Spectral Clustering

Jing Gao SUNY Buffalo

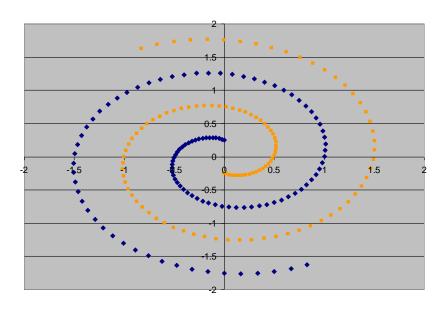
Motivation

Complex cluster shapes

 K-means performs poorly because it can only find spherical clusters

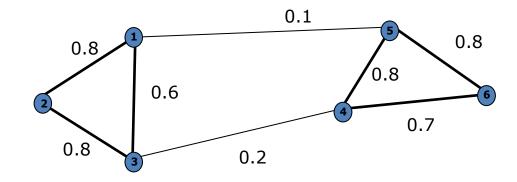
• Spectral approach

- Use similarity graphs to encode local neighborhood information
- Data points are vertices of the graph
- Connect points which are "close"



Similarity Graph

- Represent dataset as a weighted graph G(V,E)
- All vertices which can be reached from each other by a path form a connected component
- Only one connected component in the graph—The graph is fully connected
 - $V = \{x_i\}$ Set of *n* vertices representing data points
 - E={W_{ij}} Set of weighted edges indicating pair-wise similarity
 between points



Graph Construction

ε-neighborhood graph

- Identify a threshold value, ε , and include edges if the affinity between two points is greater than ε

k-nearest neighbors

- Insert edges between a node and its k-nearest neighbors
- Each node will be connected to (at least) k nodes

Fully connected

- Insert an edge between every pair of nodes
- Weight of the edge represents similarity
- Gaussian kernel:

$$w_{ij} = \exp(-\|x_i - x_j\|^2 / \sigma^2)$$

ɛ-neighborhood Graph

• *ε*-neighborhood

- Compute pairwise distance between any two objects
- Connect each point to all other points which have distance smaller than a threshold ε

• Weighted or unweighted

- Unweighted—There is an edge if one point belongs to the ε -neighborhood of another point
- Weighted—Transform distance to similarity and use similarity as edge weights

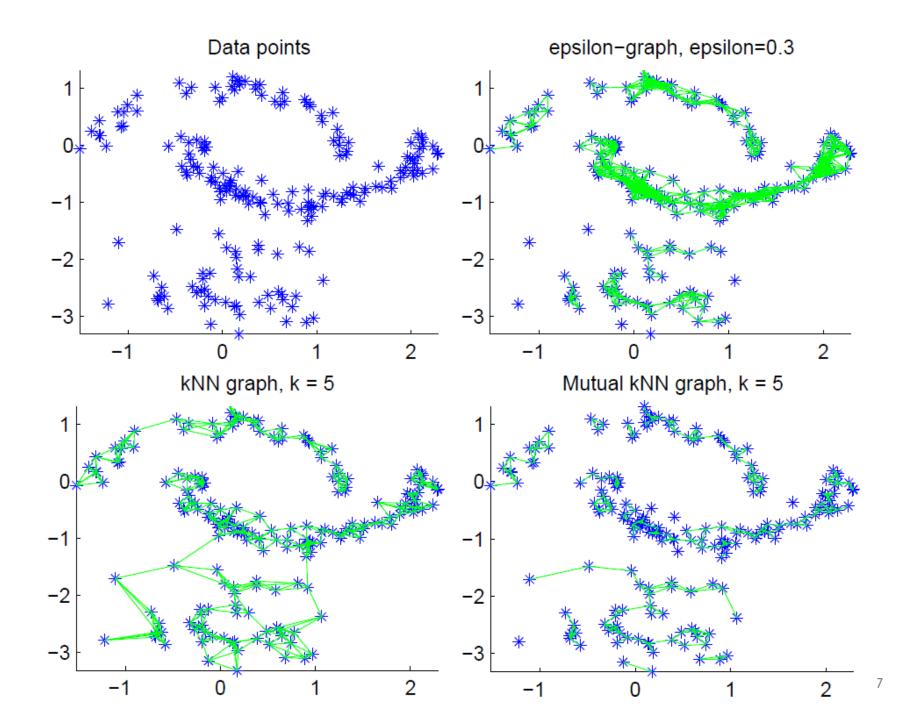
*k***NN Graph**

• Directed graph

Connect each point to its k nearest neighbors

• kNN graph

- Undirected graph
- An edge between x_i and x_j: There's an edge from x_i to x_j OR from x_j to x_i in the directed graph
- Mutual kNN graph
 - Undirected graph
 - Edge set is a subset of that in the kNN graph
 - An edge between x_i and x_j: There's an edge from x_i to x_j AND from x_j to x_i in the directed graph

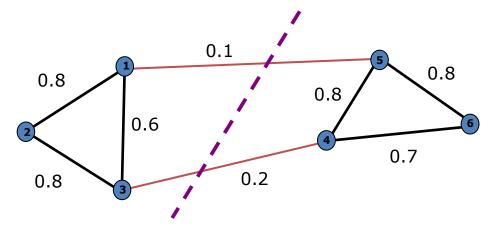


Clustering Objective

Traditional definition of a "good" clustering

- Points assigned to same cluster should be highly similar
- Points assigned to different clusters should be highly dissimilar

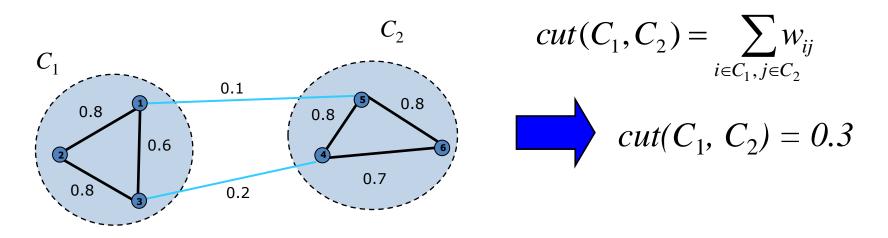
Apply this objective to our graph representation



Minimize weight of between-group connections

Graph Cuts

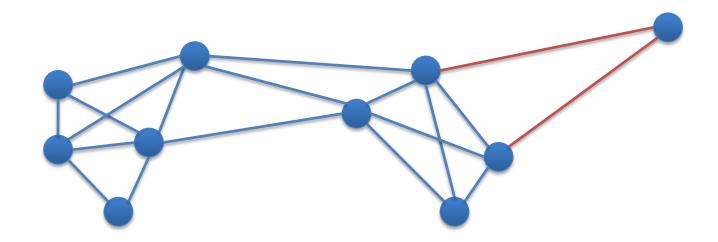
- Express clustering objective as a function of the *edge cut* of the partition
- Cut: Sum of weights of edges with only one vertex in each group
- We wants to find the *minimal cut* between groups



Bi-partitional Cuts

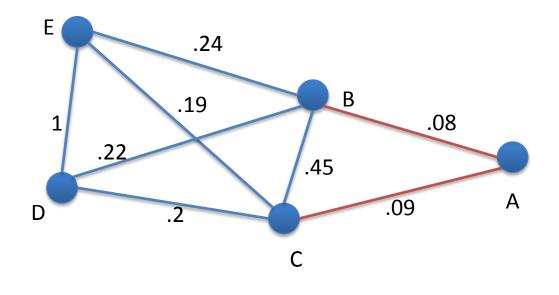
• Minimum (bi-partitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$



Example

• Minimum Cut



Cut(BCDE, A) = 0.17

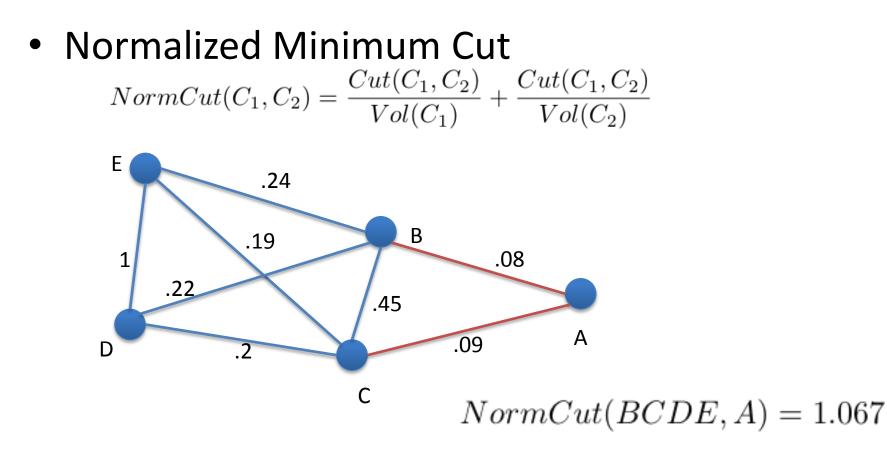
Normalized Cuts

• Minimal (bipartitional) normalized cut

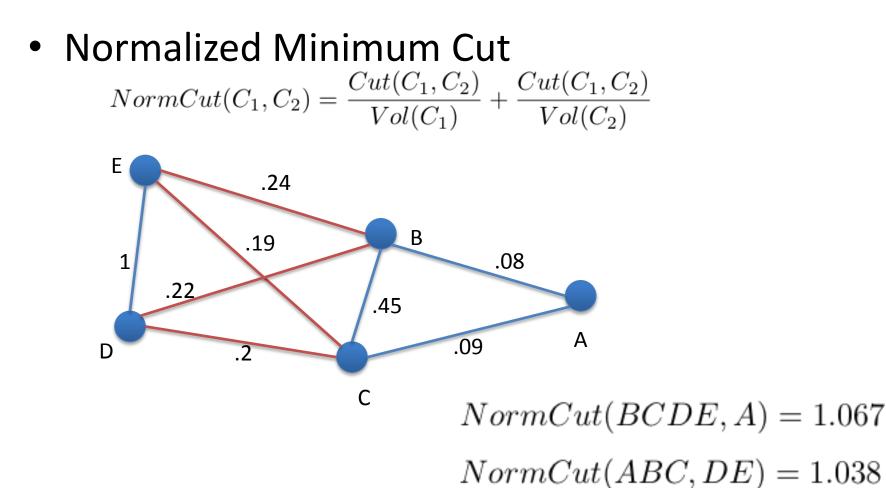
$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

$$Vol(C) = \sum_{i \in C, j \in V} w_{ij}$$

Example



Example



Problem

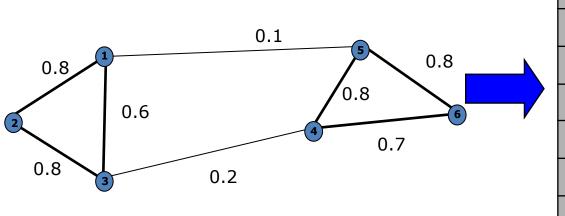
- Identifying a minimum cut is NP-hard
- There are efficient approximations using linear algebra
- Based on the Laplacian Matrix, or graph
 Laplacian

Matrix Representations

Similarity matrix (W)

-n x n matrix

 $-W = [w_{ij}]$: edge weight between vertex x_i and x_j



	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	0	0.8	0.6	0	0.1	0
<i>X</i> ₂	0.8	0	0.8	0	0	0
X ₃	0.6	0.8	0	0.2	0	0
X ₄	0	0	0.2	0	0.8	0.7
<i>X</i> ₅	0.1	0	0	0.8	0	0.8
X ₆	0	0	0	0.7	0.8	0

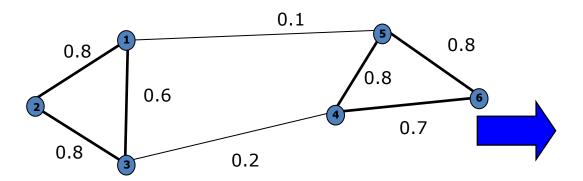
• Important properties

- Symmetric matrix

Matrix Representations

• Degree matrix (D)

- -n x n diagonal matrix
- $D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_i



	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	0	0	0	0	0
<i>X</i> ₂	0	1.6	0	0	0	0
X ₃	0	0	1.6	0	0	0
<i>X</i> ₄	0	0	0	1.7	0	0
<i>X</i> ₅	0	0	0	0	1.7	0
X ₆	0	0	0	0	0	1.5

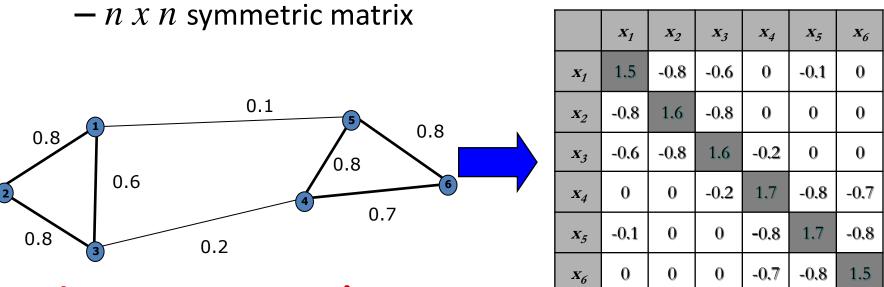
• Used to

Normalize adjacency matrix

Matrix Representations

• Laplacian matrix (L)

L = D - W



Important properties

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Find An Optimal Min-Cut (Hall'70, Fiedler'73)

• Express a bi-partition (C_1, C_2) as a vector

$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimize the cut of the partition by finding a non-trivial vector *f* that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$
Laplacian
matrix

Why does this work?

• How eigen decomposition of L relates to clustering?

$$\begin{split} L &= D - W \qquad f(x_j) = f_j \text{ cluster assignment} \\ f^T L f &= f^T D f - f^T W f \\ &= \sum_i d_i f_i^2 - \sum_{ij} f_i f_j w_{ij} \\ &= \frac{1}{2} \left(\sum_i \left(\sum_j w_{ij} \right) f_i^2 - 2 \sum_{ij} f_i f_j w_{ij} + \sum_j \left(\sum_i w_{ij} \right) f_j^2 \right) \\ &= \frac{1}{2} \sum_{ij} w_{ij} (f_i - f_j)^2 \quad \text{-Cluster objective function} \end{split}$$

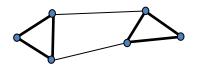
• if we let *f* be eigen vectors of *L*, then the eigenvalues are the cluster objective functions

Optimal Min-Cut

- The Laplacian matrix *L* is semi positive definite
- The Rayleigh Theorem shows:
 - The minimum value for g(f) is given by the 2nd smallest eigenvalue of the Laplacian L
 - The optimal solution for f is given by the corresponding eigenvector λ_2 , referred as the Fiedler Vector

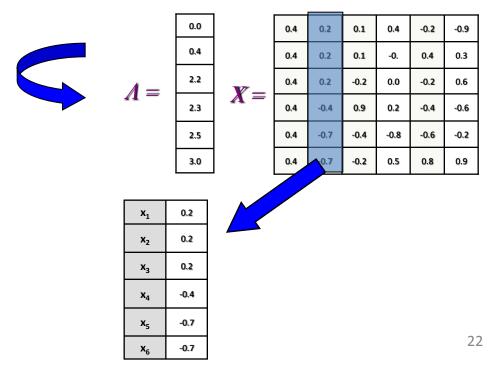
Spectral Bi-partitioning Algorithm

- 1. Pre-processing
 - Build Laplacian
 matrix L of the
 graph



	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	-0.8	-0.6	0	-0.1	0
<i>X</i> ₂	-0.8	1.6	-0.8	0	0	0
X ₃	-0.6	-0.8	1.6	-0.2	0	0
X ₄	0	0	-0.2	1.7	-0.8	-0.7
<i>X</i> ₅	-0.1	0	0	-0.8	1.7	-0.8
X ₆	0	0	0	-0.7	-0.8	1.5

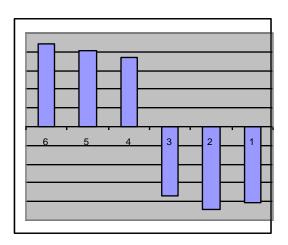
- 2. Decomposition
 - Find eigenvalues X and eigenvectors A of the matrix L
 - Map vertices to corresponding components of λ₂



Spectral Bi-partitioning Algorithm

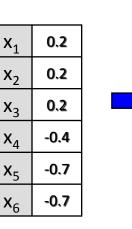
The matrix which represents the eigenvector of the Laplacian (the eigenvector matched to the corresponded eigenvalues with increasing order)

0.41	-0.41	0.65-	0.31-	0.38-	0.11
0.41	-0.44	0.01	0.30	0.71	0.22
0.41	-0.37	0.64	0.04	0.39-	0.37-
0.41	0.37	0.34	0.45-	0.00	0.61
0.41	0.41	0.17-	0.30-	0.35	0.65-
0.41	0.45	0.18-	0.72	0.29-	0.09



Spectral Bi-partitioning

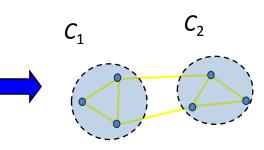
- Grouping
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two (above zero, below zero)



- Cluster C_1 : Positive points
- Cluster C₂:
 Negative points

x ₁	0.2	
x ₂	0.2	
X ₃	0.2	

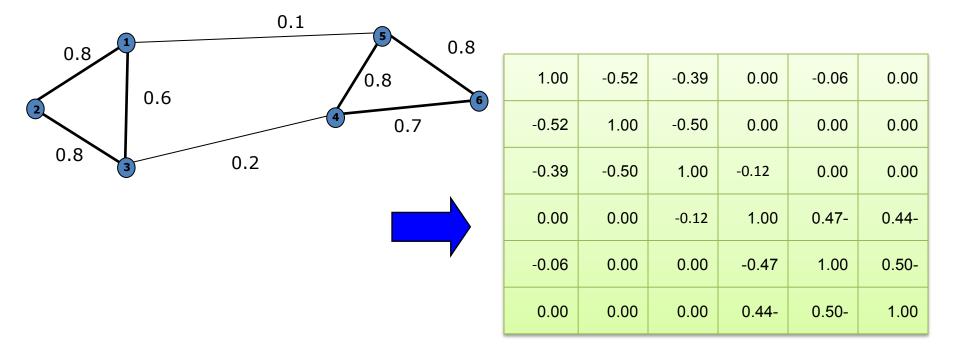
x ₄	-0.4
X ₅	-0.7
x ₆	-0.7



Normalized Laplacian

• Laplacian matrix (L)

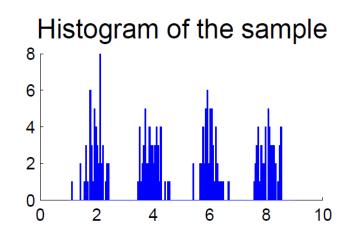
 $L = D^{-1}(D - W)$ $L = D^{-0.5}(D - W)D^{-0.5}$

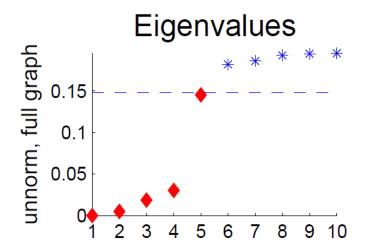


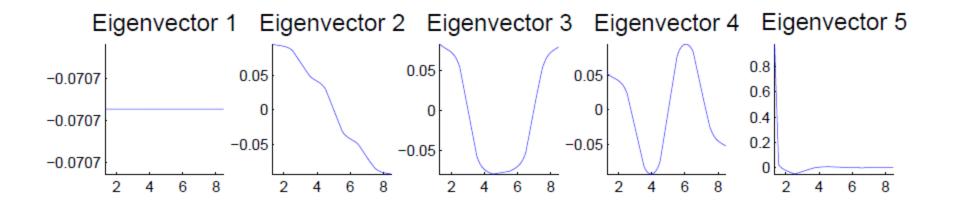
K-Way Spectral Clustering

- How do we partition a graph into k clusters?
 - **1. Recursive bi-partitioning** (Hagen et al.,'91)
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner.
 - Disadvantages: Inefficient, unstable
 - 2. Cluster multiple eigenvectors (Shi & Malik,'00)
 - Build a reduced space from multiple eigenvectors.
 - Commonly used in recent papers
 - A preferable approach

Eigenvectors & Eigenvalues







K-way Spectral Clustering Algorithm

Pre-processing

– Compute Laplacian matrix L

Decomposition

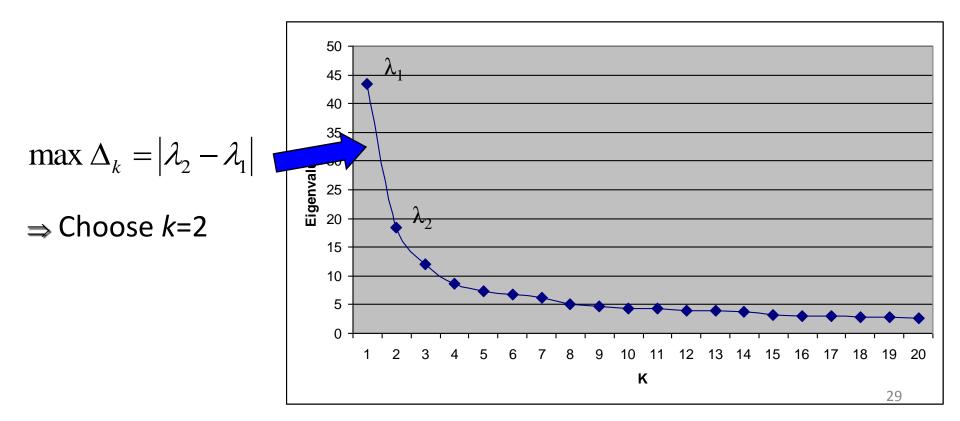
- Find the eigenvalues and eigenvectors of L
- Build embedded space from the eigenvectors corresponding to the k smallest eigenvalues

Clustering

 Apply k-means to the reduced n x k space to produce k clusters

How to select *k*?

- *Eigengap*: the difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes the expression $\Delta_k = |\lambda_k \lambda_{k-1}|$



Summary

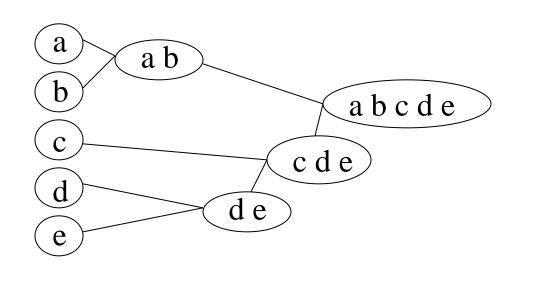
- Clustering formulated as graph cut problem
- Solve min-cut by eigen decomposition of Laplacian matrix
- Bipartition and multi-partition spectral clustering procedure

Hierarchical Clustering

Jing Gao SUNY Buffalo

Hierarchical Clustering

Agglomerative approach



Step 1

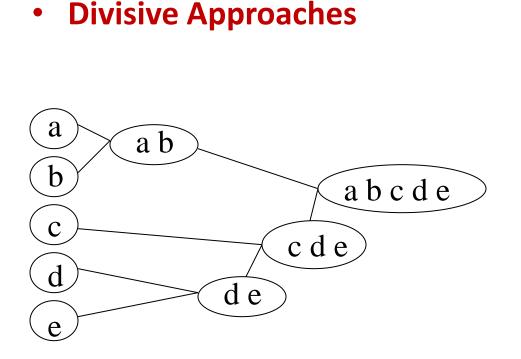
Step 0

Step 2 Step 3 Step 4

Initialization: Each object is a cluster Iteration: Merge two clusters which are most similar to each other; Until all objects are merged into a single cluster

bottom-up

Hierarchical Clustering



Initialization:

All objects stay in one cluster Iteration: Select a cluster and split it into

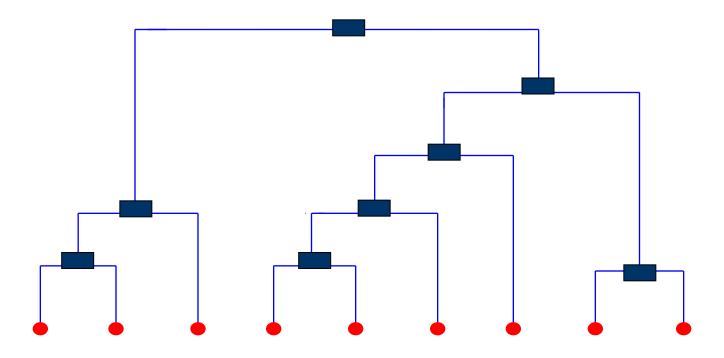
two sub clusters

Until each leaf cluster contains

only one object

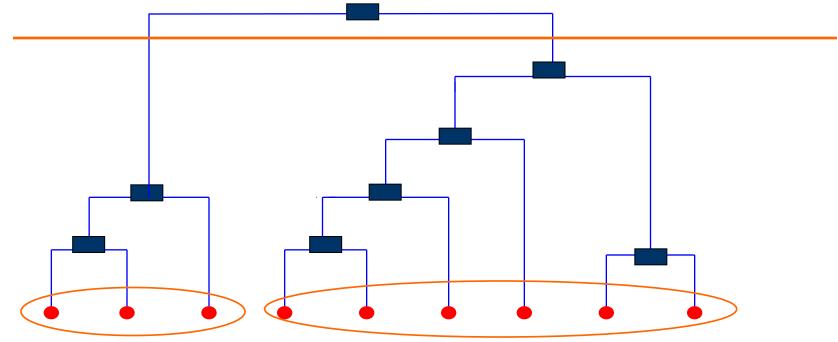
Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster



Dendrogram

 A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

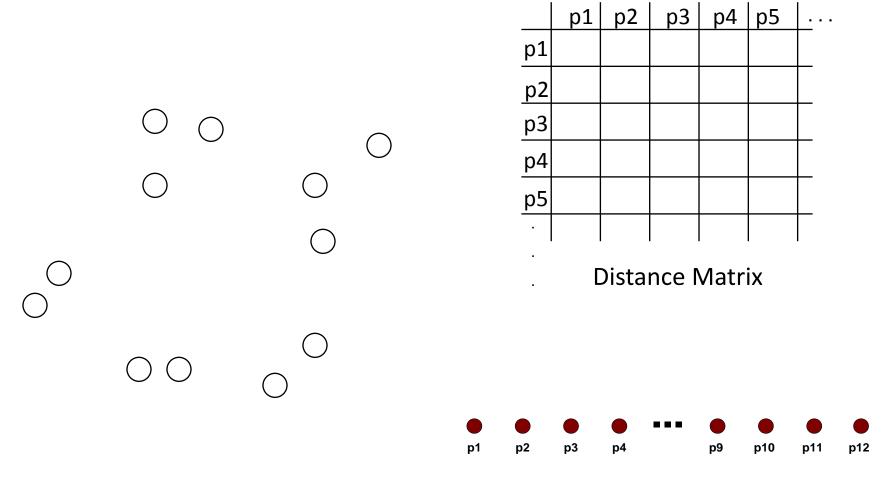


Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the distance matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a distance matrix



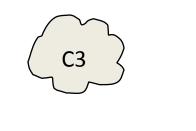
Intermediate Situation

• After some merging steps, we have some clusters

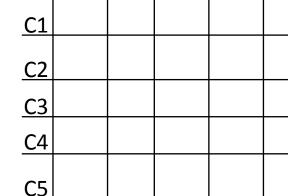
C4

C5

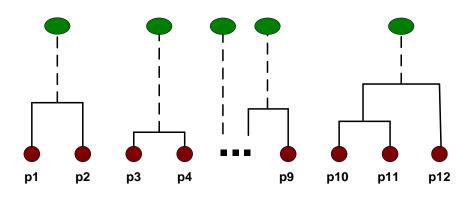
Choose two clusters that has the smallest <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u> distance (largest similarity) to merge <u>C1</u> <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u>



C2

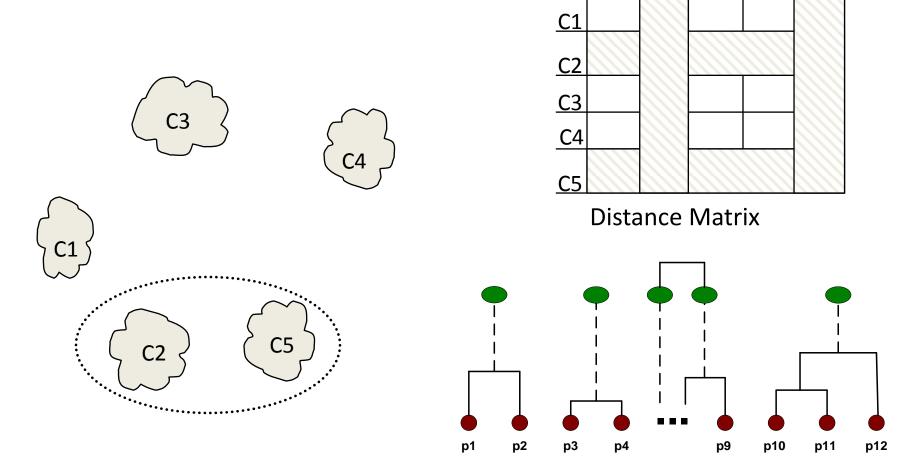


Distance Matrix



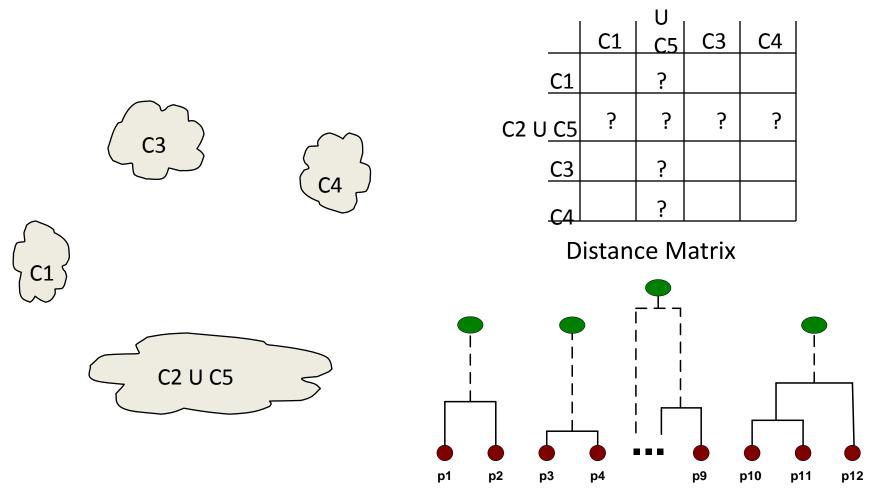
Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and update the distance matrix.
 | <u>c1</u> | <u>c2</u> | <u>c3</u> | <u>c4</u> | <u>c5</u> |

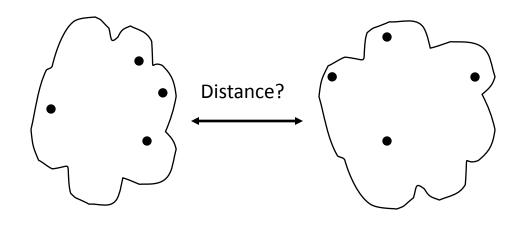


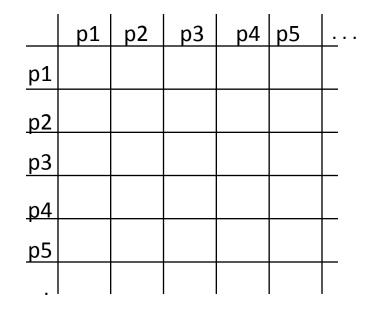
After Merging

• The question is "How do we update the distance matrix?"



How to Define Inter-Cluster Distance





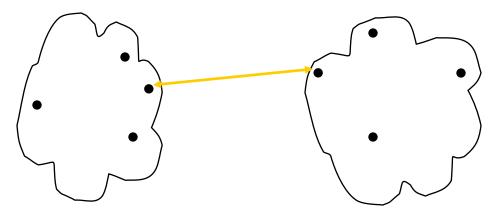
- MIN
- MAX
- Group Average
- Distance Between Centroids
-

• Distance Matrix

MIN or Single Link

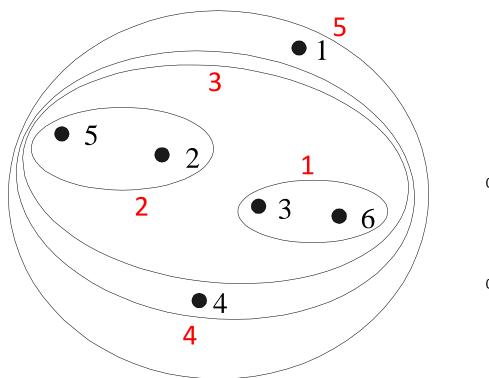
Inter-cluster distance

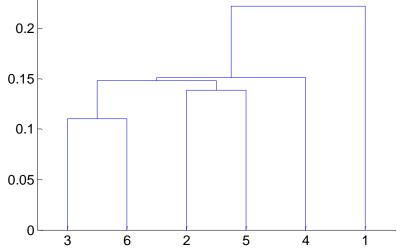
- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph



 $d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$

MIN

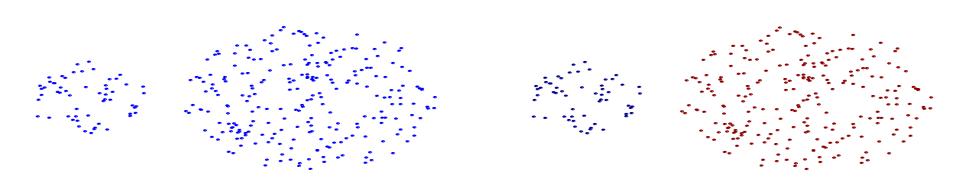




Nested Clusters

Dendrogram

Strength of MIN

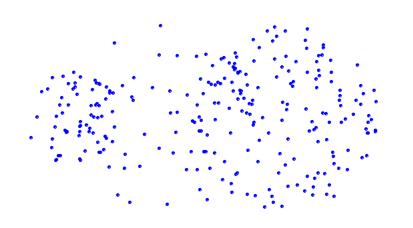


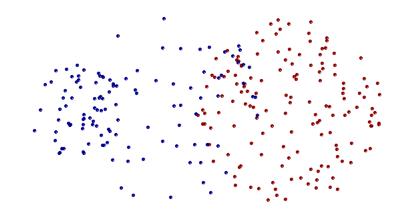
Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN





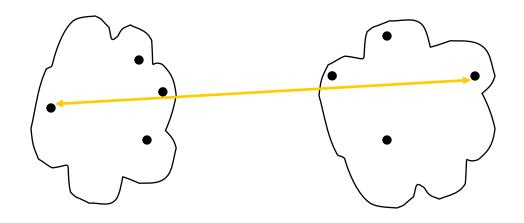
Original Points

Two Clusters

• Sensitive to noise and outliers

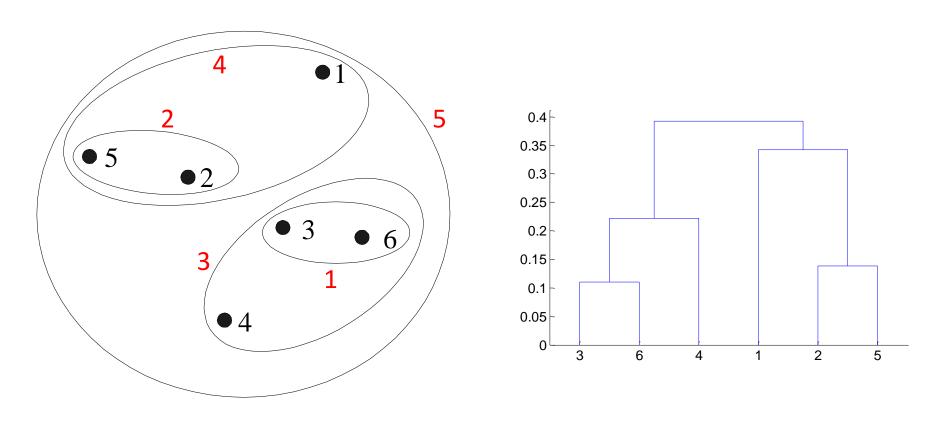
MAX or Complete Link

- Inter-cluster distance
 - The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters



 $d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$

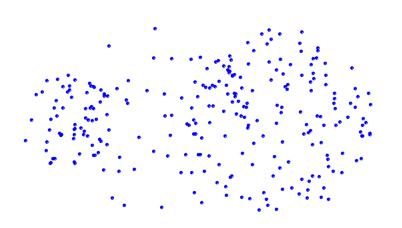
MAX

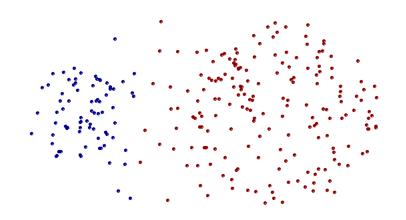


Nested Clusters

Dendrogram

Strength of MAX





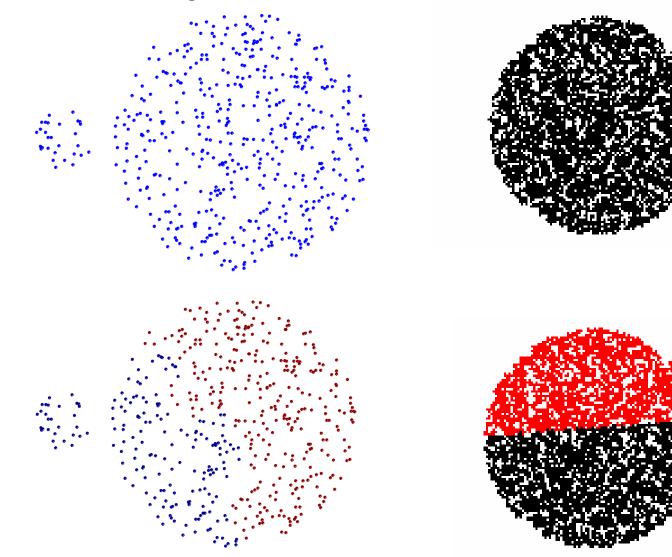
Original Points

Two Clusters

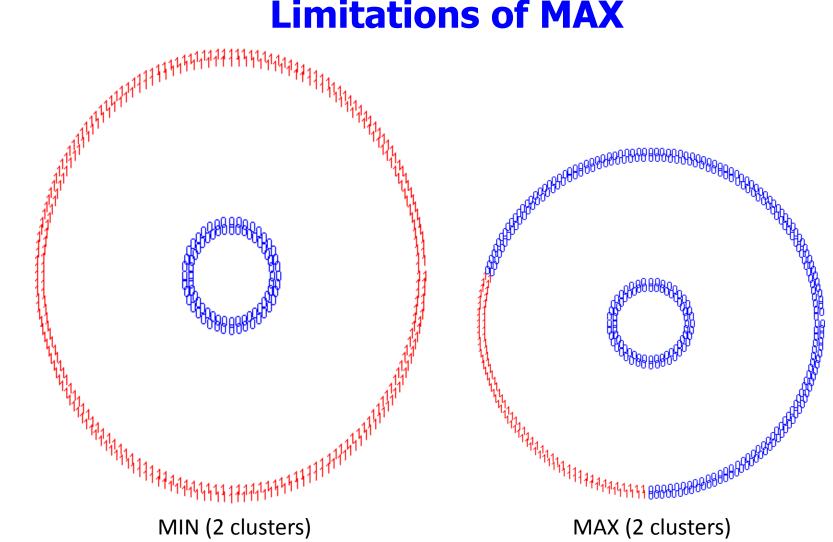
• Less susceptible to noise and outliers

Limitations of MAX

•Tends to break large clusters



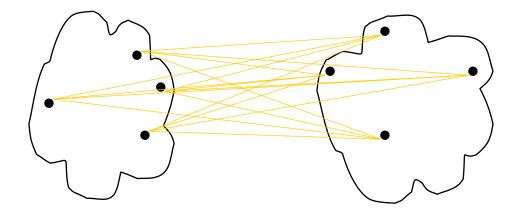
Limitations of MAX



• Biased towards globular clusters

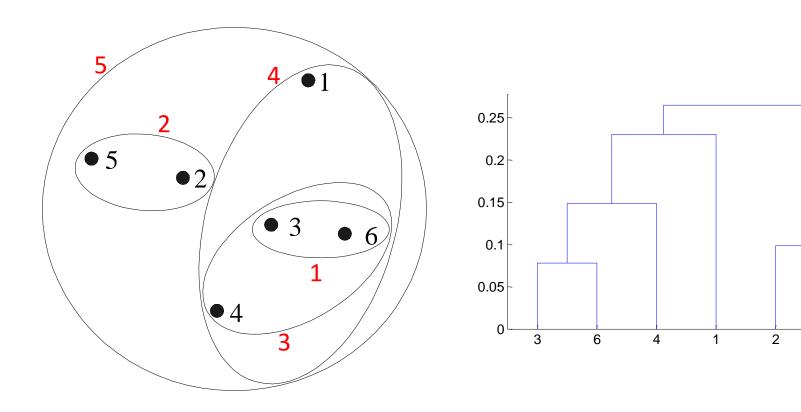
Group Average or Average Link

- Inter-cluster distance
 - The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters
 - Determined by all pairs of points in the two clusters



 $d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$

Group Average



Nested Clusters

Dendrogram

5

Group Average

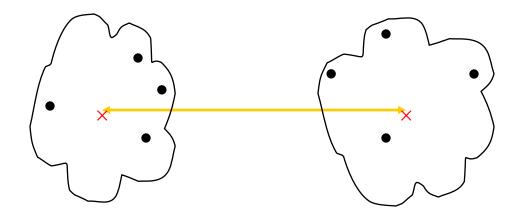
 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Centroid Distance

- Inter-cluster distance
 - The distance between two clusters is represented by the distance between <u>the centers of the clusters</u>
 - Determined by cluster centroids



 $d_{mean}(C_i, C_j) = d(m_i, m_j)$

Summary

- Agglomerative and divisive hierarchical clustering
- Several ways of defining inter-cluster distance
- The properties of clusters outputted by different approaches based on different inter-cluster distance definition