Clustering Lecture 5: Mixture Model

Jing Gao SUNY Buffalo

Outline

Basics

- Motivation, definition, evaluation

Methods

- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

Using Probabilistic Models for Clustering

Hard vs. soft clustering

- Hard clustering: Every point belongs to exactly one cluster
- Soft clustering: Every point belongs to several clusters with certain degrees

Probabilistic clustering

- Each cluster is mathematically represented by a parametric distribution
- The entire data set is modeled by a mixture of these distributions

Gaussian Distribution

Probability density function f(x) is a function of x given μ and σ $N(x \mid \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)$

Likelihood

Define likelihood as a function of μ and σ given $x_1, x_2, ..., x_n$

$$\prod_{i=1}^n N(x_i \mid \mu, \sigma^2)$$

Gaussian Distribution

• Multivariate Gaussian

$$\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi|\Sigma|)^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

mean covariance

• Log likelihood

$$L(\mu, \Sigma) = \sum_{i=1}^{n} \ln N(x_i \mid \mu, \Sigma) = \sum_{i=1}^{n} (-\frac{1}{2} (x_i - \mu)^T \sum_{i=1}^{n-1} (x_i - \mu)) - \pi \ln |\Sigma|)$$

Maximum Likelihood Estimate

- MLE
 - Find model parameters μ, Σ that maximize log likelihood

 $L(\mu, \Sigma)$

• MLE for Gaussian

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$$

Gaussian Mixture

Gaussian Mixture

- To generate a data point:
 - first pick one of the components with probability $\ \pi_k$
 - then draw a sample x_i from that component distribution
- Each data point is generated by one of *K* components, a latent variable

$$z_i = (z_{i1}, \dots, z_{iK})$$
 is associated with each x_i
 $\sum_{k=1}^{K} z_{ik} = 1$ and $p(z_{ik} = 1) = \pi_k$

Gaussian Mixture

• Maximize log likelihood

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{i=1}^{n} \ln \{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i|\mu_k,\Sigma_k)\}$$

• Without knowing values of latent variables, we have to maximize the incomplete log likelihood

Expectation-Maximization (EM) Algorithm

 <u>E-step</u>: for given parameter values we can compute the expected values of the latent variables (responsibilities of data points)

$$r_{ik} \equiv E(z_{ik}) = p(z_{ik} = 1 | x_i, \pi, \mu, \Sigma)$$

=
$$\frac{p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}{\sum_{k=1}^{K} p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}$$

=
$$\frac{\pi_k \mathcal{N}(x_i | u_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | u_k, \Sigma_k)}$$

- Note that $r_{ik} \in [0, 1]$ instead of $\{0, 1\}$ but we still have $\sum_{k=1}^{K} r_{ik} = 1$ for all i

Expectation-Maximization (EM) Algorithm

<u>M-step</u>: maximize the expected complete log likelihood

$$E[\ln p(x, z | \pi, \mu, \Sigma)] = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \{\ln \pi_k + \ln \mathcal{N}(x_i | \mu_k, \Sigma_k)\}$$

• Parameter update:

$$\pi_k = \frac{\sum_i r_{ik}}{n} \qquad \mu_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}$$
$$\Sigma_k = \frac{\sum_i r_{ik} (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_i r_{ik}}$$

EM Algorithm

- Iterate E-step and M-step until the log likelihood of data does not increase any more.
 - Converge to local optimal
 - Need to restart algorithm with different initial guess of parameters (as in *K*-means)
- Relation to K-means
 - Consider GMM with common covariance

$$\Sigma_k = \delta^2 I$$

– As $\delta^2 \rightarrow 0, r_{ik} \rightarrow 0$ or 1, two methods coincide

K-means vs GMM

- Objective function
 - Minimize sum of squared Euclidean distance
- Can be optimized by an EM algorithm
 - E-step: assign points to clusters
 - M-step: optimize clusters
 - Performs hard assignment during E-step
- Assumes spherical clusters with equal probability of a cluster

- Objective function
 - Maximize log-likelihood
- EM algorithm
 - E-step: Compute posterior probability of membership
 - M-step: Optimize parameters
 - Perform soft assignment during E-step
- Can be used for non-spherical clusters
- Can generate clusters with different probabilities

Mixture Model

Strengths

- Give probabilistic cluster assignments
- Have probabilistic interpretation
- Can handle clusters with varying sizes, variance etc.

Weakness

- Initialization matters
- Choose appropriate distributions
- Overfitting issues

Take-away Message

- Probabilistic clustering
- Maximum likelihood estimate
- Gaussian mixture model for clustering
- EM algorithm that assigns points to clusters and estimates model parameters alternatively
- Strengths and weakness