Problem 1: Parametric Estimation

1. Since samples 1, ..., 2, are drawn independently from the Bernoulli dis-
tribution,
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Because x; € {0, 1}, the previous equation can be expressed as
p(D]0) = 6°(1 — 0)("=%) with s = 37" | @;.

2. Since 6 denotes the probability of getting head or tail and a uniform prior
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According to Bayes parameter estimation:
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4. According to maximum likelihood estimation,

0 = argmazep(D|0) = argmazg(6*(1 — 6)"~%)
We can get 6 through:
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Problem?2: Nonparametric Methods

1. Because conditional densities are uniform within unit hyperspheres a dis-
tance of ten units apart. Which means, the n samples will be distributed
inside two different unit hyperspheres based on their labels. If we are
given a input x which belongs to w;, samples with the same label w; will
be nearer to x than samples with the other label, because the two unit
hyperspheres for the two classes have distance of ten units.

Thus, if x was classified to a wrong class, number of samples with the
same label w; must be less than (k + 1)/2 such that the kNN method



will include more samples with the other label. Therefore, the probability
of error is the probability of having number of samples in w; less than
(k 4+ 1)/2, which can be represented as:
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. For single-nearest neighbor rule, the probability of error is:
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Thus, the single-nearest neighbor rule has a lower error rate than the
k-nearest-neighbor error rate for k£ > 1.
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Furthermore, Since (7;) is an increasing function of j with 0 < j < n/2,
and
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we will have:
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we can prove that P,(e) = 0, as n — 0o



