
A Tutorial on Dynamic Bayesian Networks

Kevin P. Murphy

MIT AI lab

12 November 2002



Modelling sequential data

• Sequential data is everywhere, e.g.,

– Sequence data (offline): Biosequence analysis,

text processing, ...

– Temporal data (online): Speech recognition, visual

tracking, financial forecasting, ...

• Problems: classification, segmentation, state estimation,

fault diagnosis, prediction, ...

• Solution: build/learn generative models, then compute

P (quantity of interest|evidence) using Bayes rule.
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Outline of talk

• Representation

– What are DBNs, and what can we use them for?

• Inference

– How do we compute P (Xt|y1:t) and related quantities?

• Learning

– How do we estimate parameters and model structure?
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Representation

• Hidden Markov Models (HMMs).

• Dynamic Bayesian Networks (DBNs).

• Modelling HMM variants as DBNs.

• State space models (SSMs).

• Modelling SSMs and variants as DBNs.
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Hidden Markov Models (HMMs)

• An HMM is a stochastic finite automaton, where each state

generates (emits) an observation.

• Let Xt ∈ {1, . . . , K} represent the hidden state at time t, and

Yt represent the observation.

• e.g., X = phones, Y = acoustic feature vector.

• Transition model: A(i, j)
4
= P (Xt = j|Xt−1 = i).

• Observation model: B(i, k)
4
= P (Yt = k|Xt = i).

• Initial state distribution: π(i)
4
= P (X0 = i).
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HMM state transition diagram

• Nodes represent states.

• There is an arrow from i to j iff A(i, j) > 0.
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The 3 main tasks for HMMs

• Computing likelihood: P (y1:t) =
∑

i P (Xt = i, y1:t)

• Viterbi decoding (most likely explanation): argmaxx1:t P (x1:t|y1:t)

• Learning: θ̂ML = argmaxθ P (y1:T |θ), where θ = (A, B, π).

– Learning can be done with Baum-Welch (EM).

– Learning uses inference as a subroutine.

– Inference (forwards-backwards) takes O(TK2) time, where

K is the number of states and T is sequence length.
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The problem with HMMs

• Suppose we want to track the state (e.g., the position) of D

objects in an image sequence.

• Let each object be in K possible states.

• Then Xt = (X
(1)
t , . . . , X

(D)
t ) can have KD possible values.

⇒ Inference takes O
(
T (KD)2

)
time and O

(
TKD

)
space.

⇒ P (Xt|Xt−1) needs O(K2D) parameters to specify.
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DBNs vs HMMs

• An HMM represents the state of the world using a single

discrete random variable, Xt ∈ {1, . . . , K}.

• A DBN represents the state of the world using a set of ran-

dom variables, X
(1)
t , . . . , X

(D)
t (factored/ distributed

representation).

• A DBN represents P (Xt|Xt−1) in a compact way using a

parameterized graph.

⇒ A DBN may have exponentially fewer parameters than its

corresponding HMM.

⇒ Inference in a DBN may be exponentially faster than in the

corresponding HMM.
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DBNs are a kind of graphical model

• In a graphical model, nodes represent random variables, and

(lack of) arcs represents conditional independencies.

• Directed graphical models = Bayes nets = belief nets.

• DBNs are Bayes nets for dynamic processes.

• Informally, an arc from Xi to Xj means Xi “causes” Xj.

(Graph must be acyclic!)
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HMM represented as a DBN
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• This graph encodes the assumptions

Yt ⊥ Yt′|Xt and Xt+1 ⊥ Xt−1|Xt (Markov)

• Shaded nodes are observed, unshaded are hidden.

• Structure and parameters repeat over time.
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HMM variants represented as DBNs

HMM MixGauss HMM
IO−HMM

AR−HMM

⇒ The same code can do inference and learning in all of these

models.
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Factorial HMMs
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Factorial HMMs vs HMMs

• Let us compare a factorial HMM with D chains, each with

K values, to its equivalent HMM.

• Num. parameters to specify P (Xt|Xt−1):

– HMM: O(K2D).

– DBN: O(DK2).

• Computational complexity of exact inference:

– HMM: O(TK2D).

– DBN: O(TDKD+1).
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Coupled HMMs
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Semi-Markov HMMs

q1

y1 y2 y3 y4 y5 y6 y7 y8

q2 q3

• Each state emits a sequence.

• Explicit-duration HMM:

P (Yt−l+1:l|Qt, Lt = l) =
∏l

i=1 P (Yi|Qt)

• Segment HMM: P (Yt−l+1:l|Qt, Lt = l) modelled by an HMM

or SSM.

• Multigram: P (Yt−l+1:l|Qt, Lt = l) is deterministic string, and

segments are independent.
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Explicit duration HMMs

Q1 Q2 Q3

F1 F2 F3

L1 L2 L3

Y1 Y2 Y3
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Segment HMMs
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Hierarchical HMMs

• Each state can emit an HMM, which can generate sequences.

• Duration of segments implicitly defined by when sub-HMM

enters finish state.
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Hierarchical HMMs
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State Space Models (SSMs)

• Also known as linear dynamical system, dynamic linear model,

Kalman filter model, etc.

• Xt ∈ RD, Yt ∈ RM and

P (Xt|Xt−1) = N (Xt;AXt−1, Q)

P (Yt|Xt) = N (Yt;BXt, R)

• The Kalman filter can compute P (Xt|y1:t) in O(min{M3, D2})

operations per time step.
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Factored linear-Gaussian models produce sparse matrices

• Directed arc from Xt−1(i) to Xt(j) iff A(i, j) > 0.

• Undirected between Xt(i) and Xt(j) iff Σ−1(i, j) > 0.

• e.g., consider a 2-chain factorial SSM

with P (Xi
t |X

i
t−1) = N (Xi

t;A
iXt−1, Qi)

P (X1
t , X1

t |X
1
t−1, X1

t−1) = N

((
X1

t
X2

t

)
;

(
A1 0

0 A2

)(
X1

t−1
X2

t−1

)
,

(
Q−1

1 0

0 Q−1
2

))
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Factored discrete-state models do NOT produce sparse

transition matrices

e.g., consider a 2-chain factorial HMM

P (X1
t , X1

t |X
1
t−1, X1

t−1) = P (X1
t |X

1
t−1)P (X2

t |X
2
t−1)
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Problems with SSMs

• Non-linearity

• Non-Gaussianity

• Multi-modality
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Switching SSMs

Y Y Y1 2 3

X X X

Z Z Z

1 2 3

1 2 3

3

P (Xt|Xt−1, Zt = j) = N (Xt;AjXt−1, Qj)

P (Yt|Xt, Zt = j) = N (Yt;BjXt, Rj)

P (Zt = j|Zt−1 = i) = M(i, j)

• Useful for modelling multiple (linear) regimes/modes, fault

diagnosis, data association ambiguity, etc.

• Unfortunately number of modes in posterior grows exponen-

tially, i.e., exact inference takes O(Kt) time.
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Kinds of inference for DBNs

t

t

t

Tt

P(X(t) | y(1:t))

P(X(t) | y(1:T))

P(X(t-L) | y(1:t))

L

H

P(X(t+H) | y(1:t))

filtering

prediction

fixed-lag

smoothing
(offline)

smoothing

fixed interval
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Complexity of inference in factorial HMMs
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• X
(1)
t , . . . , X

(D)
t become corrrelated due to “explaining away”.

• Hence belief state P (Xt|y1:t) has size O(KD).
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Complexity of inference in coupled HMMs

• Even with local connectivity, everything becomes correlated

due to shared common influences in the past. c.f., MRF.
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Approximate filtering

• Many possible representations for belief state, αt
4
= P (Xt|y1:t):

• Discrete distribution (histogram)

• Gaussian

• Mixture of Gaussians

• Set of samples (particles)
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Belief state = discrete distribution

• Discrete distribution is non-parametric (flexible), but intractable.

• Only consider k most probable values — Beam search.

• Approximate joint as product of factors

(ADF/BK approximation)

αt ≈ α̃t =
C∏

i=1

P (Xi
t |y1:t)
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Assumed Density Filtering (ADF)

α̂t α̂t+1 exact

α̃t−1 α̃t α̃t+1 approx

U P U P
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Belief state = Gaussian distribution

• Kalman filter — exact for SSM.

• Extended Kalman filter — linearize dynamics.

• Unscented Kalman filter — pipe mean ± sigma points through

nonlinearity, and fit Gaussian.
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Unscented transform
Actual (sampling) Linearized (EKF) UT
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Belief state = mixture of Gaussians

• Hard in general.

• For switching SSMs, can apply ADF: collapse mixture of

K Gaussians to best single Gaussian by moment matching

(GPB/IMM algorithm).
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Belief state = set of samples

Particle filtering, sequential Monte Carlo, condensation,

SISR, survival of the fittest, etc.
P(x(t-1) | y(1:t-1))

P(x(t) | y(1:t))

P(x(t) | y(1:t))

P(x(t) | y(1:t-1))

unweighted
posterior

unweighted
prediction

weighted prior

weighted
posterior

P(x(t)|x(t-1))

P(y(t) | x(t))

resample

weighting

proposal
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Rao-Blackwellised particle filtering (RBPF)

• Particle filtering in high dimensional spaces has high variance.

• Suppose we partition Xt = (Ut, Vt).

• If V1:t can be integrated out analytically, conditional on U1:t

and Y1:t, we only need to sample U1:t.

• Integrating out V1:t reduces the size of the state space, and

provably reduces the number of particles needed to achieve

a given variance.
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RBPF for switching SSMs

Y Y Y1 2 3

X X X

Z Z Z

1 2 3

1 2 3

3

• Given Z1:t, we can use a Kalman filter to compute P (Xt|y1:t, z1:t).

• Each particle represents (w, z1:t, E[Xt|y1:t, z1:t],Var[Xt|y1:t, z1:t]).

• c.f., stochastic bank of Kalman filters.
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Approximate smoothing (offline)

• Two-filter smoothing

• Loopy belief propagation

• Variational methods

• Gibbs sampling

• Can combine exact and approximate methods

• Used as a subroutine for learning
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Learning (frequentist)

• Parameter learning

θ̂MAP = argmax
θ

logP (θ|D, M) = argmax
θ

log(D|θ, M)+logP (θ|M)

where

logP (D|θ, M) =
∑

d

logP (Xd|θ, M)

• Structure learning

M̂MAP = argmax
M

logP (M |D) = argmax
M

logP (D|M)+logP (M)

where

logP (D|M) = log

∫
P (D|θ, M)P (θ|M)P (M)dθ
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Parameter learning: full observability

• If every node is observed in every case, the likelihood decom-

poses into a sum of terms, one per node:

logP (D|θ, M) =
∑

d

logP (Xd|θ, M)

=
∑

d

log
∏

i

P (Xd,i|πd,i, θi, M)

=
∑

i

∑

d

logP (Xd,i|πd,i, θi, M)

where πd,i are the values of the parents of node i in case d,

and θi are the parameters associated with CPD i.
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Parameter learning: partial observability

• If some nodes are sometimes hidden, the likelihood does not

decompose.

logP (D|θ, M) =
∑

d

log
∑

h

P (H = h, V = vd|θ, M)

• In this case, can use gradient descent or EM to find local

maximum.

• EM iteratively maximizes the expected complete-data log-

likelihood, which does decompose into a sum of local terms.
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Structure learning (model selection)

• How many nodes?

• Which arcs?

• How many values (states) per node?

• How many levels in the hierarchical HMM?

• Which parameter tying pattern?

• Structural zeros:

– In a (generalized) linear model, zeros correspond to absent

directed arcs (feature selection).

– In an HMM, zeros correspond to impossible transitions.
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Structure learning (model selection)

• Basic approach: search and score.

• Scoring function is marginal likelihood, or an approximation

such as penalized likelihood or cross-validated likelihood

logP (D|M) = log

∫
P (D|θ, M)P (θ|M)P (M)dθ

BIC
≈ logP (D|θ̂ML, M) −

dim(M)

2
log |D|

• Search algorithms: bottom up, top down, middle out.

• Initialization very important.

• Avoiding local minima very important.
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Summary

• Representation

– What are DBNs, and what can we use them for?

• Inference

– How do we compute P (Xt|y1:t) and related quantities?

• Learning

– How do we estimate parameters and model structure?
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Open problems

• Representing richer models, e.g., relational models, SCFGs.

• Efficient inference in large discrete models.

• Inference in models with non-linear, non-Gaussian CPDs.

• Online inference in models with variable-sized state-spaces,

e.g., tracking objects and their relations.

• Parameter learning for undirected and chain graph models.

• Structure learning. Discriminative learning.

Bayesian learning. Online learning. Active learning. etc.
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The end
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