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Brevity is the soul of wit.
-Shakespeare

Name:

Nickname:

Section: 455 or 555

25 25 25 25 100

Nickname is a unique identifier only you know. I will try to place grades on my door using this nickname.

Directions – Read Completely

The exam is closed book/notes. You have 75 minutes to complete the exam. Use the provided white paper, write your name
on the top of each sheet and number them. Write legibly. Turn in both the question sheet and your answer sheet.

455 and 555: Answer all of the questions. Your exam is out of 100 points.

Problem 1: “Recall” Questions (25pts)

Answer each in one or two sentences max.

1. (5pts) What is the Bayes Risk and what does it tell us about making a decision?

2. (5pts) Suppose we have built a classifier on multiple features. What do we do if one of the features is not measurable
for a particular case?

3. (5pts) What is the fundamental difference between Maximum Likelihood parameter estimation and Bayesian parame-
ter estimation?

4. (5pts) What is the role of the windowing function ϕ in the Parzen window density estimator?

5. (5pts) In decision tree learning, when is a node pure?

Problem 2: Decision Trees (25pts)

Suppose there is a student that decides whether or not to go in to campus on any given day based on the weather, wakeup
time, and whether there is a seminar talk he is interested in attending. There are data collected from 13 days.

Day Wakeup HaveTalk Weather GoToSchool
D1 Normal No Sunny No
D2 Normal No Rain No
D3 Early No Sunny Yes
D4 Late No Sunny Yes
D5 Late Yes Sunny Yes
D6 Late Yes Rain No
D7 Early Yes Rain Yes
D8 Normal No Sunny No
D9 Normal Yes Sunny Yes
D10 Late Yes Sunny Yes
D11 Normal Yes Rain Yes
D12 Early No Rain Yes
D13 Early Yes Sunny Yes
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1. (10pts) Build a decision tree based on these observations, using ID3 algorithm with entropy impurity. Show your work
and the resulting tree.

2. (5pts) Classify the following sample using your algorithm: Wakeup=Late, HaveTalk=No,Weather=Rain.

3. (10pts) Consider the case, where some data is missing on a given day. For example, the student lost his/her clock and
does not know if he/she woke up early, normal or late. Given an existing tree that has been trained on the full set of vari-
ables, what can you do to classify a sample with missing data? For example: Wakeup=???,HaveTalk=Yes,Weather=Sunny.
Is this possible? If not explain, why not. If so, explain how and give the answer for that example above using your tree
from problem 2.1.

Problem 3: Parametric and Non-Parametric Methods (25pts)

You are given a datasetD = {0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5}. Using techniques from parametric and non-parametric density
estimation, answer the following questions:

1. (2pts) Draw a histogram of D with a bin-width of 1 and bins centered at {0, 1, 2, 3, 4, 5}.

2. (3pts) Write the formula for the kernel density estimate given an arbitrary kernel K.

3. (5pts) In terms of their respective algorithms and their asymptotic performance, compare the Parzen window method
and the k-NN method of non-parametric density estimation.

4. (5pts) Select a triangle kernel as your window function:

K(u) = (1− |u|)δ(|u| ≤ 1).

where u is a function of the distance of sample xi to the value in question x divided by the bandwidth: u = x−xi
h .

Compute the kernel density estimates for the following values of x = {0, 1, 2, 3, 4, 5} bandwidths of 2.

5. (5pts) Now, what if you make an assumption that, rather, the density is a parametric density: it is a Gaussian. Compute
the maximum likelihood estimate of the Gaussian’s parameters.

6. (5pts) Compare the histogram, the triangle-kernel density estimate, and the maximum-likelihood estimated Gaussian.
Which best captures the data? What does each miss? Why would you choose one of another if you were forced to?

Problem 4: General Pattern Classification (25pts)

This question is adapted from Prof. Jain’s Homework 1 at MSU this spring. http://www.cse.msu.edu/˜cse802/

Do not answer in more than one page.

In the first lecture (and Chapter 1 of DHS book), we discussed an example of a pattern classification system to separate sea
bass from salmon. Along the same lines, consider the following classification scenario:

A fruit company packages four types of fruits, viz. apples (different kinds, say green, pink, red go to the same box),
oranges, grapefruits and grapes. The fruits come to the boxing area on a conveyer belt, and they have to be sorted into their
corresponding boxes, based one of these four classes.

For the above problem, briefly explain the following:

1. (5pts) Why would a company be interested in automating these classification problems?

2. (5pts) What kind of sensors and preprocessing can be used?

3. (5pts) What features will be useful for separating the classes involved in these two problems?

4. (10pts) What are the challenges involved in representing the fruits, and how are the above features useful in overcoming
some of them?
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Problem 2

1. Build a decision tree:
The entropy equation is:

E = −
∑
j

P (wj) logP (wj)

According to the data, we have the total labels 9+, 4-. So the entropy
for the whole data is:

E = − 9

13
log

9

13
− 4

13
log

4

13
= 0.8905

If we classify the data with Wakeup:
Early: 4+

E = −4

4
log

4

4
= 0

Normal: 2+, 3-

E = −2

5
log

2

5
− 3

5
log

3

5
= 0.9710

Late: 3+, 1-

E = −3

4
log

3

4
− 1

4
log

1

4
= 0.8113

Gain(Wakeup) = 0.8905 − 4

13
· 0 − 5

13
· 0.9710 − 4

13
· 0.8113 = 0.2674

If we classify the data with HaveTalk:
Yes: 6+, 1-
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E = −6

7
log

6

7
− 1

7
log

1

7
= 0.5917

No: 3+, 3-

E = −3

6
log

3

6
− 3

6
log

3

6
= 1

Gain(HaveTalk) = 0.8905 − 7

13
· 0.5917 − 6

13
· 1 = 0.1104

If we classify the data with Weather:
Sunny: 6+, 2-

E = −6

8
log

6

8
− 2

8
log

2

8
= 0.8113

Rain: 3+, 2-

E = −3

5
log

3

5
− 2

5
log

2

5
= 0.9710

Gain(Weather) = 0.8905 − 8

13
· 0.8113 − 5

13
· 0.9710 = 0.0178

Since Gain(Wakeup) is the largest one, we choose Wakeup in this step.
The following steps are skiped since they are quite similar to this one.

The final decision tree is:
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2. According to the tree learned, the sample should be classified to NO.

3. Yes, the sample can be classified with missing data: marginalize .
If Wakeup = Early, definitely the student will go to school.
If Wakeup = Normal, since HaveTalk = Yes, the student will go to school.
If Wakeup = Late, since Weather = Sunny, the student will go to school.
So for this sample, no matter what the wake up time is, the student will

go to school.
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Problem 3: Parametric and Non-Parametric Methods

Figure 1: Histogram

1. The histogram is shown in Figure 1.

2. The kernel density function is defined as

pn(x) =
1

n

n∑
i=1

1

Vn
ϕ(

x− xi

hn
)

3. Since bandwidth is 2, Vn = hd = h1 = 2, the kernel function will be

K(x− xi) = (1− |x− xi
h
|)δ(|x− xi| ≤ 1)

Thus the estimated density for a given x will be

pn(x) =
1

n

n∑
i=1

1

Vn
ϕ(
x− xi
hn

) =
1

13

n∑
i=1

1

2
(1− |x− xi

h
|)δ(|x− xi| ≤ 1)

with x0, x1, ...., xn = D = 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5.
Thus, we can get

pn(0) =
5

52
≈ 0.096; pn(1) =

11

52
≈ 0.21; pn(2) =

12

52
≈ 0.23; pn(3) =

9

52
≈ 0.17; pn(4) =

8

52
≈ 0.15; pn(5) =

5

52
≈ 0.096

4. Parzen window specifies the size of the windows as some function of n such
as Vn = 1/

√
n, while k-nearest-neighbor specifies the number of samples

kn as some function of n such as kn =
√
n. Both of them converge to

p(x) as n → +∞. For parzen window method, the choice of Vn has an
important effect on the estimated pn(x): if Vn is too small, the estimation
will depends mostly on closer points and will have too much variability based
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on a limited number of training samples (over-training); if Vn is too large,
the estimation will be an average over a large range of nearby samples, and
will loss some details of p(x). By specifying the number of samples, kNN
methods circumvent this problem by making the window size a function of
the actual training data. If the density is higher around a particular x,
the corresponding Vn will be smaller. This means if we have more samples
around x, we will use smaller window size to capture more details around x.
If the density is lower around x, the corresponding Vn will be larger, which
means less samples can only give us an estimation of a larger scale and cannot
recover many details.

5. If assume the density is a Gaussian, the maximum likelihood estimate of the
Gaussian parameters µ, σ2 is:

µ̂ =
1

n

n∑
i=1

xi ≈ 2.38

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 ≈ 2.08

The unbiased result is

σ̂2
unbias =

1

n− 1

n∑
i=1

(xi − µ̂)2 ≈ 2.26

6. Histogram captures the density in a discrete way and can have large errors
around boundaries of bins. The triangle-kernel better captured the den-
sity with a smoother representation. Although Gaussian estimation is also
smooth, it cannot capture the data samples very well. That’s because it
assumed Gaussian distribution of the samples, while the given sample data
doesn’t fit into a Gaussian distribution. The triangular-kernel best captured
the data and I would choose this one to estimate the distribution of this
particular data set.
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