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Jason J. Corso
Computer Science and Engineering
SUNY at Buffalo
jcorso@buffalo.edu
Solutions by Yingbo Zhou

This assignment does not need to be submitted and will not be graded, but students are advised to work through the
problems to ensure they understand the material.

You are both allowed and encouraged to work in groups on this and other homework assignments in this class.
These are challenging topics, and working together will both make them easier to decipher and help you ensure that
you truly understand them.

1. Maximum Likelihood of Binary/Multinomial Variable
Suppose we have a single binary variable x ∈ {0, 1} with x = 1 denotes the ‘heads’ and x = 0 denotes
the ‘tails’ of the outcome from flipping a coin. We do not make any assumption on the fairness of the coin,
instead, we assume the probability of x = 1 will be denoted by a parameter µ so that p(x = 1|µ) = µ, where
0 ≤ µ ≤ 1.

(a) Write down the probability distribution of x.
Solution:
p(x = 0|µ) = 1− µ, so p(x|µ) = µx(1− µ)1−x, this is known as the Bernoulli distribution.

(b) Show that this is a proper probability distribution, i.e. the probability sum up to 1. What is the
expectation and variance of this distribution?
Solution:∑

x∈{0,1} p(x|µ) = p(x = 0|µ) + p(x = 1|µ) = 1− µ+ µ = 1
E(x) =

∑
x∈{0,1} xp(x|µ) = 0× p(x = 0|µ) + 1× p(x = 1|µ) = µ

var(x) = {E(x2)− E(x)2} =
∑

x∈{0,1} x
2p(x|µ)− µ2 = 02 × p(x = 0|µ) + 12 × p(x = 1|µ)− µ2 =

µ− µ2

(c) Now suppose we have a set of observed values X = {x1, x2, . . . , xN} of x. Write the likelihood func-
tion and estimate the maximum likelihood parameter µML.
Solution:
p(X|µ) =

∏N
i=1 p(xi|µ) =

∏N
i=1 µ

xi(1− µ)1−xi

The log-likelihood can be written as:
l(X|µ) =

∑N
i=1 ln p(xi|µ) =

∑N
i=1{xi lnµ+ (1− xi) ln(1− µ)}

Take the derivative w.r.t. µ and set to zero we get:

N∑
i=1

{xi
µ
− (1− xi)

1− µ
} = 0

(1− µ)
N∑
i=1

xi = µ

N∑
i=1

(1− xi)

N∑
i=1

xi − µ
N∑
i=1

xi = Nµ− µ
N∑
i=1

xi
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µML =

∑N
i=1 xi
N

if we observe m heads, then µML = m
N .

(d) Now suppose we are rolling a K-sided dice, in other words we have data D = {x1, x2, . . . , xN} which
can take on K values. Assume the generation of each value of k ∈ K is determined by a parameter
θk ≥ 0, so that the p(x = k|θk) = θk, and

∑
k θk = 1. Write down the likelihood function.

Solution:
First we introduce a convenient representation called 1-of-K scheme, which the variables is represented
by a K-dimensional binary vector that one of the element can take on value one. This is exactly the
case for this question, since at each time we can only generate one sample taken on one particular value.
Therefore, similar to the Bernoulli form we have the distribution shown as:

p(x|θ) =
K∏
i=1

θxi
i

where
∑K

i=1 xi = 1, θi ≥ 0 and
∑K

i=1 θi = 1. Now we can write the likelihood function as:

p(D|θ) =
N∏

n=1

K∏
i=1

θxni
i =

K∏
i=1

θ
∑

n xni

i =
K∏
i=1

θni
i

where ni =
∑

n xni is the number of data that take on value i, and log-likelihood:

l(D|θ) =
N∑

n=1

K∑
i=1

xni ln θi

(e) Write the maximum likelihood solution of θML
k .

Solution:
We have to maximize the likelihood w.r.t. constraint, so we have to introduce Lagrange multiplier, and
the new objective function is:

F (θ, λ) =

N∑
n=1

K∑
i=1

xni ln θi + λ(

K∑
i=1

θi − 1)

take the derivative w.r.t. θj and set to zero we get:

∂F

∂θj
=

N∑
n=1

xnj
θj

+ λ = 0

⇒ nj
θj

= −λ

⇒ θj = −
nj
λ

substitute this back to our constraint
∑

i θi = 1, we have

K∑
i=1

θi = −
K∑
i=1

ni
λ

= 1

⇒ −N = λ

therefore we get θi = ni
N .
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2. Naive Bayes

In naive Bayes, we assume that the presence of a particular feature of a class is unrelated to the presence
of any other feature. For example, a fruit may be considered to be a watermelon if it is green, round, and more
than 10 pounds. we will consider all these three features as independent to each other in naive Bayes.

Let our features xi, i ∈ [1 d] be binary valued and have d dimensions, i.e. xi ∈ {0, 1} and our input feature
vector x = [x1x2 · · ·xd]T. For each training sample, our target value y ∈ {0, 1} is also a binary-valued
variable. Then our model is parameterized by φi|y=0 = p(xi = 1|y = 0), φi|y=1 = p(xi = 1|y = 1), and
φy = p(y = 1), and

p(y) = (φy)
y(1− φy)(1−y)

p(x|y = 0) =
d∏

i=1

p(xi|y = 0)

=

d∏
i=1

(φi|y=0)
xi(1− φi|y=0)

(1−xi)

p(x|y = 1) =

d∏
i=1

p(xi|y = 1)

=
d∏

i=1

(φi|y=1)
xi(1− φi|y=1)

(1−xi)

(a) Write down the joint log-likelihood function l(θ) = log
∏N

n=1 p(x
(n), y(n); θ) in terms of the model pa-

rameters given above. x(n) means the nth data point, and θ represents all the parameters, i.e. {φy, φi|y=0, φi|y=1, i =
1, . . . , d}.
Solution:

l(θ) = log
N∏

n=1

p(x(n), y(n); θ)

= log
N∏

n=1

p(x(n) | y = y(n); θ)p(y(n); θ)

= log
N∏

n=1

(
d∏

i=1

p(x
(n)
i |y

(n); θ)

)
p(y(n); θ)

=

N∑
n=1

(
log p(y(n); θ) +

d∑
i=1

log p(x
(n)
i |y

(n); θ)

)

=

N∑
n=1

{
y(n) log φy + (1− y(n) log(1− φy) +

d∑
i=1

(
x
(n)
i log φi|y(n) + (1− x(n)i ) log(1− φi|y(n))

)}

(b) Estimate the paramters using maximum likelihood, i.e. find solutions for paramter φy, φi|y=0 and
φi|y=1.
Solution:
Take derivative with respect to these 3 parameters, we get:

φy =

∑N
n=1 y

(n)

N

3



φi|y=0 =

∑N
n=1(1− y(n))x

(n)
i∑N

n=1(1− y(n))

φi|y=1 =

∑N
n=1 y

(n)x
(n)
i∑N

n=1 y
(n)

(c) When a new sample point x comes, we make the prediction based on the most likely class estimate
generated by our model. Show that the hypothesis returned by naive Bayes is linear, i.e. if p(y = 0|x)
and p(y = 1|x) are the class probabilities returned by our model, show that there exist some α so that

p(y = 1|x) ≥ p(y = 0|x)if and only if αTx̃ ≥ 0

where α = [α0 α1 · · · αd]
T and x̃ = [1 x1 x2 · · · xd]T.

Solution:

p(y = 1 | x) ≥ p(y = 0 | x)
⇔ p(x | y = 0)p(y = 0) ≥ p(x | y = 1)p(y = 1)

⇔ (1− φy)
d∏

i=1

(φi|y=0)
xi(1− φi|y=0)

(1−xi) ≥ φy
d∏

i=1

(φi|y=1)
xi(1− φi|y=1)

(1−xi)

⇔ log (1− φy) +
d∑

i=1

xi log φi|y=0 +
d∑

i=1

(1− xi) log (1− φi|y=0)

≥ log φy +

d∑
i=1

xi log φi|y=1 +

d∑
i=1

(1− xi) log (1− φi|y=1)

⇔
d∑

i=1

xi log
φi|y=0

φi|y=1

1− φi|y=1

1− φi|y=0
+ log (

1− φy
φy

(
1− φi|y=0

1− φi|y=1
)d) ≥ 0

⇔ αTx̃ ≥ 0

Where

α0 = log (
1− φy
φy

(
1− φi|y=0

1− φi|y=1
)d)

αi = log
φi|y=0

φi|y=1

1− φi|y=1

1− φi|y=0

3. Gaussian Distribution

Please familiarize yourself with the maximum likelihood estimation for Gaussian distribution in the class notes
and answer the following questions.

(a) What is the joint probability distribution p(X;µ, σ2) of the samples?
Solution:

p(X;µ, σ2) =
N∏
i=1

N (xi|µ, σ2)

(b) What is the maximum likelihood (ML) estimation of the paramters, if both µ and σ2 are unknown?
Solution:
Please refer to the lecture notes.
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(c) Show that the ML estimation of the variance is biased, i.e. show that

E(σ2ML) =
N − 1

N
σ2

Hint: you can use the fact that the expectation of random variable from a Gaussian distributuion is µ,
i.e. E(x) = µ, and var(x) = σ2 = E(x2)− E(x)2
Solution:

E(σ2ML) = E(
1

N

N∑
i=1

(xi − µML)
2)

= E(
1

N

{
N∑
i=1

(x2i + µ2ML − 2xiµML)

}
)

= E(
1

N


N∑
i=1

(x2i + (
1

N

N∑
j=1

xj)
2 − 2xi(

1

N

N∑
j=1

xj))

)

= E(
1

N


N∑
i=1

(x2i +
1

N2

N∑
j=1

x2j +
1

N2

∑
j 6=k

xjxk −
2

N
x2i −

2

N

∑
j=i

xixj)

)

=
1

N


N∑
i=1

E(x2i ) +
1

N2

N∑
i=1

N∑
j=1

E(x2j ) +
1

N2

N∑
i=1

∑
j 6=k

E(xjxk)−
2

N

N∑
i=1

E(x2i )−
2

N

∑
j 6=i

E(xixj)


=

1

N

{
N(σ2 + µ2) + σ2 + µ2 + (N − 1)µ2 − 2(σ2 + µ2)− 2(N − 1)µ2

}
=

1

N

{
Nσ2 +Nµ2 + σ2 + µ2 +Nµ2 − µ2 − 2σ2 − 2µ2 − 2Nµ2 + 2µ2

}
=

1

N
(Nσ2 − σ2) = N − 1

N
σ2

(d) Please write down the objective function of maximum a posteriori (MAP) estimation of the parameters,
if we assume that only µ is the unknown parameter and follow a Gaussian distribution with mean µ0 and
variance σ20 .
Solution:
We know that p(µ) ∼ N (µ|µ0, σ20), so the posterior probability of parameter µ would be:

p(µ|X) = p(X|µ)p(µ)

= {
N∏
i=1

N (xi|µ, σ2)}N (µ|µ0, σ20)

(e) Please write down the Bayesian formulation of this problem, if all other assumptions stay the same as in
question d.
Solution:

p(x′|X) =

∫
p(x′|θ)p(θ|X)dθ

where x′ is some new data that you want to do prediction and θ is the set of parameters from the model,
in this case θ = {µ}, since we assume µ is the only unknown parameter.
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