CSE 455/555 Spring 2013 Quiz 3 of 14

Jason J. Corso, jcorso@buffalo.edu, SUNY Buffalo Solution by Yingbo Zhu.

Directions – The quiz is closed book/notes. You have 10 minutes to complete it; use this paper only.

Problem 1: Recall (2pts) (Answer in one sentence only.)

What is zero-one loss?

A symmetrical loss function that assigns 1 as the loss for prediction error and 0 otherwise.

Problem 2: Work (8 pts) (Show all derivations/work and explain.)

Show that the following statement is true:

If the decision regions of a two-class classification are chosen to minimize the probability of misclassification, this probability will satisfy

$$p(mistake) \le \int \{p(x,\omega_1)p(x,\omega_2)\}^{1/2} dx$$

(Hint: for two nonnegative numbers a and b, if $a \le b$ then $a \le (ab)^{1/2}$.)

Proof. Let R_1 be the distribution area of class ω_1 , and R_2 be the area of class ω_2

$$p(mistake) = \int_{R_1} p(x, \omega_2) dx + \int_{R_2} p(x, \omega_1) dx$$

In the error made in R_1 we always have $p(\omega_1|x) \ge p(\omega_2|x)$. So we have the following for R_1 ,

$$p(\omega_2|x) \le \{p(\omega_1|x)p(\omega_2|x)\}^{1/2}$$

$$\int_{R_1} p(x, \omega_2) dx = \int_{R_1} p(\omega_2 | x) p(x) dx$$

$$\leq \int_{R_1} \{ p(\omega_1 | x) p(\omega_2 | x) \}^{1/2} p(x) dx$$

$$= \int_{R_1} \{ p(x, \omega_1) p(x, \omega_2) \}^{1/2} dx$$

and similar situations apply for errors in R_2 , *i.e.* $p(\omega_2|x) \ge p(\omega_1|x)$ when in R_2

$$p(\omega_1|x) \le \{p(\omega_1|x)p(\omega_2|x)\}^{1/2} \Rightarrow$$
$$\int_{R_2} p(x,\omega_1)dx \le \int_{R_2} \{p(\omega_1x)p(\omega_2,x)\}^{1/2}dx$$

substitute $\int_{R_1} p(x,\omega_2) dx$ and $\int_{R_2} p(x,\omega_1) dx$ back to the original equation, we get

$$p(mistake) = \int_{R_1} p(x, \omega_2) dx + \int_{R_2} p(x, \omega_1) dx$$

$$\leq \int_{R_1} \{ p(x, \omega_1) p(x, \omega_2) \}^{1/2} dx + \int_{R_2} \{ p(x, \omega_1) p(x, \omega_2) \}^{1/2} dx$$

$$= \int \{ p(x, \omega_1) p(x, \omega_2) \}^{1/2} dx$$