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Histograms

Histogram Density Representation

Consider a single continuous variable x and let’s say we have a set D
of N of them {x1, . . . , xN}. Our goal is to model p(x) from D.

Standard histograms simply partition x into distinct bins of width ∆i

and then count the number ni of observations x falling into bin i.

To turn this count into a normalized probability density, we simply
divide by the total number of observations N and by the width ∆i of
the bins.

This gives us:

pi =
ni

N∆i
(1)

Hence the model for the density p(x) is constant over the width of
each bin. (And often the bins are chosen to have the same width
∆i = ∆.)
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Histograms

Bin Number 0 1 2
Δ

Bin Count 3 6 7
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Histograms

Histogram Density as a Function of Bin Width
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Histograms

Histogram Density as a Function of Bin Width

The green curve is the underlying true
density from which the samples were
drawn. It is a mixture of two Gaussians.

When ∆ is very small (top), the
resulting density is quite spiky and
hallucinates a lot of structure not
present in p(x).
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When ∆ is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).

It appears that the best results are obtained for some intermediate
value of ∆, which is given in the middle figure.

In principle, a histogram density model is also dependent on the
choice of the edge location of each bin.
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Histograms

Analyzing the Histogram Density

What are the advantages and disadvantages of the histogram density
estimator?

Advantages:

Simple to evaluate and simple to use.
One can throw away D once the histogram is computed.
Can be computed sequentially if data continues to come in.

Disadvantages:

The estimated density has discontinuities due to the bin edges rather
than any property of the underlying density.
Scales poorly (curse of dimensionality): we would have MD bins if we
divided each variable in a D-dimensional space into M bins.
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Histograms

What can we learn from Histogram Density
Estimation?

Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

This requires we define some distance measure.
There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).

Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.

With these two lessons in mind, we proceed to kernel density
estimation and nearest neighbor density estimation, two closely
related methods for density estimation.
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Kernel Density Estimation

The Space-Averaged / Smoothed Density

Consider again samples x from underlying density p(x).

Let R denote a small region containing x.

The probability mass associated with R is given by

P =

∫

R
p(x′)dx′ (2)

Suppose we have n samples x ∈ D. The probability of each sample
falling into R is P .

How will the total number of k points falling into R be distributed?

This will be a binomial distribution:

Pk =

(
n
k

)
P k(1− P )n−k (3)
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Kernel Density Estimation

The Space-Averaged / Smoothed Density

The expected value for k is thus

E [k] = nP (4)

The binomial for k peaks very sharply about the mean. So, we expect
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).

This estimate is increasingly accurate as n increases.
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FIGURE 4.1. The relative probability an estimate given by Eq. 4 will yield a particular
value for the probability density, here where the true probability was chosen to be 0.7.
Each curve is labeled by the total number of patterns n sampled, and is scaled to give
the same maximum (at the true probability). The form of each curve is binomial, as
given by Eq. 2. For large n, such binomials peak strongly at the true probability. In the
limit n → ∞, the curve approaches a delta function, and we are guaranteed that our
estimate will give the true probability. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Kernel Density Estimation Practical Concerns

Practical Concerns

The validity of our estimate depends on two contradictory
assumptions:

1 The region R must be sufficiently small the the density is
approximately constant over the region.

2 The region R must be sufficiently large that the number k of points
falling inside it is sufficient to yield a sharply peaked binomial.

Another way of looking it is to fix the volume V and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V ).

We want p(x), so we need to let V approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) # 0.

Note that in practice, we cannot let V to become arbitrarily small
because the number of samples is always limited.
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

To estimate the density at x, form a sequence of regions R1,R2, . . .
containing x with the R1 having 1 sample, R2 having 2 samples and
so on.

Let Vn be the volume of Rn, kn be the number of samples falling in
Rn, and pn(x) be the nth estimate for p(x):

pn(x) =
kn
nVn

(7)

If pn(x) is to converge to p(x) we need the following three conditions

lim
n→∞

Vn = 0 (8)

lim
n→∞

kn = ∞ (9)

lim
n→∞

kn/n = 0 (10)

J. Corso (SUNY at Buffalo) Nonparametric Methods 15 / 49







Kernel Density Estimation Practical Concerns

limn→∞ Vn = 0 ensures that our space-averaged density will converge
to p(x).

limn→∞ kn = ∞ basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

limn→∞ kn/n = 0 is required for pn(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Rn, they will form a negligibly small fraction of the total number of
samples.

There are two common ways of obtaining regions that satisfy these
conditions:

1 Shrink an initial region by specifying the volume Vn as some function
of n such as Vn = 1/

√
n. Then, we need to show that pn(x) converges

to p(x). (This is like the Parzen window we’ll talk about next.)
2 Specify kn as some function of n such as kn =

√
n. Then, we grow the

volume Vn until it encloses kn neighbors of x. (This is the
k-nearest-neighbor).

Both of these methods converge...
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Kernel Density Estimation Practical Concerns

n = 1 n = 4 n = 9 n = 16 n = 100

...

...

...

...

Vn =1/ √n

kn = √n

FIGURE 4.2. There are two leading methods for estimating the density at a point, here
at the center of each square. The one shown in the top row is to start with a large volume
centered on the test point and shrink it according to a function such as Vn = 1/

√
n. The

other method, shown in the bottom row, is to decrease the volume in a data-dependent
way, for instance letting the volume enclose some number kn = √

n of sample points.
The sequences in both cases represent random variables that generally converge and
allow the true density at the test point to be calculated. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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