Which attribute is the best classifier?

S:[9+.5-] S:[9+.5-]
E =0.940 E=0.940
High Normal Weak Strong
[3+.4-] [6+,1-] [6+,2-] [3+,3-]
E =0.985 E =0.592 E=0.811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)
=.940 - (7/14).985 - (7/14).592 =.940 - (8/14).811 - (6/14)1.0
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Decision Trees Example

{D1,D2, ...,D14}

Outlook
Sunny Overcast Rain
{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}
[2+,3—] [4+.,0—] [3+,2—]

/1

? ?
/

Which attribute should be tested here?

Ssunny ={D1,D2,D8,D9,D11}
Gain (Sgyppy , Humidity) = 970 - (3/5)0.0 - (2/5)0.0 = .970
Gain (Ssynny , Temperature) = 970 — (2/5)0.0 — (2/5)1.0 - (1/5)0.0 = 570
Gain (Ssypny » Wind) = 970 — (2/5)1.0 — (3/5) 918 = 019
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Decision Trees Example

Hypothesis Space Search by 1D3

s

Z

J. Corso (SUNY at Buffalo) Trees 31 /733



Decision Trees Example

Learned Tree

Outlook

I

Overcast Rain

Sunny
Humidity
High Normal
No Yes

J. Corso (SUNY at Buffalo)

o~

Yes Wind
Strong Weak
No Yes

Trees
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Decision Trees Example

Overfitting Instance
@ Consider adding a new, noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

@ What effect would it have on the earlier tree?
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Overfitting Instance

Decision

| rees

Example

@ Consider adding a new, noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

@ What effect would it have on the earlier tree?

0.9

0.85

0.8

0.75

Accuracy
=
~J

0.65

0.6

0.55

J. Corso (SUNY at Buffalo)
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————— -
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On training data ——
On test data ----
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