A Tutorial on Dynamic Bayesian Networks

Kevin P. Murphy

MIT AI lab

12 November 2002

Modelling sequential data

- Sequential data is everywhere, e.g.,
- Sequence data (offline): Biosequence analysis, text processing, ...
- Temporal data (online): Speech recognition, visual tracking, financial forecasting, ...
- Problems: classification, segmentation, state estimation, fault diagnosis, prediction, ...
- Solution: build/learn generative models, then compute P (quantity of interest|evidence) using Bayes rule.

Outline of talk

- Representation
- What are DBNs, and what can we use them for?
- Inference
- How do we compute $P\left(X_{t} \mid y_{1: t}\right)$ and related quantities?
- Learning
- How do we estimate parameters and model structure?

Representation

- Hidden Markov Models (HMMs).
- Dynamic Bayesian Networks (DBNs).
- Modelling HMM variants as DBNs.
- State space models (SSMs).
- Modelling SSMs and variants as DBNs.

Hidden Markov Models (HMMs)

- An HMM is a stochastic finite automaton, where each state generates (emits) an observation.
- Let $X_{t} \in\{1, \ldots, K\}$ represent the hidden state at time t, and Y_{t} represent the observation.
- e.g., $X=$ phones, $Y=$ acoustic feature vector.
- Transition model: $A(i, j) \triangleq P\left(X_{t}=j \mid X_{t-1}=i\right)$.
- Observation model: $B(i, k) \triangleq P\left(Y_{t}=k \mid X_{t}=i\right)$.
- Initial state distribution: $\pi(i) \triangleq P\left(X_{0}=i\right)$.

HMM state transition diagram

- Nodes represent states.
- There is an arrow from i to j iff $A(i, j)>0$.

The 3 main tasks for HMMs

- Computing likelihood: $P\left(y_{1: t}\right)=\sum_{i} P\left(X_{t}=i, y_{1: t}\right)$
- Viterbi decoding (most likely explanation): $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid y_{1: t}\right)$
- Learning: $\hat{\theta}_{M L}=\arg \max _{\theta} P\left(y_{1: T} \mid \theta\right)$, where $\theta=(A, B, \pi)$.
- Learning can be done with Baum-Welch (EM).
- Learning uses inference as a subroutine.
- Inference (forwards-backwards) takes $O\left(T K^{2}\right)$ time, where K is the number of states and T is sequence length.

The problem with HMMs

- Suppose we want to track the state (e.g., the position) of D objects in an image sequence.
- Let each object be in K possible states.
- Then $X_{t}=\left(X_{t}^{(1)}, \ldots, X_{t}^{(D)}\right)$ can have K^{D} possible values.
\Rightarrow Inference takes $O\left(T\left(K^{D}\right)^{2}\right)$ time and $O\left(T K^{D}\right)$ space.
$\Rightarrow P\left(X_{t} \mid X_{t-1}\right)$ needs $O\left(K^{2 D}\right)$ parameters to specify.

DBNs vs HMMs

- An HMM represents the state of the world using a single discrete random variable, $X_{t} \in\{1, \ldots, K\}$.
- A DBN represents the state of the world using a set of random variables, $X_{t}^{(1)}, \ldots, X_{t}^{(D)}$ (factored/ distributed representation).
- A DBN represents $P\left(X_{t} \mid X_{t-1}\right)$ in a compact way using a parameterized graph.
\Rightarrow A DBN may have exponentially fewer parameters than its corresponding HMM.
\Rightarrow Inference in a DBN may be exponentially faster than in the corresponding HMM.

DBNs are a kind of graphical model

- In a graphical model, nodes represent random variables, and (lack of) arcs represents conditional independencies.
- Directed graphical models $=$ Bayes nets $=$ belief nets.
- DBNs are Bayes nets for dynamic processes.
- Informally, an arc from X_{i} to X_{j} means X_{i} "causes" X_{j}. (Graph must be acyclic!)

HMM represented as a DBN

- This graph encodes the assumptions

$$
Y_{t} \perp Y_{t^{\prime}} \mid X_{t} \text { and } X_{t+1} \perp X_{t-1} \mid X_{t} \text { (Markov) }
$$

- Shaded nodes are observed, unshaded are hidden.
- Structure and parameters repeat over time.

HMM variants represented as DBNs

HMM

MixGauss HMM

AR-HMM

\Rightarrow The same code can do inference and learning in all of these models.

Factorial HMMs

Factorial HMMs vs HMMs

- Let us compare a factorial HMM with D chains, each with K values, to its equivalent HMM.
- Num. parameters to specify $P\left(X_{t} \mid X_{t-1}\right)$:
- HMM: $O\left(K^{2 D}\right)$.
$-\mathrm{DBN}: O\left(D K^{2}\right)$.
- Computational complexity of exact inference:
- HMM: $O\left(T K^{2 D}\right)$.
- DBN: $O\left(T D K^{D+1}\right)$.

- Each state emits a sequence.
- Explicit-duration HMM: $P\left(Y_{t-l+1: l} \mid Q_{t}, L_{t}=l\right)=\prod_{i=1}^{l} P\left(Y_{i} \mid Q_{t}\right)$
- Segment HMM: $P\left(Y_{t-l+1: l} \mid Q_{t}, L_{t}=l\right)$ modelled by an HMM or SSM.
- Multigram: $P\left(Y_{t-l+1: l} \mid Q_{t}, L_{t}=l\right)$ is deterministic string, and segments are independent.

Segment HMMs

Hierarchical HMMs

- Each state can emit an HMM, which can generate sequences.
- Duration of segments implicitly defined by when sub-HMM enters finish state.

State Space Models (SSMs)

- Also known as linear dynamical system, dynamic linear model, Kalman filter model, etc.
- $X_{t} \in R^{D}, Y_{t} \in R^{M}$ and

$$
\begin{aligned}
P\left(X_{t} \mid X_{t-1}\right) & =\mathcal{N}\left(X_{t} ; A X_{t-1}, Q\right) \\
P\left(Y_{t} \mid X_{t}\right) & =\mathcal{N}\left(Y_{t} ; B X_{t}, R\right)
\end{aligned}
$$

- The Kalman filter can compute $P\left(X_{t} \mid y_{1: t}\right)$ in $O\left(\min \left\{M^{3}, D^{2}\right\}\right)$ operations per time step.

Factored linear-Gaussian models produce sparse matrices

- Directed arc from $X_{t-1}(i)$ to $X_{t}(j)$ iff $A(i, j)>0$.
- Undirected between $X_{t}(i)$ and $X_{t}(j)$ iff $\Sigma^{-1}(i, j)>0$.
- e.g., consider a 2-chain factorial SSM with $P\left(X_{t}^{i} \mid X_{t-1}^{i}\right)=\mathcal{N}\left(X_{t}^{i} ; A^{i} X_{t-1}, Q_{i}\right)$

$$
P\left(X_{t}^{1}, X_{t}^{1} \mid X_{t-1}^{1}, X_{t-1}^{1}\right)=\mathcal{N}\left(\binom{X_{t}^{1}}{X_{t}^{2}} ;\left(\begin{array}{cc}
A^{1} & 0 \\
0 & A^{2}
\end{array}\right)\binom{X_{t-1}^{1}}{X_{t-1}^{2}},\left(\begin{array}{cc}
Q_{1}^{-1} & 0 \\
0 & Q_{2}^{-1}
\end{array}\right)\right)
$$

Factored discrete-state models do NOT produce sparse transition matrices
e.g., consider a 2-chain factorial HMM

$$
P\left(X_{t}^{1}, X_{t}^{1} \mid X_{t-1}^{1}, X_{t-1}^{1}\right)=P\left(X_{t}^{1} \mid X_{t-1}^{1}\right) P\left(X_{t}^{2} \mid X_{t-1}^{2}\right)
$$

Problems with SSMs

- Non-linearity
- Non-Gaussianity
- Multi-modality

Switching SSMs

$$
\begin{aligned}
P\left(X_{t} \mid X_{t-1}, Z_{t}=j\right) & =\mathcal{N}\left(X_{t} ; A_{j} X_{t-1}, Q_{j}\right) \\
P\left(Y_{t} \mid X_{t}, Z_{t}=j\right) & =\mathcal{N}\left(Y_{t} ; B_{j} X_{t}, R_{j}\right) \\
P\left(Z_{t}=j \mid Z_{t-1}=i\right) & =M(i, j)
\end{aligned}
$$

- Useful for modelling multiple (linear) regimes/modes, fault diagnosis, data association ambiguity, etc.
- Unfortunately number of modes in posterior grows exponentially, i.e., exact inference takes $O\left(K^{t}\right)$ time.

Kinds of inference for DBNs

Complexity of inference in factorial HMMs

- $X_{t}^{(1)}, \ldots, X_{t}^{(D)}$ become corrrelated due to "explaining away".
- Hence belief state $P\left(X_{t} \mid y_{1: t}\right)$ has size $O\left(K^{D}\right)$.

Complexity of inference in coupled HMMs

- Even with local connectivity, everything becomes correlated due to shared common influences in the past. c.f., MRF.

Approximate filtering

- Many possible representations for belief state, $\alpha_{t} \triangleq P\left(X_{t} \mid y_{1: t}\right)$:
- Discrete distribution (histogram)
- Gaussian
- Mixture of Gaussians
- Set of samples (particles)

Belief state $=$ discrete distribution

- Discrete distribution is non-parametric (flexible), but intractable.
- Only consider k most probable values - Beam search.
- Approximate joint as product of factors (ADF/BK approximation)

$$
\alpha_{t} \approx \tilde{\alpha}_{t}=\prod_{i=1}^{C} P\left(X_{t}^{i} \mid y_{1: t}\right)
$$

Assumed Density Filtering (ADF)

 exact
 $\bar{\alpha}_{t-1} \quad \bar{\alpha}_{t} \quad \bar{\alpha}_{t+1}$
 approx

Belief state $=$ Gaussian distribution

- Kalman filter - exact for SSM.
- Extended Kalman filter - linearize dynamics.
- Unscented Kalman filter - pipe mean \pm sigma points through nonlinearity, and fit Gaussian.

Unscented transform

Belief state $=$ mixture of Gaussians

- Hard in general.
- For switching SSMs, can apply ADF: collapse mixture of K Gaussians to best single Gaussian by moment matching (GPB/IMM algorithm).

Belief state $=$ set of samples

Particle filtering, sequential Monte Carlo, condensation, SISR, survival of the fittest, etc.

Rao-Blackwellised particle filtering (RBPF)

- Particle filtering in high dimensional spaces has high variance.
- Suppose we partition $X_{t}=\left(U_{t}, V_{t}\right)$.
- If $V_{1: t}$ can be integrated out analytically, conditional on $U_{1: t}$ and $Y_{1: t}$, we only need to sample $U_{1: t}$.
- Integrating out $V_{1: t}$ reduces the size of the state space, and provably reduces the number of particles needed to achieve a given variance.

RBPF for switching SSMs

- Given $Z_{1: t}$, we can use a Kalman filter to compute $P\left(X_{t} \mid y_{1: t}, z_{1: t}\right)$.
- Each particle represents $\left(w, z_{1: t}, E\left[X_{t} \mid y_{1: t}, z_{1: t}\right], \operatorname{Var}\left[X_{t} \mid y_{1: t}, z_{1: t}\right]\right)$.
- c.f., stochastic bank of Kalman filters.

Approximate smoothing (offline)

- Two-filter smoothing
- Loopy belief propagation
- Variational methods
- Gibbs sampling
- Can combine exact and approximate methods
- Used as a subroutine for learning

Learning (frequentist)

- Parameter learning
$\widehat{\theta}_{M A P}=\arg \max _{\theta} \log P(\theta \mid D, M)=\arg \max _{\theta} \log (D \mid \theta, M)+\log P(\theta \mid M)$ where

$$
\log P(D \mid \theta, M)=\sum_{d} \log P\left(X_{d} \mid \theta, M\right)
$$

- Structure learning
$\hat{M}_{M A P}=\arg \max _{M} \log P(M \mid D)=\arg \max _{M} \log P(D \mid M)+\log P(M)$ where

$$
\log P(D \mid M)=\log \int P(D \mid \theta, M) P(\theta \mid M) P(M) d \theta
$$

Parameter learning: full observability

- If every node is observed in every case, the likelihood decomposes into a sum of terms, one per node:

$$
\begin{aligned}
\log P(D \mid \theta, M) & =\sum_{d} \log P\left(X_{d} \mid \theta, M\right) \\
& =\sum_{d} \log \prod_{i} P\left(X_{d, i} \mid \pi_{d, i}, \theta_{i}, M\right) \\
& =\sum_{i} \sum_{d} \log P\left(X_{d, i} \mid \pi_{d, i}, \theta_{i}, M\right)
\end{aligned}
$$

where $\pi_{d, i}$ are the values of the parents of node i in case d, and θ_{i} are the parameters associated with CPD i.

Parameter learning: partial observability

- If some nodes are sometimes hidden, the likelihood does not decompose.

$$
\log P(D \mid \theta, M)=\sum_{d} \log \sum_{h} P\left(H=h, V=v_{d} \mid \theta, M\right)
$$

- In this case, can use gradient descent or EM to find local maximum.
- EM iteratively maximizes the expected complete-data loglikelihood, which does decompose into a sum of local terms.

Structure learning (model selection)

- How many nodes?
- Which arcs?
- How many values (states) per node?
- How many levels in the hierarchical HMM?
- Which parameter tying pattern?
- Structural zeros:
- In a (generalized) linear model, zeros correspond to absent directed arcs (feature selection).
- In an HMM, zeros correspond to impossible transitions.

Structure learning (model selection)

- Basic approach: search and score.
- Scoring function is marginal likelihood, or an approximation such as penalized likelihood or cross-validated likelihood

$$
\begin{aligned}
\log P(D \mid M) & =\log \int P(D \mid \theta, M) P(\theta \mid M) P(M) d \theta \\
& \stackrel{B I C}{\approx} \log P\left(D \mid \widehat{\theta}_{M L}, M\right)-\frac{\operatorname{dim}(M)}{2} \log |D|
\end{aligned}
$$

- Search algorithms: bottom up, top down, middle out.
- Initialization very important.
- Avoiding local minima very important.

Summary

- Representation
- What are DBNs, and what can we use them for?
- Inference
- How do we compute $P\left(X_{t} \mid y_{1: t}\right)$ and related quantities?
- Learning
- How do we estimate parameters and model structure?

Open problems

- Representing richer models, e.g., relational models, SCFGs.
- Efficient inference in large discrete models.
- Inference in models with non-linear, non-Gaussian CPDs.
- Online inference in models with variable-sized state-spaces, e.g., tracking objects and their relations.
- Parameter learning for undirected and chain graph models.
- Structure learning. Discriminative learning. Bayesian learning. Online learning. Active learning. etc.

The end

