
Gaussian Mixture Models

Introducing Latent Variables

Define a K-dimensional binary random variable z.

z has a 1-of-K representation such that a particular element zk is 1
and all of the others are zero. Hence:

zk ∈ {0, 1} (6)
∑

k

zk = 1 (7)

The marginal distribution over z is specified in terms of the mixing
coefficients:

p(zk = 1) = πk (8)

And, recall, 0 ≤ πk ≤ 1 and
∑

k πk = 1.
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Gaussian Mixture Models

We are interested in the marginal distribution of x:

p(x) =
∑

z

p(x, z) (12)

=
∑

z

p(z)p(x|z) (13)

=
∑

z

K∏

k=1

πzk
k N (x|µk,Σk)

zk (14)

=
K∑

k=1

πkN (x|µk,Σk) (15)

So, given our latent variable z, the marginal distribution of x is a
Gaussian mixture.

If we have N observations x1, . . . ,xN , then because of our chosen
representation, it follows that we have a latent variable zn for each
observed data point xn.
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Gaussian Mixture Models

Component Responsibility Term

We need to also express the conditional probability of z given x.

Denote this conditional p(zk = 1|x) as γ(zk).
We can derive this value with Bayes’ theorem:

γ(zk)
.
= p(zk = 1|x) = p(zk = 1)p(x|zk = 1)

∑K
j=1 p(zj = 1)p(x|zj = 1)

(16)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(17)

View πk as the prior probability of zk = 1 and the quantity γ(zk) as
the corresponding posterior probability once we have observed x.

γ(zk) can also be viewed as the responsibility that component k takes
for explaining the observation x.
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Gaussian Mixture Models Sampling

Sampling from the GMM

To sample from the GMM, we can first generate a value for z from
the marginal distribution p(z). Denote this sample ẑ.

Then, sample from the conditional distribution p(x|ẑ).
The figure below-left shows samples from a three-mixture and colors
the samples based on their z. The figure below-middle shows samples
from the marginal p(x) and ignores z. On the right, we show the
γ(zk) for each sampled point, colored accordingly.
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The figure below-left shows samples from a three-mixture and colors
the samples based on their z. The figure below-middle shows samples
from the marginal p(x) and ignores z. On the right, we show the
γ(zk) for each sampled point, colored accordingly.

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 26 / 41





Gaussian Mixture Models Maximum-Likelihood

Maximum-Likelihood

Suppose we have a set of N i.i.d. observations {x1, . . . ,xN} that we
wish to model with a GMM.

Consider this data set as an N × d matrix X in which the nth row is
given by xT

n .

Similarly, the corresponding latent variables define an N ×K matrix
Z with rows zTn .

The log-likelihood of the corresponding GMM is given by

ln p(X|π,µ,Σ) =

N∑

n=1

ln

[
K∑

k=1

πkN (x|µk,Σk)

]
. (18)

Ultimately, we want to find the values of the parameters π,µ,Σ that
maximize this function.
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Gaussian Mixture Models Maximum-Likelihood

However, maximizing the log-likelihood terms for GMMs is much
more complicated than for the case of a single Gaussian. Why?

The difficulty arises from the sum over k inside of the log-term. The
log function no longer acts directly on the Gaussian, and no
closed-form solution is available.
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Gaussian Mixture Models Maximum-Likelihood

Singularities

There is a significant problem when we apply MLE to estimate GMM
parameters.

Consider simply covariances defined by Σk = σ2
kI.

Suppose that one of the components of the mixture model, j, has its
mean µj exactly equal to one of the data points so that µj = xn for
some n.

This term contributes

N (xn|xn,σ
2
j I) =

1

(2π)(1/2)σj
(19)

Consider the limit σj → 0 to see that this term goes to infinity and
hence the log-likelihood will also go to infinity.

Thus, the maximization of the log-likelihood function is not a
well posed problem because such a singularity will occur
whenever one of the components collapses to a single, specific
data point.
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Expectation-Maximization for GMMs

Expectation-Maximization for GMMs

Expectation-Maximization or EM is an elegant and powerful
method for finding MLE solutions in the case of missing data such as
the latent variables z indicating the mixture component.

Recall the conditions that must be satisfied at a maximum of the
likelihood function.

For the mean µk, setting the derivatives of ln p(X|π,µ,Σ) w.r.t. µk

to zero yields

0 = −
N∑

n=1

πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

Σk(xn − µk) (20)

= −
N∑

n=1

γ(znk)Σk(xn − µk) (21)

Note the natural appearance of the responsibility terms on the RHS.
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Expectation-Maximization for GMMs

Multiplying by Σ−1
k , which we assume is non-singular, gives

µk =
1

Nk

N∑

n=1

γ(znk)xn (22)

where

Nk =
N∑

n=1

γ(znk) (23)

We see the kth mean is the weighted mean over all of the points in
the dataset.

Interpret Nk as the number of points assigned to component k.

We find a similar result for the covariance matrix:

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)
T . (24)
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Expectation-Maximization for GMMs

We also need to maximize ln p(X|π,µ,Σ) with respect to the mixing
coefficients πk.

Introduce a Lagrange multiplier to enforce the constraint
∑

k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(25)

Maximizing it yields:

0 =
1

Nk

∑

n=1

γ(znk) + λ (26)

After multiplying both sides by π and summing over k, we get

λ = −N (27)

Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 33 / 41





Expectation-Maximization for GMMs

We also need to maximize ln p(X|π,µ,Σ) with respect to the mixing
coefficients πk.

Introduce a Lagrange multiplier to enforce the constraint
∑

k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(25)

Maximizing it yields:

0 =
1

Nk

∑

n=1

γ(znk) + λ (26)

After multiplying both sides by π and summing over k, we get

λ = −N (27)

Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 33 / 41



Expectation-Maximization for GMMs

We also need to maximize ln p(X|π,µ,Σ) with respect to the mixing
coefficients πk.

Introduce a Lagrange multiplier to enforce the constraint
∑

k πk = 1.

ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)
(25)

Maximizing it yields:

0 =
1

Nk

∑

n=1

γ(znk) + λ (26)

After multiplying both sides by π and summing over k, we get

λ = −N (27)

Eliminate λ and rearrange to obtain:

πk =
Nk

N
(28)

J. Corso (SUNY at Buffalo) Clustering / Unsupervised Methods 33 / 41





Expectation-Maximization for GMMs

Solved...right?

So, we’re done, right? We’ve computed the maximum likelihood
solutions for each of the unknown parameters.

Wrong!

The responsibility terms depend on these parameters in an intricate
way:

γ(zk)
.
= p(zk = 1|x) = πkN (x|µk,Σk)∑K

j=1 πjN (x|µj ,Σj)

But, these results do suggest an iterative scheme for finding a
solution to the maximum likelihood problem.

1 Chooce some initial values for the parameters, π,µ,Σ.
2 Use the current parameters estimates to compute the posteriors on the

latent terms, i.e., the responsibilities.
3 Use the responsibilities to update the estimates of the parameters.
4 Repeat 2 and 3 until convergence.
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Expectation-Maximization for GMMs
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Expectation-Maximization for GMMs

Some Quick, Early Notes on EM

EM generally tends to take more steps than the K-Means clustering
algorithm.

Each step is more computationally intense than with K-Means too.

So, one commonly computes K-Means first and then initializes EM
from the resulting clusters.

Care must be taken to avoid singularities in the MLE solution.

There will generally be multiple local maxima of the likelihood
function and EM is not guaranteed to find the largest of these.
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Expectation-Maximization for GMMs

Given a GMM, the goal is to maximize the likelihood function with respect to the
parameters (the means, the covarianes, and the mixing coefficients).

1 Initialize the means, µk, the covariances, Σk, and mixing coefficients, πk.
Evaluate the initial value of the log-likelihood.

2 E-Step Evaluate the responsibilities using the current parameter values:

γ(zk) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

3 M-Step Update the parameters using the current responsibilities

µnew
k =

1

Nk

N∑

n=1

γ(znk)xn (29)

Σnew
k =

1

Nk

N∑

n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (30)

πnew
k =

Nk

N
(31)

where

Nk =

N∑

n=1

γ(znk) (32)
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Expectation-Maximization for GMMs

4 Evaluate the log-likelihood

ln p(X|µnew,Σnew,πnew) =

N∑

n=1

ln

[
K∑

k=1

πnew
k N (xn|µnew

k ,Σnew
k )

]
(33)

5 Check for convergence of either the parameters of the log-likelihood. If the
convergence is not satisfied, set the parameters:

µ = µnew (34)

Σ = Σnew (35)

π = πnew (36)

and goto step 2.
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A More General EM

A More General View of EM

The goal of EM is to find maximum likelihood solutions for models
having latent variables.

Denote the set of all model parameters as θ, and so the log-likelihood
function is

ln p(X|θ) = ln

[
∑

Z

p(X,Z|θ)
]

(37)

Note how the summation over the latent variables appears inside of
the log.

Even if the joint distribution p(X,Z|θ) belongs to the exponential
family, the marginal p(X|θ) typically does not.

If, for each sample xn we were given the value of the latent variable
zn, then we would have a complete data set, {X,Z}, with which
maximizing this likelihood term would be straightforward.
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A More General EM

However, in practice, we are not given the latent variables values.

So, instead, we focus on the expectation of the log-likelihood under
the posterior distribution of the latent variables.

In the E-Step, we use the current parameter values θold to find the
posterior distribution of the latent variables given by p(Z|X,θold).

This posterior is used to define the expectation of the
complete-data log-likelihood, denoted Q(θ,θold), which is given by

Q(θ,θold) =
∑

Z

p(Z|X,θold) ln p(X,Z|θ) (38)

Then, in the M-step, we revise the parameters to θnew by maximizing
this function:

θnew = argmax
θ

Q(θ,θold) (39)

Note that the log acts directly on the joint distribution p(X,Z|θ) and
so the M-step maximization will likely be tractable.
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