




Decision Trees CART

Query Selection

Key Question: Given a partial tree down to node N , what
feature s should we choose for the property test T?

The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible.

The impurity gradient is

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) , (5)

where NL and NR are the left and right descendants, respectively, PL

is the fraction of data that will go to the left sub-tree when property
T is used.

The strategy is then to choose the feature that maximizes ∆i(N).

If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.
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Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33



Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.

J. Corso (SUNY at Buffalo) Trees 14 / 33





Decision Trees CART

A Note About Multiway Splits

In the case of selecting a multiway split with branching factor B, the
following is the direct generalization of the impurity gradient function:

∆i(s) = i(N)−
B∑

k=1

Pki(Nk) (6)

This direct generalization is biased toward higher branching factors.

To see this, consider the uniform splitting case.

So, we need to normalize each:

∆iB(s) =
∆i(s)

−
∑B

k=1 Pk logPk

. (7)

And then we can again choose the feature that maximizes this
normalized criterion.
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Decision Trees CART

When to Stop Splitting?

If we continue to grow the tree until each leaf node has its lowest
impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize
well.

Conversely, if we stop growing the tree too early, the error on the
training data will not be sufficiently low and performance will again
suffer.

So, how to stop splitting?

1 Cross-validation...

2 Threshold on the impurity gradient.

3 Incorporate a tree-complexity term and minimize.

4 Statistical significance of the impurity gradient.
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Decision Trees CART

Stopping by Thresholding the Impurity Gradient

Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, β:

max
s

∆i(s) ≤ β . (8)

Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

Drawback: But, how do we set the value of the threshold β?
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Decision Trees CART

Stopping with a Complexity Term

Define a new global criterion function

α · size+
∑

leaf nodes

i(N) . (9)

which trades complexity for accuracy. Here, size could represent the
number of nodes or links and α is some positive constant.

The strategy is then to split until a minimum of this global criterion
function has been reached.

Given the entropy impurity, this global measure is related to the
minimum description length principle.

The sum of the impurities at the leaf nodes is a measure of uncertainty
in the training data given the model represented by the tree.

But, again, how do we set the constant α?
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Decision Trees CART

Stopping by Testing the Statistical Significance

During construction, estimate the distribution of the impurity
gradients ∆i for the current collection of nodes.

For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

Suppose we have n samples at node N . A particular split s sends Pn
patterns to the left branch and (1− P )n patterns to the right branch.
A random split would place Pn1 of the ω1 samples to the left, Pn2 of
the ω2 samples to the left and corresponding amounts to the right.

J. Corso (SUNY at Buffalo) Trees 19 / 33



Decision Trees CART

Stopping by Testing the Statistical Significance

During construction, estimate the distribution of the impurity
gradients ∆i for the current collection of nodes.

For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

Suppose we have n samples at node N . A particular split s sends Pn
patterns to the left branch and (1− P )n patterns to the right branch.
A random split would place Pn1 of the ω1 samples to the left, Pn2 of
the ω2 samples to the left and corresponding amounts to the right.

J. Corso (SUNY at Buffalo) Trees 19 / 33



Decision Trees CART

Stopping by Testing the Statistical Significance

During construction, estimate the distribution of the impurity
gradients ∆i for the current collection of nodes.

For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

Suppose we have n samples at node N . A particular split s sends Pn
patterns to the left branch and (1− P )n patterns to the right branch.
A random split would place Pn1 of the ω1 samples to the left, Pn2 of
the ω2 samples to the left and corresponding amounts to the right.

J. Corso (SUNY at Buffalo) Trees 19 / 33



Decision Trees CART

Stopping by Testing the Statistical Significance

During construction, estimate the distribution of the impurity
gradients ∆i for the current collection of nodes.

For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

Suppose we have n samples at node N . A particular split s sends Pn
patterns to the left branch and (1− P )n patterns to the right branch.
A random split would place Pn1 of the ω1 samples to the left, Pn2 of
the ω2 samples to the left and corresponding amounts to the right.

J. Corso (SUNY at Buffalo) Trees 19 / 33





Decision Trees CART

The chi-squared statistic calculates the deviation of a particular split s
from this random one:

χ2 =
2∑

i=1

(niL − nie)
2

nie
(10)

where niL is the number of ω1 patterns sent to the left under s, and
nie = Pni is the number expected by the random rule.

The larger the chi-squared statistic, the more the candidate split
deviates from a random one.

When it is greater than a critical value (based on desired significance
bounds), we reject the null hypothesis (the random split) and proceed
with s.
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Decision Trees CART

Pruning

Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

Pruning is the principal alternative strategy for tree construction.

In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.

Any pair that yields a satisfactory increase in impurity (a small one) is
eliminated and the common ancestor node is declared a leaf.

Unbalanced trees often result from this style of pruning/merging.

Pruning avoids the “local”-ness of the earlier methods and uses all of
the training data, but it does so at added computational cost during
the tree construction.
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Decision Trees ID3

ID3 Method

ID3 is another tree growing method.

It assumes nominal inputs.

Every split has a branching factor Bj , where Bj is the number of
discrete attribute bins of the variable j chosen for splitting.

These are, hence, seldom binary.

The number of levels in the trees are equal to the number of input
variables.

The algorithm continues until all nodes are pure or there are no more
variables on which to split.

One can follow this by pruning.
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Decision Trees C4.5

C4.5 Method (in brief)

This is a successor to the ID3 method.

It handles real valued variables like CART and uses the ID3 multiway
splits for nominal data.

Pruning is performed based on statistical significance tests.
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Decision Trees Example

Example from T. Mitchell Book: PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision Trees Example

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:
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Decision Trees Example

Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}
[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

 

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970
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Decision Trees Example

Learned Tree

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny
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Decision Trees Example

Overfitting Instance

Consider adding a new, noisy training example #15:

Sunny, Hot, Normal, Strong, P layTennis = No

What effect would it have on the earlier tree?
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